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The Poisson distribution is suitable in variety
fields such as

biology, quality control, and so on. For example, to
study the

incidence rate of some disease (Ng and Tang, 2005),
the number of

disease occurrence during some trial period can be
modeled by a

Poisson distribution. This study aims to identify a
superiority of

one treatment group over the control group under
Poisson

distributions. We consider two commonly-seen Wald s
test statistics.

We introduce the correspondent asymptotic $p$-values
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for large

sample sizes or long duration. On the other hand, for
small data

sets we propose two types of exact $p$-values, which
own

computational efficiency and are build under
conservatism. The

validity of the proposed $p$-values are theoretically
justified. A

numerical study is conducted for their finite-sample
performances.

The application of one real example i1s provided for
11lustration.

Poisson distribution, exact test, nuisance parameter,
asymptotic test, p-value.
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Abstract

The Poisson distribution is suitable in variety fields such as biology, quality control,
and so on. For example, to study the incidence rate of some disease (Ng and Tang,
2005), the number of disease occurrence during some trial period can be modeled by a
Poisson distribution. This study aims to identify a superiority of one treatment group
over the control group under Poisson distributions. We consider two commonly-seen
Wald’s test statistics. We introduce the correspondent asymptotic p-values for large
sample sizes or long duration. On the other hand, for small data sets we propose
two types of exact p-values, which own computational efficiency and are build under
conservatism. The validity of the proposed p-values are theoretically justified. A
numerical study is conducted for their finite-sample performances. The application of

one real example is provided for illustration.

1 Introduction

It is well known that the Poisson distribution is a suitable model for rare events in a variety
of fields, such as biology, commerce, quality control, and so on. These applications are
usually used to compare the means of two Poisson random variables. As the sample sizes
or the mean parameters are sufficiently large, asymptotic tests are often recommended in
the literature under Poisson distribution. (See Shiue and Bain(1982), Thode(1997), Ng and
Tang(2005) and Gu el al.(2008)). On the other hand, the exact testing procedures are more
appropriate when both assumptions fail. In comparing two Poisson means, there involves
nuisance parameters, the unknown mean values, under the null hypothesis. So far, the
existing literatures consider the problem with the null hypothesis of equality of the two
means to ease the complexity. Here in this study, our testing procedures are constructed
under the null hypothesis of non-superiority. The test statistics under consideration are

two commonly-seen Wald’s test statistics. Their correspondent asymptotic p-values and two



exact p-values are proposed. Theoretical justification on the validity of these p-values are
provided. In addition, a numerical study is performed for their finite-sample properties.

Further, a real example data set is presented for illustrations.

2 Test Procedure

2.1 Notations and Test Statistics
Assume two independent Poisson random samples within a fixed duration,
iid iid

}qiNPOi()\l), Yéj NPO?:()\Q), forz':1~~n1, ]:1712

It’s known that the sums, Y, = ", V1;, Yy = > 772 Yy;, are the sufficient statistics, and the
sample means, Y; = Yl/nl,i_/g = Yy /ny, are the MLE of Aj, Ay, respectively. The research

interest is to test the superiority of the alternative procedure with the following hypotheses,
H02>\1§)\2, Hli)\1>)\2.

We consider two types of Wald’s statistic,

Y] — Y Y, - Y-
ZR = 1~ 2~ ’ and ZU = 1_ 2_ )
A A i Y
i YERR"
where Ay = % is the restricted MLE of the common mean value under the boundary of

Hy, Ay = Xg. Then the null hypothesis is rejected if a sufficiently large value of the test

statistic is observed.

2.2 Asymptotic P-values

When nq, ny are sufficiently large, the asymptotic p-values are

Par=1—P(2r), pav=1—-(zv),

where ®(-) is the distribution function of N (0, 1). Denote § = A; — A2 as the mean difference.
Assume as nj,ng — 00, ny/ny — p > 0. Then at 6 = dy € R, it’s easy to derive that
approximately,

Zro — -5 N(0,1), and Zy —p -5 N(0,1),

with

= do o= (1+ p)A2 + pdo
[(14p)Aa+60 (1 + p))\z + 0y
nap

2



Furthermore, at the significance level «, the asymptotic power functions of the two asymp-

totic tests are respectively,

Bar(60, A2, p,n2) =1 —®(zq0 — p), and Bay(do, Aa, pyna) =1 — P(z4 — p).
Theorem 1. At any dy <0,
1. BA,U < a, for all ny,nsy.

2. BA,R < «a, for ng, p satisfy

Vi 2 (o) (VT o7t 00— ITF a T o). 1)

2.3 Exact P-values

When the sample sizes are insufficient or the mean values are relatively small, exact tests
are more appropriate for establishing the superiority. Given the observed zg, zy of the two

test statistics, the exact p-values are

per=P(Zr > zr), pey =P(Zy > ),

where the probabilities are evaluated under two independent Poisson distributions with
means in the composite null parameter space A\; < A\y. To control the size, one can consider

the standard p-value,

Pfq”,iz = sup P(Zgr > 2p), pfg”}] = sup P(Zy > z).
A1SA2 A1<A2

However, because the null space is infinite, the computation of a standard exact p-value is a
complicated and time-consuming task. We aim to develop an efficient testing procedure in
this study.

Consider the following confidence-set p-values by Berger and Boos (1994),

P = swp P(Zp>zp)+v, pdy= sw  P(Zy> )+,
' (A1,22)€C, ' (A1,X2)€Cy

where C,, is a joint confidence set of (A, A2) that guarantees 100(1 — )% confidence within

the null parameter space.
Cy={L1 <A\ <min(Uy, Ag), Ly < Xy < Us},

where

1 2 2
(L, Uh) = 5 - (X[l—u—ﬁl—v)/z, 21 X[(1-yT)/2, 2<y1+1>1> )

3



and
(L U ) — L 2 2
2 U2) =5 X[1—(1-vT=7)/2, 2y2]" X[(1—v/T=7)/2, 2(y2+1)] ) >

and X%(S,k:) is the 100(1 — 0)-th percentile of a chi-square distribution with degree of freedom
k.

Theorem 2. In comparing two Poisson means, let S be a test statistic depending on the
data only through the sufficient statistics (Y1,Ys). Suppose S satisfies the convexity condition.

Then given so, the supremum of P(S > s1) occurs at a boundary point of the parameter space.
Theorem 3. 7z, Zy satisfy the convexity condition.

Subsequently, the confidence-set p-values of Zg and Zy; can be evaluated in the boundary
of the confidence set C.,. That is,

pg},R = sup P(Zr > 2r)+7, pg},U = sup  P(Zy > zy) +7,
(M, A2)€DC, (M, A2)€DC,
where 0C, is the boundary of C,.

Alternatively, we propose the estimated exact p-values as
Per=P(Zr > zp|ho1, A2).  Pru = P(Zu > 2u) o1, Ao2), (2)
where the probabilities are computed on

o A Ag), if Ay < Ao
()\017/\02) _ (~17 ~2)7 1 Al > AQ’
()\0,)\0), if Ay > )\2.

3 Numerical Study

In this numerical study, we investigate the performance of the asymptotic tests, denoted as
pa, by using Zg, Zy, respectively. The correspondent exact tests by the confidence-set p-
values, denoted as pl,;, and the estimated p-value in (2), denoted as pg, are studied as well.
The confidence-set p-value is constructed with two different confidence limits, v = 0.001.
That is, the smaller v is mount to expand the rejection range of the procedure. Because
the two Wald’s test statistic are a function of the sufficient statistics, the exact type I error
rate and power of their associated tests can be easily computed. Here, the exact type I error
rate and the exact power of each test are calculated. We consider Ay = 1 and 9, ranged
from —0.25 to 2.0 and the second sample size ny = 10 and three p = 3/5, 1. The nominal
significance level « is set as 0.05. The type I error rate and power are presented in Table
1-2.



Table 1: Type I error rate of the asymptotic p-value and the exact p-value of Zg, Zy at
Ao =1,n9 =10 and a = 5%.

Test 0o

p  Statistic p-value -0.25  -0.15 -0.1 -0.05 0.0
3/5  Zn Pa 0.0157 0.0266 0.0337 0.0421 0.0519
POl 0.0096  0.0176  0.0231  0.0297 0.0375

e 0.0137 0.0233 0.0297 0.0372 0.0460

Zy pa 0.0082 0.0153 0.0202 0.0262 0.0334
PO 10,0120 0.0228 0.0293  0.0370  0.0461

P 0.0145 0.0250 0.0318 0.0399 0.0493

1 Zn Pa 0.0126  0.0230 0.0301 0.0387 0.0489
PO 0.0123 00227 0.0298 0.0384  0.0487

P 0.0123 0.0227 0.0298 0.0384 0.0487

Zy Pa 0.0126  0.0230 0.0301 0.0387 0.0489
POl 0.0123  0.0227 0.0298 0.0384 0.0487

P 0.0123 0.0227 0.0298 0.0384 0.0487

Table 2: Power of the asymptotic p-value and the exact p-value of Zg, Zy at Ay = 1,1y = 10
and a = 5%.

Test do

p  Statistic p-value 0.1 0.5 1.0 1.5 2.0
3/5  Zg Pa 0.0757 0.2298 0.5024 0.7432 0.8907
PO 0.0574 01942 04524 0.6999  0.8655

PE 0.0675 0.2099 0.4728 0.7194 0.8781

Zy pa 0.0517 0.1833 0.4425 0.6942 0.8623
PO 00682 02120 0.4743  0.7199  0.8782

PE 0.0721 0.2199 0.4871 0.7310 0.8841

1 Zn pa 0.0748 0.2554 0.5773 0.8279 0.9477

PO 00746 02544 0.5724  0.8223  0.9451
PO 0.0646  0.2350 0.5554  0.8145  0.9422

P 0.0747 0.2554 0.5773 0.8279 0.9477
Zy Pa 0.0748 0.2554 0.5773 0.8279 0.9477
POl 0.0746 02544 0.5724  0.8223 0.9451
e 0.0747 0.2554 0.5773 0.8279 0.9477




4 Real Example

In this section, the methods are applied to the breast cancer study described in Ng and
Tang (2005). Define A\; as the mean incidence number of breast cancer per person-year of
the treatment group, in which the patients had received X-ray; and Ay be the mean incidence
number per person-year of the control group, in which the patients were not examined by

X-ray. The research problem is to test the following hypothesis,
HO:)\lS)\Q Hli/\1>)\2.

See the following table for the p-values. All these p-values are less than o = 5% and lead to
the conclusion of rejecting the null hypothesis. The increase in the incidence rate of breast

cancer by using the X-ray fluoroscopy achieves statistical significance.

Table 3: The asymptotic, estimated and confidence-set p-values of Zp and Zj.

Test statistic zr = 2.0818 zy = 2.2047
Asymptotic p-value 0.0187 0.0137
Estimated p-value 0.0177 0.0186
Confidence-set p-value (v = 0.001) 0.0182 0.0188

5 Discussion

In this study, we focus on the problem of testing the superiority of one Poisson distribution
over another from the difference in means. Differing with the problem with the equality null
hypothesis, the current problem involves a more complicated null parameter space, and it
introduces more difficulties on both theoretical justification and practical computation of a p-
value. A test, that ignores the null space of inferiority, is likely to produce a liberal conclusion
and may not adequately control its type I error rate. We here propose several asymptotic and
exact testing procedures for large and small to moderate data sets respectively. Theoretical
justifications on validity of these testing procedures are provided. In additional, a numerical

study is conducted for their finite-sample performances.
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