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Monitoring Profile Based on a Linear

Regression Model with Correlated Errors

Tsung-Chi Cheng®

1. Introduction
Profile monitoring is the use of control charts for cases in which the quality of a
process or product can be characterized by a functional relationship between a
response variable and one or more explanatory variables. Due to advances in
technology, such monitoring is becoming more common to obtain profiles at each
time period, especially when a series of data points forms a curve representing the
quality state of a process. These cases appear to be increasingly common in
practical applications. Indeed, it is crucial in Phase | of a control chart scheme to
determine which of the data points are similar to each other and which are outliers in
some way. This ensures that the Phase Il application will be adequate for real-time
monitoring. Recent research has focused on how to determine those outlying
profiles in Phase | applications. For a detailed overview of profile monitoring,
examples of its application, and a review of the literature, see Woodall et al. (2004),
Woodall (2007), and references therein.

The majority of works on profile monitoring have focused on situations where
the profiles are modeled parametrically using a simple linear regression. For
example, see Kang and Albin (2000), Kim et al. (2003), Mahmoud and Woodall

(2004), Wang and Tsung (2005), Gupta et al. (2006), Mahmoud et al. (2007), Zou et
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al. (2008), and Jensen et al. (2008). These methods often fit the profile with
separate linear regression models and monitor the coefficients of the fitted regression
model to determine outlying profiles, thus reducing the profiles to a smaller set of
values that simplifies the monitoring scheme. Jensen and Birch (2009) extend the
use of non-linear mixed models to monitor the nonlinear profiles in order to account
for the correlation structure. Noorossana et al. (2009) specifically focus on Phase |
monitoring of multivariate multiple linear regression profiles. Mahmoud et al. (2007)
and Kazemzadeh et al. (2008) propose Phase | methods for profiles represented by
multiple and polynomial regression models, respectively.

All the above-mentioned studies on the monitoring of simple or multiple linear
profiles assume that the observations within each profile are uncorrelated. Zou et al.
(2007) propose a monitoring scheme for a general linear profile using a multivariate
exponentially weighted moving average approach. Noorossana et al. (2008)
specifically study the case when profiles are not independent from each other over
time, by considering a simple linear regression with a first-order autoregressive model
(AR(1)) for errors. Soleimani et al. (2009) look at a simple linear profile and
assume that there is an AR(1) model between observations in each profile. However,
a situation often exists where an AR(1) model is not adequate to depict the correlation
structure among errors in practice. The general within-profile correlation model has
been considered by Qiu et al. (2010), and more explanatory variables in the regression
model may be required to improve the model fitting. This project considers a
multiple linear regression with random errors following an autoregressive
moving-average (ARMA) model, which can be regarded as a special parametric form

of Qiu et al. (2010).

2. Linear regression model with ARMA errors
2



Consider the regression model:

Y, =X B+&, t=1,2,---, T, (1)

where 'y, is the observed variable at time t, x, is an 1xk vector of explanatory

variables, and S isa kx1 vector of unknown parameters. Here, the random error

g, follows an ARMA process, which can be expressed as:

®(B)e, =O(B)v,, v, ~WN(0,5°%), (2)
where ®(B)=1+¢#B+¢B*+--+¢,B° and ©O(B)=1+6,B+06,B* +---+6,B"

are respectively the pth-order and qth-order lag operator polynomials and B denotes
the lag operator. Harvey (1990, Section 7.2) provides the estimation of parameters
for models (1) and (2) using the generalized least squares (GLS) approach under the
frequency domain. The maximum likelihood (ML) estimation for this can be seen in
Harvey and Phillips (1979).

Let  y=(y,,...¥;) and e=(g,.,&) be Tx1 wvectors, and
X =(X,X,...., %) be a Txk matrix. If V =Var(g) is a positive definite (p.d.)
matrix, then there exists a p.d. lower triangular matrix, L, and a p.d. diagonal matrix F,
such that

V*'=LF'L.
We pre-multiply model (1) in matrix form by L and define y*, X, and & as Ly,
LX,and Leg, respectively. This leads to the following heteroscedastic regression for
models (1) and (2):
y =X"B+¢, Var(¢")=F,

or

*

Yo =X B+, Var(e))=f,, t=1,2,....T.

Under the normality condition, the asymptotic distribution of the ML estimate (as well

3



as the GLS estimate) of £, denoted by ﬁ’:(z foxx )Y 7y, , is a normal
t t

distribution with mean S and variance-covariance matrix (X F7'X")™" (e.g.
Brockwell and Davis, 2009).

Direct use of GLS requires finding the inverse of the covariance matrix for the
& ’s, which can be achieved more easily using the Kalman filter (Durbin and
Koopman, 2001). Many time-series models used in econometrics are special cases
of the class of linear state space models developed by engineers to describe physical
systems. The Kalman filter, an efficient recursive method for computing optimal
linear forecasts in such models, can be exploited to compute the exact Gaussian
likelihood function. The computation for the estimates is easily implemented by
converting models (1) and (2) into the state space form and applying the Kalman filter
recursive approach. The linear state-space model postulates that an observed time
series is a linear function of a (generally unobserved) state vector and the law of

motion for the state vector is a first-order vector autoregression.

Let o, denote the values taken at time t by a vector of s state variables, and A
and b are sxs and sx1 matrices of constants, respectively. We assume that vy,

is generated by:
y, =b'e, +u, (3)
o = Aa +V;, (4)

where the scalar u, and the vector v, are white noise processes with a zero mean,

and are independent of each other, and (4) has initial value «,. We denote
o’ =E(/) andT=E(v,v,'). Equation (3) is sometimes called the “measurement”

equation while (4) is called the “transition” equation. The assumption that the
autoregression is first-order is not restrictive, since higher-order systems can be
handled by adding additional state variables (see Harvey (1989) for details).

The first d non-stationary elements are taken to have a diffuse prior as discussed
4



in Harvey (1989). A set of T-k standardized generalized residuals:
e =(y, - X p) 2, t=k+1,..T,
is produced as a by-product of the recursive equations. When ¢ and & are known,

these residuals are independently and normally distributed with mean zero and

constant variance, o, which can be estimated by &% = Zef /(T =Kk).
t

3. Hotelling’s T2 test

This section discusses the diagnostic scheme for the profile models (1) and (2) by

applying Hotelling’s T? ststistic. Let X,,..., X, be a random sample from a

p-dimensional normal population with mean x and positive-definite

variance-covariance matrix X . Consider the testing problem H, : ux = u, versus

H, :u# u,, where g, is a known vector. To deal with this problem, Hotelling’s

T? testis used, which is defined as

T? Zn(i_:uo)Tsil(i_ﬂo): (5)

where X is the sample mean and S is the sample covariance matrix. If H, istrue,

(n-1p
n-p

then result (5) is distributed as where F,, denotes the F-distribution

-
with degrees of freedom u and v (see, for example, Iwashita (1997). Several
different formulations of the T ?statistic have been proposed to monitor the profile
coefficients resulting from different kinds of profile models in the literature (e.g.
Kang and Albin 2000; Williams, Woodall, and Birch 2007; Vaghefi et al. 2009; and

references therein).

3.1 T? for model coefficients

Many monitoring problems can be stated as the problem of detecting a change in the
5



parameters of the model of interest. These problems result from the increasing
complexity of most technological processes, for which details of this issue can be

found in Basseville and Nikiforov (1993). To monitor the departure of coefficients,

0= (B Brres Ber$y1e 8,,6,,...0,) , from the profile models (1) and (2) applied to m

datasets, the analogous Hotelling’s T? test of (5) is thus:

T2=(5-6) A5 -6),  i=L,2,..,m, (6)

where & denotes the estimate of & for the ith dataset, & entails the averages of

N

all o,

: (5, -8)(5,-8) /(m-1) .  Section 2 discusses the

s , and A=

i=1
asymptotic normality and related proporties of 3i. The estimate & is unbiased,
but it does not have a closed form for variance. The Kalman Filter approach can
easily give 5, Var(S), and &°. This paper carries out the estimation for these,

which are computed by using the arima function in R (http://www.r-project.org/).

The result (6) follows an F-distribution as the test statistic (5), but with
different degrees of freedom according to the number of parameters, r=k+p+q+1, in
the model and sample size. A similar discussion can be found in Kazemzadeh et al.

(2008). The 100(1- v) percentile of the F distribution is used to construct an upper
(T _1)r F
T

control limit (UCL) for (6) represented by for the Phase | control

a,r,T-r

chart. Soleimani et al. (2009) suggest that the upper control limit is ;(jyrfl, which is

the 100(1- ) percentile of the y° distribution with r degrees of freedom. We
suggest using the former, because it provides better results in terms of ARL values

than those based on the latter, as we will see in the subsequent section for a simulation
r(T +1)(T -1) E
T (—I— _ r) a,l’,T—I’

the Phase Il scheme, which follows Chenouri, Steiner, and Variyath (2009).
6

study under the in-control case. Here, is used as UCL for



3.2 T? based on the residuals

This subsection uses the residuals of profile models (1) and (2) to monitor the possible

deviation due to &?, which is suggested by Soleimani et al. (2009). If e, denotes

the Tx1 residual vector for the ith dataset and &iz is the corresponding estimate of

o? for dataset i , then we check the stability of the variance, &, in the profile using

the following test statistic:
T.=( -0 (e, -0), i=1,2,...,m, (7

2

where =, =5°l, &° isthe average of all &iz ’s, and | is the identity matrix. Here,

2

T, approximately follows an y?* distribution with T-1 degrees of freedom. The

UCL for (7) is ;(;H, which is the 100(1- ) percentile of the »? distribution with

T-1 degrees of freedom.

4. Simulation study
This section conducts a simulation study for models (1) and (2) to verify the
performance of both T and T, statistics based on the average run length (ARL)
criterion. There are many possible forms for models (1) and (2) depending on the
number of explanatory variables and the values of p and g for the ARMA model. To
simplify the simulation study, we consider the following model:

Y, = By + BiXy + BoXy &, t=1,2,...,T, (8)

& =P, + P8, +PE 5 +V,, 9)

where v, ~WN(0,5°). Model (9) is a third-order autoregressive model for the

error terms, which corresponds to the real data illustration in section 5.



Giventhat g, =4, =1, ¢,=0.1,and ¢, =-0.1 in models (8) and (9), we

focus on evaluating the impact of changes in g, ¢,, and o on the monitoring
scheme. Both x, and x, are independently generated from a uniform
distribution between values 1 and 10. There are 50000 replicates used for Phase 1l
diagnostic monitoring, while 20000 replicates are carried out for the Phase | control
chart scheme. For the latter, both values of g, and o are assigned to be 1, while
the values of ¢ vary between -0.6 and 0.6 in order to prevent a non-stationary series
from occurring in the data generating process. This is used to construct the
in-control profile. The sample size, T, is 150 and 300.

Tables 1, 2, and 3 present the values of ARL, where the varying parameter
and its ranges are given in the top row of each table. The baseline case is printed in

bold type for each row. The overall in-control ARL can be calculated by

1/ARL,, . =1-(1-a,)1-a,), where «, and «, denote the probability of

overall

committing false alarms for T, and T/, respectively. Given «,=a,=0.0027, the
combination of T, and T/ control chart schemes (in (6) and (7), respectively) is
considered to yield an overall in-control ARL of approximately 185.

Table 1 presents the values of ARL when the true value of g, shifts from 1.0
to 1.1, given the same value of ¢ in each row. The first column denotes the
in-control case, in which the values indicate the number of false alarms occurring in
50,000 replications. Almost all of those values printed in bold are less than or close
to 185. The ARL values show that the test statistics are sensible to a change in g, .
It is noted that the results are more sensible to a change when the sample size

becomes larger, which can be seen by comparing the columns of g, =1.02, 1.04, and
1.06 between T=150 and T=300. It also shows that the sensitivity of T? is related

to the values of ¢ . The values of out-of-control ARL become larger as the value of
8



@, varies from -0.6 to 0.6, no matter what the sample size is. Here, we only reach a
conclusion that the detection of the change in £, may depend on the values of ¢,.
The pattern for how this differs may depend on more factors, such as the complexity
of error function (2) and/or simultaneous shifts in different parameters. To verify
this, more simulations should be expected.

Table 2 considers the change of ¢, in the profile model. We reach similar

conclusions about T? statistics as with those of Table 1. Again, the ARL value is

more sensible to the change for T=150 than that for T=300. However, there lacks a
clear pattern with regards to the change of ARL values when comparing the sensitivity
due to the left or right deviation from the true value of ¢ . If we look at each row,
ARL values are larger for shifts from the left side of the true value than those from the
right side for ¢ = -0.6, -0.4, and -0.2. This phenomenon is different for positive
values of ¢,, in which ARL values seem more similar on both sides of the true value.
Table 3 examines the deviation of o from the profile model. Comparing
the ARL values row by row yields a similar pattern no matter what the value of ¢, is.
The effect of the sample size appears the same for T=150 and T=300 as shown in
Tables 1 and 2. It is noted that both T and T; are able to identify the change in
the value of o, resulting in a significant drop in the ARL values when o shifts
from 1to 1.1. Nevertheless, T, is more sensitive to the change than T in terms
of ARL. While T/ is a very useful statistic for the change in B, and ¢, in
Tables 1 and 2, respectively, T, is not so sensitive to the deviationin A, and 4.
Given « =0.0027, Tables 4 and 5 show the accurate detection rate based on
T, when the values B, and ¢, vary in the same way as the previous tables,
respectively. The accurate detection rate is calculated by 1/(out-of-control ARL)

given the probability of committing a type | error is 0.0027. The values printed in



the bold type are then the estimated false alarm rate. Table 6 presents the accurate
detection rate based on T, when the values of o change from 1to 1.1. All these
three tables confirm that the proposed statistical approach is sensitive to the change in
parameters of concern. It is also noted that the powers of the tests increase as the
sample size is larger.

To examine the high correlation problem for an AR(3) errors in models (8)
and (9), a new parameter for ¢, =—-0.1 is given to avoid the nonstationarity. Table
7 presents the values of out-of-control ARL with a sample size of 150, where the
varying parameter and its ranges are similar to the previous tables, except for the
change of ¢. The performance of using T,> and T together on detecting the
shift of any one parameter f,, ¢, or o with high correlation errors in the data is

similar to those with mild or weak correlation ones.

5. Conclusions

This project proposes approaches to monitoring the profile of the linear regression
model with ARMA errors. The first test statistic diagnoses the shift in the
coefficients of the linear regression model and the coefficients of the correlated error
model. The second test monitors the variance of random errors. The simulation
study shows the successful performance in terms of ARL. A real dataset exemplifies
the proposed procedure, and graphical analyses enhance the results. This research

considers both the Phase I control scheme and Phase Il monitoring application, in

which the proposed T? statistics are quite successful in detecting the abnormal cases.

Several issues remain for futher investigation.
According to the simulation, there exists a complex situation on the

performance of the proposed test statistics, which depends on the different values of

10



@,. We only confirm that this will lead to different conclusions as shown in Tables 1
and 2, which are unable to identify the pattern. This will become more difficult
when the error function is more dynamic - for example, the ARMA model with
different orders in functions ®(B) and ®(B). Furthermore, only one single
parameter is allowed to change in the simulation study shown in Tables 1-3. If
several parameters simultaneously deviate from that of the candidate profile model,
then we expect that the approach will be able to identify the out-of-control situation,

but this may require further examinations in order to find out exactly how it happens.
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Table 1. Simulated ARL values when g, varies from 1 to 1.10 (in-control

ARL=185).

p=1 1.02 1.04 1.06 1.08 1.10

T=150¢1=-0.6| 142045 19.231| 1588  1.007] 1.000  1.000

0.4 157.233| 29.851 2.249 1.044| 1.000 1.000

02| 176.056| 46.685| 3.618]  1.194| 1.004  1.000

0.0) 174.216| 66.225 7.198 1.663| 1.053 1.001

0.2 166667 79.872| 13.221] 2685 1.257] @ 1.022

04/ 187.970| 107.527| 25.253 5.247) 1.882 1.164

0.6 168350 125.313| 40.783| 10.156| 3.181 1573

T=300|4=-06] 175439 4224/ 1011 1.000] 1.000]  1.000

0.4/ 188679 6.973 1.068 1.000; 1.000 1.000

0.2 176678 11.743 1.249 1.001|  1.000 1.000

0.0] 186567 20309 1.750,  1.016/ 1.000]  1.000

0.2 185874| 34.916 2.962 1.116| 1.001 1.000

0.4/ 193,050, 54.171 5.503 1.468| 1.031 1.000

06| 180505 68.213] 9.750  2.190| 1.152]  1.010

15



Table 2. Simulated ARL values

under the varying values of ¢ (in-control

ARL=185).

$,=0 01  -02] -03 -04 -0.5 -0.6

T=150| #:=-06| 1000 1001 1.024| 1283 3.089 19.216| 145.773
0.4 1149 1968 6.539| 43.365|177.936| 112.867| 16.706

0.2/ 10.301| 60.976| 157.729|108.225| 20.938|  3.544|  1.305

T=300| #.=-0.6| 1000 1.000] 1.000 1.003| 1.282|  7.504| 138.122
0.4/ 1.000 1.056| 2.058| 17.094|177.305| 39.777|  2.302

02 2800| 27.337| 187.266| 44.326] 3.294|  1.111|  1.001

$,=0 0.1 02| 03 04 0.5 0.6

T=150) 42001174 216|  78.125| 12994 2935 1317] 1032 1001
02| 13.203| 76.453| 148.810| 77.760| 12.713|  2.621|  1.206

04/ 1260 2460 9.651| 60.168| 164.474| 79.365 10.231

06/ 1000 1.006] 1.094] 1.709| 5572| 38.580| 162.338

T=300| #,=0.0186.567| 33.201| 3.043| 1.142] 1.002]  1.000|  1.000
02| 3.128| 32489 168.919| 34.626| 2.903|  1.097|  1.001

04/ 1.001  1.094] 2.511| 24.606| 190.840| 31.726|  2.169

0.6/ 1.0000  1.000] 1.000] 1.023| 1.706] 14.510| 171.233
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Table 3. Simulated ARL values under the shifts of o from 1 to 1.5 (in-control

ARL=185).

o=1 1.1 1.2 1.3 14 15

T=150] ¢,=06/ 142045 5677 1415 1.034  1.001 1.000
04 157233 5578 1399  1.034  1.001] 1.000

0.2/ 176056  5.648 1410  1.033]  1.002| 1.000

00| 174216 5752 1411 1033  1.002[ 1.000

0.2 166.667| 5.633  1.407| 1.032|  1.001| 1.000

04/ 187970 5476 1399 1.032] 1.001] 1.000

06/ 168350 5725 1412 1.033]  1.001] 1.000

T=300| =06/ 175439 2619 1.040] 1.000]  1.000] 1.000
04 188679| 2571  1.040  1.000]  1.000/ 1.000

02 176678 2588  1.040] 1.000  1.000| 1.000

00| 186.567| 2614 1.041]  1.000  1.000] 1.000

02| 185874 2605/ 1.040 1.000  1.000/ 1.000

04/ 193050 2582 1.041] 1.000  1.000[ 1.000

06/ 180505/ 2618 1.041]  1.000  1.000/ 1.000
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Table 4. False alarm rate and accurate detection rate based on T,” when p, varies

from 1 to 1.10.

B=1| 102 104 106 108 110
T=1804=061  g00sl 0049|0628 0993 1000  1.000
04 002 0030 0442 0958 1000  1.000
02 0007 o0018| 0273 0837 09% 1000
00 o002| 0012 0136] 0599 0950 0999
02 0002 o008 0072 0370 0795 0979
04 o002l o0006| 0035 0187 0529 0858
%% 0002 0004 0021 0095 0312 0634
1230014208 0003 0234 0989 1000 1000  1.000
0.4 0.002| 0.140 0.936 1.000| 1.000 1.000
02 0002|0082 0800 0999 1000 1000
%0 0002 ©0046| 0570 0984 1000 1000
02 o002l 0025 033 0895 0999 1000
%4 0002 ©0015| 0179|0680 0970 1000
%0 o002l 0011 0100 0455 o868 0990
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Table 5. False alarm rate and accurate detection rate based on T, under the varying

values of ¢,.

4,=0 01  -02 -03 -04 05 0.6

T=150] ¢,=-0.6
1.0000 0999 0977 0779 0321] 0048 0003

0.4
0870, 0508 0140 0019] 0002 0005  0.056

0.2
021 0004  0012] 0002 0005 0044 0279 0.766
T=300] 4.=06 1 000  1.000| 1000 0997 0780 0129  0.004
04 1000 0947 0484 0055 0002 0021] 0432

0.2
0355 0034 0002] 0019 0301 0900 0.999
4,20 0.1 02 03] 04 0.5 0.6

T=150] ¢,=0.0
0.002] 0009 0073| 0338] 0758 0969  0.999

2
021 0072 0000| 0002| 0000 0075 0379 0.828

0.4
0793 0404 0099 0012 0002 0008  0.093
08| 1000 0994 0914 0583 o0176] 0022 0002
T=300] #=0.01 000l 0027 0326] 0875 0998  1.000]  1.000
021 03171 0027 0002 0025 0342 00911]  0.999
04| 0990| 0014 0396 0037 0002 0028 0459
06| 1000 1.000] 1.000] 0978 0585 0066  0.002
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Table 6. False alarm rate and accurate detection rate based on T,” under the shifts of
o from1ltolb5.

o=1 11 1.2 13 14 15

T=1500 4=061  go04)  0171] 0703 0967 0999 1.000
% o004 0176 0711 0966 0988 1.000

%% o00al 0174/ 0706|0967 0.998 1.000

%9 0004 0170 0705 0967 0998 1.000

02 0004 0174 0707 0968 0999 1.000

%4 oooal 0179 0711] 0968  0.999 1.000

%% 00oal 0171] 0705|0967 0.08 1.000

T=3000 4795 o003 0377 0961 1000  1.000 1000
%% o003 038s 0961 1000| 1000 1.000

2 o003 033 o6 1000 1000 1000

%9 0003|0379 0960| 1000, 1.000 1.000

%2 0003 0380 0961 1000 1.000 1.000

%4 0003| 0384 0960 1000 1.000 1.000

%% 0003 0378 090| 1000 1.000 1.000
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(in-control

Table 7. Simulated ARL values for high correlation in an AR(3) errors
ARL=185).

Changein g,

p=1 1.02 1.04 1.06 1.08 1.10

¢,=-0.9 126.263 7.634 1.066 1.000 1.000 1.000

-0.8 142.857 9.137 1.101 1.000 1.000 1.000

0.8 178.571 | 126.263 32.489 7.515 2.501 1.341

0.9 179.211 | 130.890 35.638 8.628 2.818 1.445
Changein ¢,

¢ =-0.4 -0.5 -0.6 -0.7 -0.8 -0.9

¢,=-0.9 1.000 1.000 1.024 1.503 7.777 | 121.065

-0.8 1.011 1.187 2.653 17.953 | 152.439 87.260

¢,=0.4 0.5 0.6 0.7 0.8 0.9

0.8 1.034 1.394 4.101 32.425 | 174.216 55.127

0.9 1.000 1.010 1.198 2.873 23.191 | 161.290
Changein o

o=1 11 1.2 1.3 14 15

¢,=-0.9 126.263 5.547 1.397 1.034 1.001 1.000

-0.8 142.857 5.534 1.396 1.033 1.001 1.000

0.8 178.571 5.679 1.409 1.033 1.001 1.000

0.9 179.211 5.644 1.409 1.032 1.002 1.000

21



RAL gt pmd g SR T4

P #:2012/10/31

P4

P E A BAPMEL 2 S R0 0 RE R

PRI R

% % 100-2118-M-004-002- B PAE R

w A

RFTHE S g T




100 F R EHFETHEAFL SR EL

PHFEAFAL IR

33 Y5 0 100-2118-M-004-002-

PR RARM AL 2 Mt R G F MR PR

N

ipgy| P wEBPE
A% p PR LS s | BERE | g |7 PR TR
B (s |E(Z R %e gt | & % H oM 2
Aegi) | ENEK) Sl T S
*)
DRI 0 1 100%
e PiEBREL |0 0 100% %
¥~ T
Ei e 1 | 100%
P 0 0 100%
o ¢ ﬁ%f i g 0 0 100% .
S B 0 0 100%
Hr ¢ ¥ 0 0 100% s
HAS
5 4 0 0 100% + A
L 9 9 100%
gz g 44 (B 0 0 100% o
=X
(2R BLuersE |0 0 100%
Lo 0 0 100%
R 0 0 100%
o e PALARRBATED |0 0 100% =
¥~ EE
it g 0 0 100%
L1 0 0 100% Y
%11 v ‘;i—ﬂ % ¥ 0 0 100% "
e 0 0 100%
BN ?P
" i 0 0 100% “
B
§A & 0 0 100% S
R 0 0 100%
gprsig A4 |Eaa 0 0 100%
A =
(hEE) [BLeETE |0 0 100% ’
Lizeimm 0 0 100%




H A%
(miz gz
5 hoyE B s d S
HREE S ERREE
V=g g NP LB T
SR R D B
Vicne S TSN | 2
EE G F A

}ljo)

’i X538 P

frebs

—

#R%EL S(7 FRredn)

/e

Re|grga epe A1 8

Vlgen

B ye s IR

T e

3
1
4e
g |FiHE/ iy
i
p

PEASHAEZ 2 (BR) Ak

OO O OO O o (o




ap %\L

™

%&

R g AR 34 3 R 474 324

= 1
T Avﬁa»ﬁ

F P FERFENGARR CERTFHIRFR L AR F S R §
,A +q\%bwz*%~,&a‘lk@‘§%ﬁi\ ﬁ%ﬁf% p,;;ﬁ) ﬂ;@i
# W

CH
GEMHIE LAY R 1R FRA

=

?“’?‘)‘JH TRFERFLIAPFPARE - ESFFPPEFRTET- FETR
W= Pk
Ik p 4 GG > 2100 F 5 %2)

my RS
(I %@ o
(J# © & 7]
S
2 Egm,;\gcl__%‘f,{{h—ﬁp:niﬁz\ A v L.%’f ff.ri—ﬂ
e [ ] B A .#\@’?\'17#@ [(J#Es? &
%4}1 c[]e @ Yz %3—:‘ B
i D i (esis WA
w1 (12100 3 5 2)
3.

LG R R T B YA S
500 3 5 *2)

Profile monitoring is a relatively new technique and is becoming popular in the
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area of quality control, because it is used when the process is characterized by
the relationship between a response variable and a set of explanatory variables
(i.e., profile) at each time period. This project considers the situation where
profiles are modeled parametrically using a multiple linear regression model with
random errors following an autoregressive moving-average process. Diagnostic
schemes to find out-of-control samples are developed for this purpose. This
project conducts a simulation study to examine the performance of the proposed
approach based on the average run length criterion. A real example is implemented

to 1llustrate the results, after considering both Phase I and Phase Il schemes.




