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中 文 摘 要 ： 剖面曲線監測（profile monitoring）在品質管制的領域

中，是一相對新且漸為受到重視的方法；其應用於在給定的

時間內，以一剖面曲線（profile）描繪該一製程。本研究計

畫主要討論的剖面曲線為誤差具自我相關移動平均過程

（autoregressive moving-average process）的複迴歸模

型，將提出相關統計方法在此類剖面曲線的製程下，藉以發

現失控樣本的診斷設計。研究以電腦模擬方式檢驗所提出的

方法；同時，藉由一個實際的資料分析陳示此方法。 

中文關鍵詞： 誤差相關；Hotelling｀s T2  統計量；統計製程管制。 

英 文 摘 要 ：  

英文關鍵詞：  
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1. Introduction 

Profile monitoring is the use of control charts for cases in which the quality of a 

process or product can be characterized by a functional relationship between a 

response variable and one or more explanatory variables.  Due to advances in 

technology, such monitoring is becoming more common to obtain profiles at each 

time period, especially when a series of data points forms a curve representing the 

quality state of a process.  These cases appear to be increasingly common in 

practical applications.  Indeed, it is crucial in Phase I of a control chart scheme to 

determine which of the data points are similar to each other and which are outliers in 

some way.  This ensures that the Phase II application will be adequate for real-time 

monitoring.  Recent research has focused on how to determine those outlying 

profiles in Phase I applications.  For a detailed overview of profile monitoring, 

examples of its application, and a review of the literature, see Woodall et al. (2004), 

Woodall (2007), and references therein.   

The majority of works on profile monitoring have focused on situations where 

the profiles are modeled parametrically using a simple linear regression.  For 

example, see Kang and Albin (2000), Kim et al. (2003), Mahmoud and Woodall 

(2004), Wang and Tsung (2005), Gupta et al. (2006), Mahmoud et al. (2007), Zou et 
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al. (2008), and Jensen et al. (2008).  These methods often fit the profile with 

separate linear regression models and monitor the coefficients of the fitted regression 

model to determine outlying profiles, thus reducing the profiles to a smaller set of 

values that simplifies the monitoring scheme.  Jensen and Birch (2009) extend the 

use of non-linear mixed models to monitor the nonlinear profiles in order to account 

for the correlation structure.  Noorossana et al. (2009) specifically focus on Phase I 

monitoring of multivariate multiple linear regression profiles.  Mahmoud et al. (2007) 

and Kazemzadeh et al. (2008) propose Phase I methods for profiles represented by 

multiple and polynomial regression models, respectively.  

All the above-mentioned studies on the monitoring of simple or multiple linear 

profiles assume that the observations within each profile are uncorrelated.  Zou et al. 

(2007) propose a monitoring scheme for a general linear profile using a multivariate 

exponentially weighted moving average approach.  Noorossana et al. (2008) 

specifically study the case when profiles are not independent from each other over 

time, by considering a simple linear regression with a first-order autoregressive model 

(AR(1)) for errors.  Soleimani et al. (2009) look at a simple linear profile and 

assume that there is an AR(1) model between observations in each profile.  However, 

a situation often exists where an AR(1) model is not adequate to depict the correlation 

structure among errors in practice.  The general within-profile correlation model has 

been considered by Qiu et al. (2010), and more explanatory variables in the regression 

model may be required to improve the model fitting.  This project considers a 

multiple linear regression with random errors following an autoregressive 

moving-average (ARMA) model, which can be regarded as a special parametric form 

of Qiu et al. (2010).   

 

2. Linear regression model with ARMA errors 
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Consider the regression model:  

ttt xy εβ += ' ,     t=1, 2,L , T,                     (1) 

where ty  is the observed variable at time t, '
tx  is an k×1  vector of explanatory 

variables, and β  is a 1×k  vector of unknown parameters.  Here, the random error 

tε  follows an ARMA process, which can be expressed as: 

tt BB νε )()( Θ=Φ ,       ),0(~ 2σν WNt ,           (2) 

where p
p BBBB φφφ ++++=Φ L2

211)(  and q
q BBBB θθθ ++++=Θ L2

211)(  

are respectively the pth-order and qth-order lag operator polynomials and B denotes 

the lag operator.  Harvey (1990, Section 7.2) provides the estimation of parameters 

for models (1) and (2) using the generalized least squares (GLS) approach under the 

frequency domain.  The maximum likelihood (ML) estimation for this can be seen in 

Harvey and Phillips (1979).  

Let ),...,( 1 Tyyy =  and ),...,( 1 Tεεε =  be 1×T  vectors, and 

)...,,( 21 ′= TxxxX  be a kT ×  matrix.  If )(εVarV =  is a positive definite (p.d.) 

matrix, then there exists a p.d. lower triangular matrix, L, and a p.d. diagonal matrix F, 

such that 

LFLV 1'1 −− = . 

We pre-multiply model (1) in matrix form by L and define *y , *X , and *ε  as Ly, 

LX, and εL , respectively.  This leads to the following heteroscedastic regression for 

models (1) and (2): 

*** εβ += Xy ,       FVar =)( *ε , 

or  

**'*
ttt xy εβ += ,       tt fVar =)( *ε ,    t=1, 2, ….,T. 

Under the normality condition, the asymptotic distribution of the ML estimate (as well 
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as the GLS estimate) of β , denoted by β̂ = ∑∑ −−−

t
ttt

t
ttt yxfxxf *'*11*'*1 )( , is a normal 

distribution with mean β  and variance-covariance matrix 1*1*' )( −− XFX  (e.g. 

Brockwell and Davis, 2009).   

Direct use of GLS requires finding the inverse of the covariance matrix for the 

tε ’s, which can be achieved more easily using the Kalman filter (Durbin and 

Koopman, 2001).  Many time-series models used in econometrics are special cases 

of the class of linear state space models developed by engineers to describe physical 

systems.  The Kalman filter, an efficient recursive method for computing optimal 

linear forecasts in such models, can be exploited to compute the exact Gaussian 

likelihood function.  The computation for the estimates is easily implemented by 

converting models (1) and (2) into the state space form and applying the Kalman filter 

recursive approach.  The linear state-space model postulates that an observed time 

series is a linear function of a (generally unobserved) state vector and the law of 

motion for the state vector is a first-order vector autoregression.   

Let tα  denote the values taken at time t by a vector of s state variables, and A 

and b are ss×  and 1×s  matrices of constants, respectively.  We assume that ty  

is generated by: 

ttt uby +′= α                          (3) 

ttt vA += −1αα ,                       (4) 

where the scalar tu  and the vector tv  are white noise processes with a zero mean, 

and are independent of each other, and (4) has initial value 0α .  We denote 

)( 22
tuE=σ  and )'( tt vvE=Σ .  Equation (3) is sometimes called the “measurement” 

equation while (4) is called the “transition” equation.  The assumption that the 

autoregression is first-order is not restrictive, since higher-order systems can be 

handled by adding additional state variables (see Harvey (1989) for details).  

The first d non-stationary elements are taken to have a diffuse prior as discussed 
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in Harvey (1989).  A set of T-k standardized generalized residuals: 

2/1** /)ˆ( tttt fxye β−= ,      t =k+1 ,…..,T,  

is produced as a by-product of the recursive equations.  When φ  and θ  are known, 

these residuals are independently and normally distributed with mean zero and 

constant variance, 2
*σ , which can be estimated by )/(ˆ 22 kTe

t
t −= ∑σ .   

 

3. Hotelling’s 2T  test  

This section discusses the diagnostic scheme for the profile models (1) and (2) by 

applying Hotelling’s 2T  ststistic.  Let 1X ,…, nX  be a random sample from a 

p-dimensional normal population with mean μ and positive-definite 

variance-covariance matrix Σ .  Consider the testing problem 00 : μμ =H  versus 

0: μμ ≠aH , where 0μ  is a known vector.  To deal with this problem, Hotelling’s 

2T  test is used, which is defined as  

)()( 0
1

0
2 μμ −−= − xSxnT T ,                           (5) 

where x  is the sample mean and S is the sample covariance matrix.  If 0H  is true, 

then result (5) is distributed as pnpF
pn

pn
−−

−
,

)1(
, where vuF ,  denotes the F-distribution 

with degrees of freedom u and v (see, for example, Iwashita (1997).  Several 

different formulations of the 2T statistic have been proposed to monitor the profile 

coefficients resulting from different kinds of profile models in the literature (e.g. 

Kang and Albin 2000; Williams, Woodall, and Birch 2007; Vaghefi et al. 2009; and 

references therein).  

 

3.1 2T  for model coefficients 

Many monitoring problems can be stated as the problem of detecting a change in the 
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parameters of the model of interest.  These problems result from the increasing 

complexity of most technological processes, for which details of this issue can be 

found in Basseville and Nikiforov (1993).  To monitor the departure of coefficients, 

),...,,...,,,...,,( 1110 qpk θθφφβββδ = , from the profile models (1) and (2) applied to m 

datasets, the analogous Hotelling’s 2T  test of (5) is thus: 

)ˆ()ˆ( 12
1 δδδδ −Δ−= −

i
T

iiT ,     i=1, 2,…, m,           (6) 

where iδ̂  denotes the estimate of δ  for the ith dataset, δ  entails the averages of 

all iδ̂ ’s , and )1/()ˆ)(ˆ(
1

−−−=Δ ∑
=

mT
ii

m

i
δδδδ .  Section 2 discusses the 

asymptotic normality and related proporties of iδ̂ .  The estimate iδ̂  is unbiased, 

but it does not have a closed form for variance.  The Kalman Filter approach can 

easily give δ̂ , )ˆ(δVar , and 2σ̂ .  This paper carries out the estimation for these, 

which are computed by using the arima function in R (http://www.r-project.org/). 

The result (6) follows an F-distribution as the test statistic (5), but with 

different degrees of freedom according to the number of parameters, r=k+p+q+1, in 

the model and sample size.  A similar discussion can be found in Kazemzadeh et al. 

(2008).  The 100(1-α) percentile of the F distribution is used to construct an upper 

control limit (UCL) for (6) represented by rTrF
rT

rT
−−

−
,,

)1(
α  for the Phase I control 

chart.  Soleimani et al. (2009) suggest that the upper control limit is 2
1, −rαχ , which is 

the 100(1-α) percentile of the 2χ  distribution with r degrees of freedom.  We 

suggest using the former, because it provides better results in terms of ARL values 

than those based on the latter, as we will see in the subsequent section for a simulation 

study under the in-control case.  Here, rTrF
rTT

TTr
−−

−+
,,)(

)1)(1(
α  is used as UCL for 

the Phase II scheme, which follows Chenouri, Steiner, and Variyath (2009).       
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3.2 2T  based on the residuals 

This subsection uses the residuals of profile models (1) and (2) to monitor the possible 

deviation due to 2σ , which is suggested by Soleimani et al. (2009).  If ie  denotes 

the T×1 residual vector for the ith dataset and 2ˆ iσ  is the corresponding estimate of 

2σ  for dataset i , then we check the stability of the variance, 2σ , in the profile using 

the following test statistic:  

)0()0( 12
2 −Σ′−= −

ieii eeT ,    i=1, 2,…, m,              (7) 

where Ie
2σ=Σ , 2σ  is the average of all 2ˆ iσ ’s, and I is the identity matrix.  Here, 

2
2T  approximately follows an 2χ  distribution with T-1 degrees of freedom.  The 

UCL for (7) is 2
1, −Tαχ , which is the 100(1-α) percentile of the 2χ  distribution with 

T-1 degrees of freedom.   

 

4. Simulation study 

This section conducts a simulation study for models (1) and (2) to verify the 

performance of both 2
1T  and 2

2T  statistics based on the average run length (ARL) 

criterion.  There are many possible forms for models (1) and (2) depending on the 

number of explanatory variables and the values of p and q for the ARMA model.  To 

simplify the simulation study, we consider the following model:  

tttt xxy εβββ +++= 22110 ,      t =1, 2,…,T,           (8) 

ttttt νεφεφεφε +++= −−− 332211 ,                        (9) 

where ),0(~ 2σν WNt .  Model (9) is a third-order autoregressive model for the 

error terms, which corresponds to the real data illustration in section 5.   
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Given that 120 == ββ , 1.02 =φ , and 1.03 −=φ  in models (8) and (9), we 

focus on evaluating the impact of changes in 1β , 1φ , and σ  on the monitoring 

scheme.  Both tx1  and tx2  are independently generated from a uniform 

distribution between values 1 and 10.  There are 50000 replicates used for Phase II 

diagnostic monitoring, while 20000 replicates are carried out for the Phase I control 

chart scheme.  For the latter, both values of 1β  and σ  are assigned to be 1, while 

the values of 1φ  vary between -0.6 and 0.6 in order to prevent a non-stationary series 

from occurring in the data generating process.  This is used to construct the 

in-control profile.  The sample size, T, is 150 and 300.   

Tables 1, 2, and 3 present the values of ARL, where the varying parameter 

and its ranges are given in the top row of each table.  The baseline case is printed in 

bold type for each row.  The overall in-control ARL can be calculated by 

)1)(1(1/1 21 αα −−−=overallARL , where 1α  and 2α  denote the probability of 

committing false alarms for 2
1T  and 2

2T , respectively.  Given 1α = 2α =0.0027, the 

combination of 2
1T  and 2

2T  control chart schemes (in (6) and (7), respectively) is 

considered to yield an overall in-control ARL of approximately 185.   

Table 1 presents the values of ARL when the true value of 1β  shifts from 1.0 

to 1.1, given the same value of 1φ  in each row.  The first column denotes the 

in-control case, in which the values indicate the number of false alarms occurring in 

50,000 replications.  Almost all of those values printed in bold are less than or close 

to 185.  The ARL values show that the test statistics are sensible to a change in 1β .  

It is noted that the results are more sensible to a change when the sample size 

becomes larger, which can be seen by comparing the columns of 02.11 =β , 1.04, and 

1.06 between T=150 and T=300.  It also shows that the sensitivity of 2T  is related 

to the values of 1φ .  The values of out-of-control ARL become larger as the value of 
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1φ  varies from -0.6 to 0.6, no matter what the sample size is.  Here, we only reach a 

conclusion that the detection of the change in 1β  may depend on the values of 1φ .  

The pattern for how this differs may depend on more factors, such as the complexity 

of error function (2) and/or simultaneous shifts in different parameters.  To verify 

this, more simulations should be expected. 

Table 2 considers the change of 1φ  in the profile model.  We reach similar 

conclusions about 2T  statistics as with those of Table 1.  Again, the ARL value is 

more sensible to the change for T=150 than that for T=300.  However, there lacks a 

clear pattern with regards to the change of ARL values when comparing the sensitivity 

due to the left or right deviation from the true value of 1φ .  If we look at each row, 

ARL values are larger for shifts from the left side of the true value than those from the 

right side for 1φ = -0.6, -0.4, and -0.2.  This phenomenon is different for positive 

values of 1φ , in which ARL values seem more similar on both sides of the true value.     

Table 3 examines the deviation of σ  from the profile model.  Comparing 

the ARL values row by row yields a similar pattern no matter what the value of 1φ  is.  

The effect of the sample size appears the same for T=150 and T=300 as shown in 

Tables 1 and 2.  It is noted that both 2
1T  and 2

2T  are able to identify the change in 

the value of σ , resulting in a significant drop in the ARL values when σ  shifts 

from 1 to 1.1.  Nevertheless, 2
2T  is more sensitive to the change than 2

1T  in terms 

of ARL.  While 2
1T  is a very useful statistic for the change in 1β  and 1φ  in 

Tables 1 and 2, respectively, 2
2T  is not so sensitive to the deviation in 1β  and 1φ . 

Given α =0.0027, Tables 4 and 5 show the accurate detection rate based on 

2
1T  when the values 1β  and 1φ  vary in the same way as the previous tables, 

respectively.  The accurate detection rate is calculated by 1/(out-of-control ARL) 

given the probability of committing a type I error is 0.0027.  The values printed in 
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the bold type are then the estimated false alarm rate.  Table 6 presents the accurate 

detection rate based on 2
2T  when the values of σ  change from 1 to 1.1.  All these 

three tables confirm that the proposed statistical approach is sensitive to the change in 

parameters of concern.  It is also noted that the powers of the tests increase as the 

sample size is larger.  

To examine the high correlation problem for an AR(3) errors in models (8) 

and (9), a new parameter for 1.02 −=φ  is given to avoid the nonstationarity.  Table 

7 presents the values of out-of-control ARL with a sample size of 150, where the 

varying parameter and its ranges are similar to the previous tables, except for the 

change of 1φ .  The performance of using 2
1T  and 2

2T  together on detecting the 

shift of any one parameter 1β , 1φ , or σ  with high correlation errors in the data is 

similar to those with mild or weak correlation ones.    

 

5. Conclusions 

This project proposes approaches to monitoring the profile of the linear regression 

model with ARMA errors.  The first test statistic diagnoses the shift in the 

coefficients of the linear regression model and the coefficients of the correlated error 

model.  The second test monitors the variance of random errors.  The simulation 

study shows the successful performance in terms of ARL.  A real dataset exemplifies 

the proposed procedure, and graphical analyses enhance the results.  This research 

considers both the Phase I control scheme and Phase II monitoring application, in 

which the proposed 2T  statistics are quite successful in detecting the abnormal cases.  

Several issues remain for futher investigation.   

According to the simulation, there exists a complex situation on the 

performance of the proposed test statistics, which depends on the different values of 
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1φ .  We only confirm that this will lead to different conclusions as shown in Tables 1 

and 2, which are unable to identify the pattern.  This will become more difficult 

when the error function is more dynamic - for example, the ARMA model with 

different orders in functions )(BΦ  and )(BΘ .  Furthermore, only one single 

parameter is allowed to change in the simulation study shown in Tables 1-3.  If 

several parameters simultaneously deviate from that of the candidate profile model, 

then we expect that the approach will be able to identify the out-of-control situation, 

but this may require further examinations in order to find out exactly how it happens.  
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Table 1. Simulated ARL values when 1β  varies from 1 to 1.10 (in-control 

ARL=185). 

 

  
1β =1 1.02 1.04 1.06 1.08 1.10 

T=150 1φ =-0.6 142.045 19.231 1.588 1.007 1.000 1.000 

-0.4 157.233 29.851 2.249 1.044 1.000 1.000 

-0.2 176.056 46.685 3.618 1.194 1.004 1.000 

0.0 174.216 66.225 7.198 1.663 1.053 1.001 

0.2 166.667 79.872 13.221 2.685 1.257 1.022 

0.4 187.970 107.527 25.253 5.247 1.882 1.164 

0.6 168.350 125.313 40.783 10.156 3.181 1.573 

T=300 1φ =-0.6 175.439 4.224 1.011 1.000 1.000 1.000 

-0.4 188.679 6.973 1.068 1.000 1.000 1.000 

-0.2 176.678 11.743 1.249 1.001 1.000 1.000 

0.0 186.567 20.309 1.750 1.016 1.000 1.000 

0.2 185.874 34.916 2.962 1.116 1.001 1.000 

0.4 193.050 54.171 5.503 1.468 1.031 1.000 

0.6 180.505 68.213 9.750 2.190 1.152 1.010 
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Table 2. Simulated ARL values under the varying values of 1φ  (in-control 

ARL=185). 

 

 
1φ =0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6

T=150 1φ =-0.6 1.000 1.001 1.024 1.283 3.089 19.216 145.773 

-0.4 1.149 1.968 6.539 43.365 177.936 112.867 16.706 

-0.2 10.301 60.976 157.729 108.225 20.938 3.544 1.305 

T=300 1φ =-0.6 1.000 1.000 1.000 1.003 1.282 7.504 138.122 

-0.4 1.000 1.056 2.058 17.094 177.305 39.777 2.302 

-0.2 2.802 27.337 187.266 44.326 3.294 1.111 1.001 

 1φ =0 0.1 0.2 0.3 0.4 0.5 0.6

T=150 1φ =0.0 
174.216 78.125   12.994 2.935 1.317 1.032 1.001 

0.2 13.203 76.453 148.810 77.760 12.713 2.621 1.206 

0.4 1.260 2.460 9.651 60.168 164.474 79.365 10.231 

0.6 1.000 1.006 1.094 1.709 5.572 38.580 162.338

T=300 1φ =0.0 186.567 33.201 3.043 1.142 1.002 1.000 1.000 

0.2 3.128 32.489 168.919 34.626 2.903 1.097 1.001 

0.4 1.001 1.094 2.511 24.606 190.840 31.726 2.169 

0.6 1.000 1.000 1.000 1.023 1.706 14.510 171.233 
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Table 3. Simulated ARL values under the shifts of σ  from 1 to 1.5 (in-control 

ARL=185).  

 

  σ =1 1.1 1.2 1.3 1.4 1.5

T=150 1φ =-0.6 142.045 5.677 1.415 1.034 1.001 1.000 

-0.4 157.233 5.578 1.399 1.034 1.001 1.000 

-0.2 176.056 5.648 1.410 1.033 1.002 1.000 

0.0 174.216 5.752 1.411 1.033 1.002 1.000 

0.2 166.667 5.633 1.407 1.032 1.001 1.000 

0.4 187.970 5.476 1.399 1.032 1.001 1.000 

0.6 168.350 5.725 1.412 1.033 1.001 1.000 

T=300 1φ =-0.6 175.439 2.619 1.040 1.000 1.000 1.000 

-0.4 188.679 2.571 1.040 1.000 1.000 1.000 

-0.2 176.678 2.588 1.040 1.000 1.000 1.000 

0.0 186.567 2.614 1.041 1.000 1.000 1.000 

0.2 185.874 2.605 1.040 1.000 1.000 1.000 

0.4 193.050 2.582 1.041 1.000 1.000 1.000 

0.6 180.505 2.618 1.041 1.000 1.000 1.000 
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Table 4. False alarm rate and accurate detection rate based on 2
1T  when 1β  varies 

from 1 to 1.10.  

  
1β =1 1.02 1.04 1.06 1.08 1.10 

T=150 1φ =-0.6 
0.003 0.049 0.628 0.993 1.000 1.000 

-0.4 
0.002 0.030 0.442 0.958 1.000 1.000 

-0.2 
0.002 0.018 0.273 0.837 0.996 1.000 

0.0 
0.002 0.012 0.136 0.599 0.950 0.999 

0.2 
0.002 0.008 0.072 0.370 0.795 0.979 

0.4 
0.002 0.006 0.035 0.187 0.529 0.858 

0.6 
0.002 0.004 0.021 0.095 0.312 0.634 

T=300 1φ =-0.6 
0.003 0.234 0.989 1.000 1.000 1.000 

-0.4 
0.002 0.140 0.936 1.000 1.000 1.000 

-0.2 
0.002 0.082 0.800 0.999 1.000 1.000 

0.0 
0.002 0.046 0.570 0.984 1.000 1.000 

0.2 
0.002 0.025 0.336 0.895 0.999 1.000 

0.4 
0.002 0.015 0.179 0.680 0.970 1.000 

0.6 
0.002 0.011 0.100 0.455 0.868 0.990 
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Table 5. False alarm rate and accurate detection rate based on 2
1T  under the varying 

values of 1φ . 

 

 
1φ =0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6

T=150 1φ =-0.6 
1.000 0.999 0.977 0.779 0.321 0.048 0.003

-0.4 
0.870 0.506 0.149 0.019 0.002 0.005 0.056

-0.2 
0.094 0.012 0.002 0.005 0.044 0.279 0.766

T=300 1φ =-0.6 
1.000 1.000 1.000 0.997 0.780 0.129 0.004

-0.4 1.000 0.947 0.484 0.055 0.002 0.021 0.432

-0.2 
0.355 0.034 0.002 0.019 0.301 0.900 0.999

 1φ =0 0.1 0.2 0.3 0.4 0.5 0.6

T=150 1φ =0.0 
0.002 0.009 0.073 0.338 0.758 0.969 0.999

0.2 
0.072 0.009 0.002 0.009 0.075 0.379 0.828

0.4 
0.793 0.404 0.099 0.012 0.002 0.008 0.093

0.6 
1.000 0.994 0.914 0.583 0.176 0.022 0.002

T=300 1φ =0.0 0.002 0.027 0.326 0.875 0.998 1.000 1.000

0.2 0.317 0.027 0.002 0.025 0.342 0.911 0.999

0.4 0.999 0.914 0.396 0.037 0.002 0.028 0.459

0.6 1.000 1.000 1.000 0.978 0.585 0.066 0.002
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Table 6. False alarm rate and accurate detection rate based on 2
2T  under the shifts of 

σ  from 1 to 1.5. 

 

  σ =1 1.1 1.2 1.3 1.4 1.5

T=150 1φ =-0.6 0.004 0.171 0.703 0.967 0.999 1.000

-0.4 
0.004 0.176 0.711 0.966 0.999 1.000

-0.2 
0.004 0.174 0.706 0.967 0.998 1.000

0.0 
0.004 0.170 0.705 0.967 0.998 1.000

0.2 0.004 0.174 0.707 0.968 0.999 1.000

0.4 
0.004 0.179 0.711 0.968 0.999 1.000

0.6 
0.004 0.171 0.705 0.967 0.998 1.000

T=300 1φ =-0.6 
0.003 0.377 0.961 1.000 1.000 1.000

-0.4 
0.003 0.386 0.961 1.000 1.000 1.000

-0.2 
0.003 0.383 0.961 1.000 1.000 1.000

0.0 
0.003 0.379 0.960 1.000 1.000 1.000

0.2 
0.003 0.380 0.961 1.000 1.000 1.000

0.4 
0.003 0.384 0.960 1.000 1.000 1.000

0.6 
0.003 0.378 0.960 1.000 1.000 1.000
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Table 7. Simulated ARL values for high correlation in an AR(3) errors (in-control 

ARL=185). 

 

  Change in 1β  

  1β =1 1.02 1.04 1.06 1.08 1.10 

1φ =-0.9 126.263 7.634 1.066 1.000 1.000 1.000 

-0.8 142.857 9.137 1.101 1.000 1.000 1.000 

0.8 178.571 126.263 32.489 7.515 2.501 1.341 

0.9 179.211 130.890 35.638 8.628 2.818 1.445 

 

  Change in 1φ  

  1φ =-0.4 -0.5 -0.6 -0.7 -0.8 -0.9 

1φ =-0.9 1.000 1.000 1.024 1.503 7.777 121.065 

-0.8 1.011 1.187 2.653 17.953 152.439 87.260 

 1φ =0.4 0.5 0.6 0.7 0.8 0.9 

0.8 1.034 1.394 4.101 32.425 174.216 55.127 

0.9 1.000 1.010 1.198 2.873 23.191 161.290 

 

  Change in σ  

  σ =1 1.1 1.2 1.3 1.4 1.5 

1φ =-0.9 126.263 5.547 1.397 1.034 1.001 1.000 

-0.8 142.857 5.534 1.396 1.033 1.001 1.000 

0.8 178.571 5.679 1.409 1.033 1.001 1.000 

0.9 179.211 5.644 1.409 1.032 1.002 1.000 
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