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This research project aims at investigating practical
statistical procedures, based upon various types of
economic/financial time series data, for risk
estimation and volatility forecasting. Volatility a
measure of the risk in a financial instrument, refers
to the standard deviation of the continuously
compounded returns with a specific time horizon. The
main focus will be on developing the current theory
of coherent risk measures, based on fuzzy ratio
entropy integral formulation, with applications to
assessing quantitative risks related to volatility of
stock prices for option pricing, efficient portfolio
allocation and accurate risk assessment and
management.

Keywords: Risk, volatility estimation, fuzzy ratio
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Abstract

This research project aims at investigating practical statistical procedures, based upon various types of
economic/financial time series data, for risk estimation and volatility forecasting. Volatility a measure of the
risk in a financial instrument, refers to the standard deviation of the continuously compounded returns with a
specific time horizon. The main focus will be on developing the current theory of coherent risk measures,
based on fuzzy ratio entropy integral formulation, with applications to assessing quantitative risks related to
volatility of stock prices for option pricing, efficient portfolio allocation and accurate risk assessment and
management.

Keywords: Risk, volatility estimation, fuzzy ratio entropy, forecasting

1. Introduction =33+ F2F# F 2 p e

This research project aims at investigating practical statistical procedures, based upon various types of
economic/financial time series data, for risk estimation and volatility forecasting in Asia leading markets. The
main focus will be on developing the current theory of coherent risk measures, based on Choquet integral
formulation, with applications to assessing quantitative risks related to volatility of stock prices for option

pricing, efficient portfolio allocation and accurate risk assessment and management.
In financial mathematics and financial risk management, Value at Risk (VaR) is a widely used risk

measure of the risk of loss on a specific portfolio of financial assets. For a given portfolio, probability and
time horizon, VaR is defined as a threshold value such that the probability that the mark-to-market loss on the
portfolio over the given time horizon exceeds this value (assuming normal markets and no trading in the
portfolio) is the given probability level. It is a category of risk metrics that describe probabilistically the
market risk of a trading portfolio. It has five main uses in finance: risk management, risk measurement,
financial control, financial reporting and computing regulatory capital. Important related ideas are economic
capital, backtesting, stress testing and expected shortfall. Unlike retrospective risk metrics, such as historical
volatility, VaR is prospective. It quantifies market risk while it is being taken.

During the late 1980s and early 1990s, a number of institutions implemented VaR measures to support

capital allocation or market risk limits. The Group of 30 (1993) published a groundbreaking report on
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derivatives practices. It was influential and helped shape the emerging field of financial risk management. It
promoted the use of value-at-risk by derivatives dealers and appears to be the first publication to use the
phrase VaR. In 1994, JP Morgan launched its free RiskMetrics service. This was intended to promote the use
of VaR among the firm's institutional clients. The service comprised a technical document describing how to
implement a VaR measure and a covariance matrix for several hundred key factors updated daily on the
internet. These were based upon a crude VaR measure, but the committee also approved, as an alternative, the

use of banks' own proprietary VaR measures in certain circumstances.

The following statements bring out the research problems we will investigate in this proposal. In a sense,
this research proposal is in line with the spirit of the Nobel Lecture " Risk and Volatility: Econometric Models
and Financial Practice" delivered by Robert F. Engle III, on December 8, 2003. Specifically, while modern
quantitative theory of financial management started with the theory of portfolio selection [13], [14], and the
Capital Asset Pricing Model (CAPM) [15] [16], it was the foundational work and which put financial
management on a firm footing for further quantitative analysis.

On the other hand, financial market activities can be analyzed by examining the ways in which complex
financial instruments are priced via the now well known Black-Schole model. When practitioners want to
implement financial strategies, they require, first of all, estimates of the fluctuation (called volatility) of the
underlying, say, stock prices. As variance (or standard deviation) of the random variable representing the
future stock prices, the volatility is in fact changing over time. The main contribution of Engle (1982) is to
model the volatility as a stochastic process, that is a collection of random variables indexed by time, in a
specific form, now known as the Autoregressive Conditional Heteroskedasticity (ARCH model). Clearly
financial behavior analysis depends essentially on the knowledge of volatility involved. Note
that it is really the volatility over a future period that should be considered as "risk". Thus, in fact, we need a
forecast of volatility, in addition to estimation of volatility.

Now, the volatility in stock prices is a useful index for financial analysis as it is an indication of some
sort of risk. However, risk management science is based also on other quantitative risk assessment such as the
popular VaR. In a sense, volatility in financial markets is the likelihhood of fluctuations, say, in the exchange
rate of currencies. Therefore, it could be modeled as the probability of the threat that an exchange rate
movement poses to an investor’s portfolio in a foreign currency. An extension of the concept of standard
deviation to VaR will help to determine the actual risk exposure to a protfolio of several currencies. And yet,
current research on Coherent Risk measures extends VaR further into more appropriate risk measures.

Confectionary we choose the best fitness model from the appropriated model family, like ARIMA
model family, GARCH model family or nonlinear modes (such as threshold model family) when we
are doing the analysis work. Yet, due to the inaccuracy or incomplete information, time lag, or the
interwork among variables, it seems very difficult to find an appropriate/accurate model in the reality
life. For example, which is the exact number of registered students every year-at the beginning of the
semester, in the middle of the semester, at the end of the semester or an average of the above numbers?
Different sampling time often results in different model. Furthermore, which is the weighted stock
price index--the opening quotation, the closing quotation, or an average of the highest and the lowest
stock price?

Zadeh’s (1965) proposed of Fuzzy Set Theory, the theory has incorporated the property of linguistic

variables, which is capable of reducing possible trouble in dealing with uncertain problems as well as



providing a more reliable way in processing complex, diverse and uncertain phenomena. Lately, the
application of fuzzy set theory in time series has been increasing gradually, e.g. Wu and Hung (1999)
proposed a fuzzy identification procedure for nonlinear time series: with example on ARCH and bilinear
models.. Wu and Chen (1999) utilized fuzzy clustering method to check the data structure’s transitional span
in time series. Tseng and Tzeng, etc. (2001) proposed a fuzzy ARIMA model to predict the NT dollar
exchange rate to US dollar by combining traditional time series ARIMA model with fuzzy regression model.
Tseng and Tzeng (2002) also combined fuzzy theory with seasonal ARIMA to establish a prediction model.
Kumar and Wu (2001) discovered that the concept of fuzzy logic can be used to effectively determine
structural changes in non-linear time sequence. Zhou (2005) introduced a new observation in structural
change — the Integrating Bayesian Structural Break Model and the change point detection methods. Zeng and
Li (2006).Relationship between similarity measure and entropy of interval valued fuzzy sets.

The fuzzy time series analysis and forecasting are recent hot research topics. Conventional studies in
related literature emphasize on performing anti-fuzziness on data, and then classify them. So-called
anti-fuzziness of data, is to describe the nature of fuzziness of subject matters, or to find out the fuzzy
relationship between every subject matter. “Classification”, on the other hand, is the grouping of data that
share the same nature of fuzziness or relationship. However, literature discussing the structural change of data
was rare. That was why (Wu, 1999) combined these two kinds of knowledge to construct a series of
procedures that is effective in finding out the structural change within data using the fuzzy classification.

This proposed technique is applied to a financial time series forecasting problem for demonstration.
Stock price forecasting is considered in the empirical application. We also propose an appropriate method to
measure the forecasting performance for the interval data. Finally, comparing the performance with the
traditional ARIMA model and , it has shown that the proposed method demonstrates a promising performance

on predicting future values for interval time series.

Our research project aims at addressing practical aspects of supplying estimates and predictions for
volatility and risk from available economic data.
(i) Estimation of volatility.

Recall that the classic Black-Schole option pricing formula (providing a way to price options so that no
arbitrage is possible) requires, as inputs, five parameters : the initial stock price, the option exercise time, the
option strike price, the interest rate, and the volatility. All these parameters are known (observable, obtained
from the market) except the last one, namely the volatility (which is not directly observable) which must be
forecasted.

Even in the case where the volatility is assumed to be non stochastic and time-invariant (i.e. an unknown
constant), its estimation efficiency depends on the type of data used. For example, the volatility can be
estimated by the sample standard deviation of returns over a short period of time. But, what is the right period
of time to use? In other words, how to get the best estimate of the "risk" from daily, weekly or monthly data?
as well as how to take the length of the data into account in the estimation process ? Thus, we are facing the
problem of historical data should be used in predicting volatility.

In the context of volatility estimation, we will address current estimation procedures based on conditional
volatility, stochastic volatility, realized volatility, implied volatility as well as liquidity risk and variance of

Black-Schole option pricing.



Stochastic volatility models, such as ARCH processes, are heavily used in financial economics to capture
the impact of time-varying volatility on financial markets and decision-making. The studies of inference in
such models will produce methods that aid our understanding of option pricing, efficient portfolio allocation
and accurate risk assessment and management. The statistical inference we intend to pursue is based upon
return data. Practical methods to be considered include likelihood or quasi-likelihood, generalized method of
moments, Kalman filter, and possibly simulated-based inference procedures such as Markov chain Monte
Carlo techniques.

Under the general heading of realized volatility, an important research issue is how to use high-frequency
data to estimate, to predict future levels of volatility. Here, we intend to examine the recent work of Andersen
et al (2001) on using predictions of the future daily quadratic return variation as a key input for forecasting the
volatility of future asset returns. Of course, this research will be based on stochastic calculus (Ito calculus)

involving stochastic differential equations driven by semi-martingales.

(ii) Volatility forecasting.

Volatility forecasting is vital for derivatives trading, but it remains an art rather than a science,
particularly among derivatives traders.

Forecasting of quantities of interest gives important information during decision-making processes,
especially on economic developments, population policies, management planning or financial control. In our
context of volatility forecasting, several drawbacks exist such as : Inefficiency in market applications due to
the inacurate forecasting, the model constructed only by the closing price may not illustrate the whole process
of daily or monthly trend.

One of the reasons for the above drawbacks is that the business marketing is full of uncertainty and
human being’s manipulation. To try to overcome these drawbacks, we will consider several avenues,
including interval forecasting, such as interval ARIMA time series models.

(iii) Modeling of quantitative risk measures.

For both investment and actuarial sciences, decision-making can be in principle carried out in the context
of Von Neumann utility maximization theory. However, the difficulty of specifying individuals’ utility
functions has led to the recent development of the stochastic dominance theory, in which comparisons of loss
variables are performed via stochastic orders based upon distribution functions (see e.g. the recent research
monograph " Stochastic Dominance and Applications to finances, Risk and Economics" by Songsak
Sriboonchitta et al, 2009). While this theory avoids the specific knowledge of utility functions (only use their
shapes as risk attitudes), its stochastic orders are partial order relations and as such, cannot handle situations
where loss variables are not comparable. A "follow-up" decision-making criterion is needed and that should
be a consistent total order relation. This is achieved by asking the fundamental question " Can we assign a
numerical value to a loss variable, representing its quantitative risk ?"

Note that it has been recognized that the variance (or standard deviation), while representing volatility, is
not an appropriate risk measure in view of its symmetric property. Risk measures are rather down side risks,
and as such should be assymmetric. That was precisely the reason why the VaR was proposed. With the
modern research on coherent risk measures, started with Artzner et al (1999), the state-of-the-art is this. The
VaR is not coherent since it violates the diversification principle in investment (namely, diversification should
reduce risk), and should be modified into another risk measure, namely the Tail-VaR. But this modified risk

measure is just one candidate among many others for modeling risk.
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The list of desirable properties of coherent risk measures suggests that the most general form for
coherent risk measures is built up by a mathematical integral known as Choquet integral. The successful risk
measure proposed for premium calculations in actuarial science by Wang (2002) is in fact a special case of a
Choquet integral risk measure. Thus, in studying Choquet integral risk measures, we will establish a unifying
pricing theory for insurance and financial risks towards applications to a unified risk management.

While the Choquet integral risk measures satisfy desirable properties for quantifying financial risks, its

practical implementation remains an important issue of concern for applications. The main problem is the
subjective choice of a "distortion function" in the construction of the Choquet integral. We intend to address
this problem as follows.
First, it is possible to transform a Choquet integral risk measure (based on distortion functions) to another type
of risk measures, known as spectral risk measures, in which the distortion function is mapped into a weighting
function (the sprectrum). A systematic analysis of spectrums could reveal that they are built from utility
functions in some canonical fashion, reflecting risk attitudes of investors.

The research should bring out at least two important facts : How to choose risk measures consistently
with investors’ risk aversion ? and how to estimate such risk measures, say, from historical economic data ?
This second point will be relied upon the well established asymptotic theory of statistical inference of linear
functions of order statistics, since the spectral risk measures are operating on quantile functions (of the loss
variables) rather than directly on their distribution functions.

(iv) Prediction and Risk

In the standard approach to risk analysis of options, the volatility of the underlying asset is used to assess
its risk in the sense that " the greater the volatility of the underlying asset, the greater is the risk attached to the
option". Now, the risk of an option is measured by the variance of the rate of return on the option. As stated
before, coherent risk measures have been shown to be more appropriate to quantify risks. Thus, while we
estimate or forecast volatility for option pricing, we will develop a new approach to risk assessment in the
context of financial markets by replacing standard deviations by more general and coherent risk measures,
such as Choquet integral risk measures.
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3. Research methodology and approach.

We spell out here the basic background of our research framework along with our research methodology
in order to achieve our desirable goals in this research proposal.
(i) Quantitative coherent financial risk measures.

Since the variance of a future return is a symmetric measure of deviation about the expected value, it is

not appropriate for a downside risk measure. As such, the VaR of , say, a loss variable XF, , with (unknown)

distribution function Fx, at confidence level 2 (0; 1), was proposed as a risk measure, where
VaR_ (X)) = Fy*(o) = inf{x: F(x) 2 a}

While VaR,(X) has a transparent meaning of the maximum possible loss with confidence, it violates the
reduction of risk by diversification. In mathematical terms, the operator VaR,(*)

Is not subadditive:
VaR,(X +Y) % VaR,(X) + VaR,(Y)

A modified type of quantile-based risk measure is the Tail VaR

TVaR.(X) = = [ F* () dt

which is subadditive.

This is just one possible candiate for a risk measure, i.e. a way to assign a numerical value to a
distribution function, representing its risk. Now, economists have listed a collection of desirable properties for
any risk operator to be qualified as a reasonable risk measure. They are called coherent risk measures. It turns
out that the most general form of coherent risk measures is obtained by an integral called Choquet integral.

Specifically, a Choquet integral risk measure is of the form
p() = gl - Fx(©)) dt

where g:[0; 1]— [0; 1] , nondecreasing function. The above VaR, and TVaR, are special cases. Moreover
if the "distortion" function g is concave, the associated Choquet integral risk measure is coherent.

Choquet integral risk measures thus surface as desirable candidates for measuring financial risks. For
applications, we need to pursue two more issues. The first one is how to supply the knowledge of the
unknown distribution function F;? Clearly this is a statistical estimation problem which, as usual, requires the
attention to two things : the model and the data.

We will investigate details in each case of model, namely parametric, semiparametric and nonparametric.
The second thing is the type of available data, such as high frequency data. Accuracy of estimators depends
on these two ingredients. Our approach will consist of using the theory of linear functions of order statistics.

The second issue in implementing a Choquet integral risk measure is the choice of the distortion function
g. Our approach is this. It is possible to convert a Choquet integral risk measure into a "spectral" risk measure,

1.e. a risk measure of the form



pX) = [ e(O)F(e) dt

where the spectrum ¢:[0; 1] — R, nondecreasing and _['Qm e(t)ydt =1

Now it can be shown that the spectrum spectrum ¢ reflects risk aversion attitude of investors, and hence
a reverse transformation back to distortion function g should yield a reasonable choice.

(ii) Using coherent risk measures in relation with volatility.

First of all, recent advances in coherent risk measures have shown that Choquet integral risk measures
are appropriate for risk assessment both in investment and actuarial sciences. Their relation with option
pricing seems promising. We will investigate the methods from insurance risk pricing and their relationship to
financial theory.€

Financial market volatility is indispensable for asset and derivative pricing, asset allocation, and risk
management. As volatility is not directly observable, research efforts have largely devoted to how to obtain
information about it.

The volatility in the classic Black-Schole option pricing model is the constant variance o2 of the
underlying stock price S: at time ¢ : Assuming that S; follows a geometric Brownian motion W, the price C
of an option in a market with interest rate », with strike price K, is a function C(So, K; t; r; ¢2), where So 1is
the initial stock price. Pricing according to this formula avoids arbitrage. The volatility in the Black-Schole
model is called the implied volatility (of an option), obtained by solving for 2, giving the market price. Note
that, in general, the volatility depends on the strike price, and hence forms a curve called "volatility smile".

In general, the volatility is time-varying and stochastic, i.e. it is a stochastic process &7 which can be

modeled as a Generalized Autoregressive
2 — W4 2 » 2
T = Ei=1 Qi€+ E;=13£‘?t—j

Where ¢; is a white noise. The above view of volatility is clearly model-dependent.

We will also look at model-free measure of volatility where volatility can be estimated by sample variance of
returns.

In the context of volatility, we will investigate its relation with risk measures expressed as Choquet
integral.
(iii) Estimation of Choquet integral risk measures.

For practical applications, we will consider various statistical models and data in the search for efficient

statistical estimators. Several venues will be considered :

(a) Estimating _I'Om g(1 — F(t))dt by a plug-in estimator _I'om g(1 — E,(t)) dt where E, (-} could be some

consistent estimator of F(-)} based on data sample of size n, such as the empirical distribution function
1
(b) F.(x) = ;E?;J_ 1tjxfsx)

or, when F is absolutely continuous, with density function f(*), by some smooth estimator using

nonparametric kernel estimation



By = [ fu(tadt

where f,(t) = %2&1@ a kernel density estimate of f(-)
T i
Of course, statistical properties of the above estimators should be investigated. For example, large
sample properties could be examined within the framework of V- statistics.
(b) Nonparametric estimation of quantile functions could be used since, as noted above, Choquet risk

measures can be written in terms of quantile functions.
Given a sample X, X, :::;X,, the order statistics are denoted as Xy . The quantile function

Fri(a) = Xgg for =< a <

2l

Sothat [;° @(t)Fs*(¢)dt is estimated by [~ @(t)Fy*(t)dt = ?=l[f_‘fffn p(t)dt] X

From that, asymptotic properties of these estimators can be derived by using the theory of linear functions of

order statistics.

(iv) Volatility forecasting.
For both estimation and forecasting of volatility, we will examine various practical models as well as
data. for example, we address the problem of estimating and predicting volatility by using implied and

historical volatilities.
Two cases of interests are : when ¢; is an unknown non-random function, and when it is a random

process, independent of the driving Brownian motion noise in the stock. We consider both the situations
where future volatility could be calculated from time series economic data. Also, we will investigate the

problem from the use of realized volatility (the realized volatility measures what actually happened in the
past).

The concept of entropy originates from machine engineering, where in a process involving heat it is a
measure of the portion of heat becoming unavailable for doing work. In information theory, Entropy is a
measure of unpredictability or information content in a random variable. Since entropy can be measured in
price values or range of prices, in this context, the term will be referred to the ratio entropy, which ratio
quantifies of the time series. The role of entropy rate for a dynamic process is one bit per value. For exmple, if
the process demonstrates upward trend, and hence the entropy rate, is lower. This is because, if asked to
predict the next outcome, we could choose the most frequent result and be right more often than wrong. The
entropy of a message multiplied by the length of that message is a measure of how much information the
message contains. If some messages come out smaller, at least one must come out larger. In practical use,
this is generally not a problem, because we are usually only interested in compressing certain types of
messages, for example English documents as opposed to gibberish text, or digital photographs rather than
noise, and it is unimportant if our compression algorithm makes certain kinds of sequences larger. However

the problem can still arise even in every day use when applying a compression algorithm to an already
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compressed data

Wu (1999) suggested that, the use of fuzzy entropy is effective in identifying whether a structural
change happens in a time series. Besides, it can also be used together with the mean cumulated fuzzy entropy
of ¢ times, to observe the change in message of fuzzy entropy, based upon which a standard for the

classification of change model can be established.

{xwl =a; + @x; + 41 e ~WN(O, @az) 3.1)

ler1 = @ + 48y 8ers ~WN(0,0f)

Definition 3.1 Forecasting for Interval time series model

Let X.(i) and ft(i) be the one step forecasting value of the interval time series as in equation (2.1),

xf (i) and Uf(i) We denote the revised forecasting value as

af (1) = £:(1) + sign(l, — {‘H-)fj_:
LF(1) = L.(1) + sign(x, — xe—y) =&

Xg—1

(3.2)

xf (i) =£.(i) + sigﬂ(fffi) — ft(i —1) ftféﬁ_i)l) .
() = L(0) + sign(@,(D) — 2,(i — 1)) i'"fgiﬂ—i)l) .

An integrated decision system for fuzzy time series analysis and forecasting

Here we wish to find two cluster centers. This is determined based on common experience of empirical

analysis and trend of time series. The procedures are as follows:

Step 1: Use the k-means method to find out two cluster centers Ci1 and C: in time series{ %},

and determine the membership degreep;.,t=1,2 of {#;} to the two cluster centers
Step 2:Compute the fuzzy entropy&(x;), mean cumulated fuzzy entropy MS&(x:) = %EL 10(x;), and

Median(MS&(x.)) of this series, that correspond to #x,.

Step 3:Take a suitable threshold value A, classify the mean cumulated fuzzy entropy MS&(x,) series that
correspond with x; . If the mean cumulated fuzzy entropy MS&(x.) falls into the interval
[0,Median(MS§8(x:))—1), we will use 1 to represent Group 1;if MS&(x.)falls into the interval
[Median(MS&(%.))—A, Median(MS& (x.))+1) , we use 2 to represent Group 2;and if MS&(x.) falls
into the interval[Median(MS& (x.))+A,1], 3 will be used to represent Group 3.

Step 4:1f the result of classification is inconsistent, we then make adjustment to the result. If it is consistent, go

to Step 5.

Step 5: Select an appropriate determination level a.. If the number of consecutive samples is greater than
[alN ], then these consecutive samples belong to the same group. During classification, if more than

10



one group is found, we know that structural change happens in this time series. Thereafter, find the
change interval.
Step 7. Construct a system of AR(1) model for the center and length of the dynamic process.

Step 8.forecasting the time series as in the equation (2.2).

Comparison with forecast results

After constructing the model, we look at the core interest of this study — the forecasting ability. Table 3.1 is
the comparison results for the forecast of TSMC between the best ARIMA model and fuzzy classification
ARIMA. We can see that the forecast result of the TSMC using the best fuzzy classification Threshold model
haa better forecasting performance than the traditional ARIMA model.

Figure 3.2 illustrates the forecast result. In the process of correlation, the fuzzy classification is also an
important procedure, because this reduces the number of samples required. The forecast result with the ratio
entropy technique for TSMC provides a better forecasting performance than threshold ARIMA model. We
also find that, for a time series, if the change period of its structural change can be determined, better results

on the model construction and forecasting ability can be produced.

Time Series Plot of max, min

Figure 3.2 Trend and forecasting for the interval TSMC data

Finally, from Table 3.1 we can see the /MSE is very small, and this indicates that the result is quite
appreciated.

Table 3.1 Comparison between the forecasts of the TSMC

Time/week | Actual value | Interval forecasting(110x111)| Revised Interval forecasting

102/06/24 | [100,111] |[104.3,109.5];(106.9;52) |[102.3,108.5];(105.4:6.2)
102/07/01 | [105.5,110] |[104.8,109.9];(107.3;5.1) |[106.0,110.2];(108.1;4.1)

102/07/08 | [103.5,110] | [105.0,110.2];(107.6:5.1) | [103.5,109.7]3(106.6:3.1)
IMSE 6.49 (=2.24+0.55°+1.077) 1.04 (=0.757+0.42+0.55)

Conclusion and sugestions

Economic and financial analysts often need to know when changes occur in a time series. In this research
we formalize the concept of change periods in contrast with traditional change points as more realistic
structural features of certain time series. We present an approach to detect change periods by partial
cumulative sums of fuzzy statistics, allowing us to identify the beginnings and ends of trends. Through the use
of fuzzy statistics, our proposed change period detection approach is able to systematically address fuzziness

11



in the data. As a consequence, its results are more meaningful in financial/economic time series analysis.

The key contribution of this paper is that we provide a new method to prediction as well as the decision

making

In comparison with conventional methods, our approach offers several advantages:

. Initial knowledge about the structure in the data is not required, so we can take full advantage of the

model-free approach.

. We can select standards for change periods by controlling the parameters to detect change periods at the

scale desired and filter noise in a time series.
The fuzzy data can be handled.

Practical aspects of volatility forecasting. The problem of building optimal predictors for volatility will be
investigated on financial/economic time series data. Developing models for analyzing financial risk
measures and volatility. Essentially, we will investigate practical ways to choose coherent risk measures,

reflecting risk aversion , and models for stochastic volatility.

Although the simulation and empirical results show that our approach of change period detection is

visually satisfactory and can be generally applied, there remain several points to note and problems to be

solved:

Because the change periods we consider are defined as intervals where trends change, the stationary part

of a time series may be viewed as a change period. Future study should address sensitivity of its results to the
parameter choice.

1.
2.

While our research efforts are interconnected, they can be focused as follows.

Developing models for analyzing financial risk measures and volatility. Essentially, we will investigate
practical ways to choose coherent risk measures, reflecting risk aversion , and models for stochastic
volatility.

Practical aspects of financial risk estimation. We will conduct research for estimating financial risk under
various forms of economic data, as well as under various forms of distribution assumptions. In other words,
both parametric and non-parametric statistical estimation (and testing) will be investigated.

Practical aspects of financial risk estimation. We will conduct research for estimating financial risk under
various forms of economic data, as well as under various forms of distribution assumptions. In other words,

both parametric and non-parametric statistical estimation (and testing) will be investigated.

12
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In comparison with conventional methods, our approach offers several advantages:

® Initial knowledge about the structure in the data is not required, so we can take full advantage
of the model-free approach.

® We can select standards for change periods by controlling the parameters to detect change
periods at the scale desired and filter noise in a time series.
® The fuzzy data can be handled.

@ Practical aspects of volatility forecasting. The problem of building optimal predictors for
volatility will be investigated on financial/economic time series data. Developing models for
analyzing financial risk measures and volatility. Essentially, we will investigate practical

ways to choose coherent risk measures, reflecting risk aversion , and models for stochastic
volatility.
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Model Construction and Residues Analysis with Interval
Time Series

Berlin Wu

Department of Mathematical Sciences
National Chengchi University, Taiwan

berlin@nccu.edu.tw

Abstract: This paper demonstrates how to use the fuzzy classification technique to perform an intensive research on
the change periods detection and model construction for the interval time series. We use average of the sum of fuzzy
entropies to find out interval of the structural changes. Focusing on the time series of intervals, we build a model and
make prediction about it. The residues analysis for fuzzy time series model are proposed. Empirical studies show that

the unemployment rate does significantly correlate with the population of singles.

Keyword: fuzzy data classification ~ average of the sum of fuzzy entropies ~ change  periods ~unemployment rate

population of singles

1. Introduction

As the trend of getting married late or not getting married emerges, Taiwan faces the problem with low birth rate and
aging of population. The issues of the welfare for the aged and age structure of population receive increasing attention
too. The heightening unemployment rate, on the other hand, has caused more people to marry late or not marry at all,
and this increases the number of people who remain single. Therefore, a study like this that investigates the future trend
of singlehood rate becomes more and more important. Conventionally, studies recorded in related literature emphasize
on performing anti-fuzziness on data,and then classify them. This process is called “fuzzy classification”. So-called
anti-fuzziness of data, is to describe the nature of fuzziness of subject matters, or to find out the fuzzy relationship
between every subject matter. “Classification”, on the other hand, is the grouping of data that share the same nature of
fuzziness or relationship. However, literature discussing the structural change of data was rare. That was why (Wu,
1999, Kumar and We (2001)) combined these two kinds of knowledge to construct a series of procedures that is
effective in finding out the structural change within data using the fuzzy classification. Weina Wang (2007), Malay K
(2005), Kuo-Lung Wu (2005), Dae Won Kim (2004) further constructed different methods of calculation, to investigate
the effective way of using the Fuzzy C-Means to determine the cluster in a large number of sets.

Although there have been numerous researchers performing studies on structural change, and countless of
methods used, the mathematical inference process is complex, and there still has not been a clear standard in defining
change point. Therefore another purpose of this thesis is to find out the structural change in the unemployment rate and

effectively analyze it, and then transform its structural change part with the singlehood rate, to discover a better
2



forecasting skill.
In Taiwan, it becomes increasingly common for males before 25 to be still pursuing their study. For these reasons,
we do research on males between the ages of 25 - 34 as the object of study, to investigate the relationship between

singlehood rate and unemployment rate.

2. Model construction with fuzzy data
2.1 The role of fuzzy entropy

There are many analysis techniques for time series. The oft-used ones include exponential smoothing, ARIMA, log
linear trend, linear trend with seasonal terms, etc. Transfer function model is the extension of the construction method
of a univariate time series model to the analysis method of a multivariate time series. In many cases, it is possible to
have a set of data whose current observed value is affected by the past observed value, and one or more other set of
time series are correlated to the mentioned set of data. This implies that there will be impact transferred to the output
series, when there are any changes in the input series.

Since the possibility of the singlehood rate being affected by unemployment rate of previous periods and the past
singlehood rate itself, it is more accurate to use the transfer function mode to perform the conversion of the singlehood
rate.

When the fuzzy theory is used to examine whether there is any change point in a time series, first we cluster the time
series, find out the cluster center, and then use the fuzzy membership degree, fuzzy entropy and other relevant concepts
to perform classification.

Definition 2.1 Fuzzy Entropy
Let a time series be {x.,t=1,2,...,.N},with\; being the membership degree of x.; to the cluster centers Ci

(i=1,2,....,k), the fuzzy entropy is thus defined as:

k
o) = = (1) Dl () + (1= Jin = )

i=1

Entropy is a concept in the thermodynamics study, it illustrates the degree at which work can be transformed. The
Probability Theory and Information Theory give it a more common definition: measure of the unboundedness of a
random variable, or the measure of the amount of missing information. So fuzzy entropy is used to measure the

uncertainty of fuzzy sets, and is an important tool for the processing of fuzzy data, while the membership degree is

used to characterize elements that do not clearly belong to some particular sets.

2.2 Distance with interval data

When a sample of interval-valued fuzziness is available, we have to consider the calculation for intervals. However,
there is still no complete definition for the measure of interval distance (see Wu 2010). How to define a well-defined
interval distance? First we represent the interval with (C;; I';) with ¢ being the center, r being radius. This way, the
interval distance can be considered as the difference of the center plus the difference of the radius. The difference of
the center can be seen as the difference in location, and the difference of the radius can be seen as the difference in
scale. However, in order to lower the impact of the scale difference on the location difference, we take the /n value of

the scale difference, and then plus exp(1) to avoid the /r value becoming negative.

3



Definition 2.2 Defuzzyfication for a trapezoid fuzzy number on R

Let X =[a,b,c,d] be a trapezoid fuzzy number on U with its centroid Then the defuzzification value Xy of

X=[a,b,c,d] is defined as

2]

Xp=cx+ 2In(e+|cx)|’

where, ||X||is the area of the trapezoid.

Definition 2.3 Distance among fuzzy data

Let X, =[a;,b,c;,d.] bea sequence of trapezoid fuzzy number on U with its centroid (cx,cy). Then the distance

1

between the trapezoid fuzzy number X, and X ; is defined as

1

okl
[2in(er |ex ) 2in(er | ex, )|

d(X;,X;) =|cxl- —cxj|

Definition 2.4 Interval means square error (IMSE)
Let{s; = [a;, b;],i = 1,...,N}be an interval time series, with prediction interval being§; =[@;,b; Jand &; =

d(s;, §;)beging the error between the prediction interval and the actual interval, thus:
N+

1
IMSE = 7 Z &2

i=N+1

where [ is the forecasted expectancy value.

Example 2.1 Let S={[3,6],[4,5],[2,6],[5,8],[3,8]} and S= {[3,4],[2,6],[3,5],[5,7],[4,5]} be two set of fuzzy
sample about expected salary and real salary from a survey for graduated students. Then the distance from expected
salary and actual salary are computed as follows:

Table 2.1 Distance for the interval data

Sample | Estimated Salary | Actual Salary | distance
1 [3,6] [3,4] d(s;,8,) =|3.5—4.5] + 2.05 = 3.05
2 [4,5] [2,6] d(s,,8;) =14—45]+2.82 =332
3 [2,6] [3,5] d(s3,83) =14 —4]+1.90 =1.90
4 [5.,8] [5,7] d(ss,8,) =16 —6.5+1.17 = 1.67
5 [3.,8] [4,5] d(ss, 8:) = 4.5 — 5.5| + 4.28 =5.28

IMSE=% x (3.05% + 3.32%2 + 1.90% + 1.67% + 5.282) = 10.9

Definition 2.5 Cluster of interval-valued time series
Let? ={s, > t=1,2,...... ,N}be an interval time series,k ENbe the number of clusters. If there exists a setJ = {I; €
interval;i = 1,2, ..., k},where by the distance square sum of an element s, from ¥ and an element I; from J is the

least, then:
N k

Minz d(e, 1;)?
1

t=1i=
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Set 7 = {I; € interval;i = 1,2, ..., k}, is then known as the set of cluster interval for interval time series V.
Example 2.2: The distribution of 27 sets of interval data of unemployment rate (unit: percent) is shown as Figure 2.1,

as follows:

rrrrrrrrrrrrrrrrrrrrrrrrrri

1357 9111315171921232527

O R N W b U1 O

Figure 2.1 Trend of interval time series

If we wish to divide the data into two groups, using Definition 2.5, we can obtain two interval clusters I; =

(1.83,2.46) and I, = (3.71,5.23) The result of clustering is as follows:
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Figure 2.2 Result of interval clustering

2.3 Change periods

Conventionally, the detection of the structural change in a system takes the change point as the main factor of
consideration. However, structural change should be mainly based on variable and not the time value, and it should be
a gradually-emerging change interval and not a change point whereby the change happens abruptly at a certain point
of time. So the change interval that studies variables, compared with the classical method of investigation for time
series, has better descriptive power. Wu (1999) suggested that, the use of fuzzy entropy is effective in identifying
whether a structural change happens in a time series. Besides, it can also be used together with the mean cumulated
fuzzy entropy of ¢ times, to observe the change in message of fuzzy entropy, based upon which a standard for the
classification of change model can be established.
Definition 2.5 Mean Cumulated Fuzzy Entropy
Let a time series be {x:}, t =1,2,...N, with(x;) being its fuzzy entropy. The mean cumulated fuzzy entropy is thus

defined as:
1 t
MSS(x) =1 ) 8(x)
t i=1
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There is usually a threshold level A set up for fuzzy classification, because no matter it is for nature or humanities,
the determination for classification is very subjective and often non-unanimous. Hence an objective measure is needed.
According to empirical experience, A cannot take a value too huge or too small, otherwise the classification cannot be
done or too many classes will be created. So a value for A between 0.001 and 0.1 will be ideal.

Here we wish to find two cluster centers. This is determined based on common experience of empirical analysis and
trend of time series. The procedures are as follows:

Step 1: Use the k-means method to find out two cluster centers C; and C; in time series{x.}, and determine the
membership degree|;;, i=1,2 of {x.} to the two cluster centers

Step 2: Compute the fuzzy entropyd (x;), mean cumulated fuzzy entropy
MS6(x;) = % L1 8(x), and Median(MS8 (x.)) of this series, that correspond  to xi.

Step 3:Take a suitable threshold value 4, classify the mean cumulated fuzzy entropy MS6(x;) series that correspond
with x.If the mean cumulated fuzzy entropy MS6S(x,) falls into the interval [0,Median(MSS (x,))—4), we will
use 1 to represent Group 1;if MSS(x;)falls into the interval [Median(MS6 (x,))—A,Median(MS6 (x,))+4), we
use 2 to represent Group 2;and if MS6(x,) falls into the interval[Median(MS6 (x.))+A,1], 3 will be used to
represent Group 3.

Step 4:1If the result of classification is inconsistent, we then make adjustment to the result. If it is consistent, go to Step
5.

Step 5: Select an appropriate determination level Q. If the number of consecutive samples is greater than [aN |, then
these consecutive samples belong to the same group. During classification, if more than one group is found, we

know that structural change happens in this time series. Thereafter, find the change interval.

3. Empirical Studies

We use the populations of singles and unemployment rate to perform the fuzzy statistical analysis. The main source
of information is the statistical data from the Department of Budget, Accounting and Statistics (DGBAS) of the
Ministry of the Interior. The singlehood rate is calculated by dividing the population of single males in years 1980 to

20006, of ages 25- 34 years.

Firstly, by determining CCF of the rate of single men of ages 25 — 24 year old in years 1980 to 2006, and the

unemployment rate of the same years. For such a comparison, the relationship we can obtain is as follows:
(1 —B)Y, = 0.00634 + (—0.148 — 0.083B + 0.492B%)X, > 1980 < t < 2006
in which, Y; is the marriage rate at a point of time t, X; is the employment rate at the point of time t, and the model
of input series being:
(1-0.325B)(1 —B)X; =& > 1980 <t < 2006

Take the threshold value A=0.01, and set the change interval of the unemployment rate as years 1985 to 1988, we
then consider this a transition period, and construct a new threshold model. But because the classification oscillation
before year 1985 is too frequent, it is difficult to place the unemployment rate into any class. We will therefore deem

it non-stationary, and only consider the unemployment rate after year 1988 to build the ARIMA model, as follows:



nonstationary > 1980 < t < 1987
{(1 —0.0036B)(1 — B)X; = 0.0054 + ¢, » 1988 <t < 2006
and then construct the conversion model of the unemployment rate after the change interval to the singlehood rate, as
follows:
(1 - 0.94B)Y, = 0.0285 + (0.217 — 0.419B + 0.78B%)X, » 1988 < t < 2006

When we take A=0.01, change intervals are found in years 1983 to 1985 as well as years 1992 to 1994. This means
structural change happens. So we need to consider the singlehood rate after year 1985. However, the sample size is
less than 6, so a model cannot be built. Nonetheless, observing the change intervals, we know that the structural change
in the unemployment rate happened earlier than that of the singlehood rate, and in the change period of the
unemployment rate, structural change had also occurred on the singlehood rate. Therefore the unemployment rate has

significant impact on the singlehood rate.

Time Series Plot of cusum entropy Time Series Plotof A= (.01
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Figure 3.2 The classification of the
unemployment rate

Figure 3.1 Chart of mean cumulated fuzzy

We will now perform the classification of fuzzy intervals using the fuzzy classification method, on the unemployment
rate intervals. We will then obtain the cluster centers of the fuzzy intervals of the unemployment rate: [, =
(0.0183 > 0.0245), I, = (0.0371 » 0.0523).

Also, with Median(MS6(x¢))=0.2460, we know that the transition interval for the unemployment rate interval falls
between years 1987 and 1988. We consider this a transition period, and construct a new threshold model. But because
the classification oscillation before year 1987 is too frequent, it is difficult for us to place the unemployment rate in
this period into any class. We will therefore deem it non-stationary, and take only the unemployment rate interval after

year 1988 into account to build an ARIMA model, as follows:

High model of intervals:
{ nonstationary - 1980 < t < 1987
(1 -0.0005B)(1 — B)X; = 0.002 + ¢, > 1988 <t < 2006

Low model of intervals:
{ nonstationary > 1980 < t < 1987
(1 -0.147B)(1 — B)X, = 0.001 + ¢, > 1988 < t < 2006

The highest unemployment rate-to-singlehood rate conversion model:

(1 — 1.02B)Y, = 0.0005 — (0.016 — 0.152B2)X, > 1988 < t < 2006

The lowest unemployment rate-to-singlehood rate conversion model:

(1 - 0.945B)Y; = 0.0292 + (—0.145 + 0.134B + 0.571B%)X, > 1988 < t < 2006
7



Comparison with forecast results

Table 3.1 is the comparison results for the forecast of unemployment rate between the best ARIMA model and fuzzy
classification ARIMA. We can see that the forecast result of the unemployment rate using the best ARIMA model
performs bettern the best RIAMA model.

Table 3.1 Comparison between the forecasts of the unemployment rate

Retention phase | Actual value | ARIMA(1,1,0) | Fuzzy classification ARIMA(1,1,0)
2007 0.0391 0.0390 0.0389
2008 0.0414 0.0397 0.0393
2009 0.0585 0.0406 0.04
MSE 0.000108 0.000116

Table 3.2 shows the forecast of singlehood rate obtained by applying the threshold transformation on the intervals of
the unemployment rate forecast. We know from Tables 3.5 and 3.6 that, no matter it is performing the fuzzy
classification on the unemployment rate first, and then the transform the unemployment rate to the singlehood rate; or
it is performing the fuzzy classification on the intervals of unemployment rate before transforming the result of
classification to the singlehood rate to get the forecast or intervals of forecast of the singlehood rate, the differences in
MSE is not great. This is because the sample size is not large. However, this provided an approach to effectively obtain
the forecast intervals of the singlehood rate, and has demonstrated the uncertainty in singlehood rate.

Table 3.2 Forecast intervals of the transformation of the singlehood rate

Retention phase | Actual value | Forecast intervals of the transformation rate
2007 0.6549 (0.653,0.656)
2008 0.6619 (0.667,0.675)
2009 0.6819 (0.681,0.695)
IMSE 0.000129

Overall, the forecasting we made, whether on the unemployment rate or the singlehood rate, is reasonably accurate.
The forecasting will improve if classification transformation is used — we only need to construct a model of the
singlehood rate using the end result of classification of the unemployment rate. This way, the required number of data
periods is lower (we only need the unemployment rate data after year 1998). In addition, the forecast interval of
singlehood rate obtained from forecast of interval will provide a better forecasting ability for the uncertainty in
forecasting singlehood rate.

At the end we also find that, for a time series, if the change period of its structural change can be determined, better

results on the model construction and forecasting ability can be produced.

4.Conclusion

In the progress of scientific research and analysis, the uncertainty in the statistical numerical data is the crux of the
problem that the traditional mathematical models are hard to be established. This paper proposes to use the interval
data to avoid such risks happening. In fact, using interval data to establish a model and to predict, we can find that the
forecasting in each step is carried out by means of intervals, so as to increase the objectiveness of the forecast results.
In the general aspect, the ‘‘intervalization’’ seems to be a very normal phenomenon too.

This paper discusses the quality of the forecast result through evaluating forecasting performance, It is noteworthy that
if we can establish a good efficiency process, we can make a superior interval forecasting for the interval time series.
We also hope that with the experience in analyzing the structural change in time series, we can produce effective

procedures to detect change interval, and this can be used to do forecasting, in order to fulfill human beings’ thirst to

8



grasp the future changes.

In recent years, the unemployment rate in Taiwan is on the rise. The challenges that the Taiwan society faces are not

only limited to the disorderly situation caused by the political reconstruction after the first shift of political power in

the millennium year, as well as the “Democratic Labor’s Pain”. As the international economic environment and the

cross-Strait economic and trade environment change, the investment and employment markets in Taiwan becomes

increasingly challenging, and this created an impact to the supply-and-demand balance in the local employment market.
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This research project aims at investigating practical statistical procedures,
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based upon various types of economic/financial time series data, for risk
estimation and volatility forecasting. Volatility a measure of the risk in a
financial instrument, refers to the standard deviation of the continuously
compounded returns with a specific time horizon. The main focus will be on
developing the current theory of coherent risk measures, based on fuzzy ratio
entropy integral formulation, with applications to assessing quantitative risks
related to volatility of stock prices for option pricing, efficient portfolio

allocation and accurate risk assessment and management.




