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Abstract

In this thesis, we develop an algorithm to recover tropical polynomials
from plane tropical curves of degree two and three. We use tropical lines
to approach a given tropical curve. Furthermore, we also give another
algorithm to recover tropical polynomials from a (maximal) Newton

subdivision of degree two and three.
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Chapter 1

Introduction

Tropical geometry is a relatively new area in mathematics. Roughly speaking,
tropical geometry is the geometry base on the tropical semiring. Tropical semiring
is first developed in the 1980s by Imre Simon [6], a mathematician and computer

scientist from Brazil.

Tropical geometry becomes more popular after some important applications in
the fields such as the classical enumerative geometry and the algebraic geometry.

(We refer to [1], [4], [8] for details.)

In tropical geometry, we usually works on the set T = RU{—00} equipped with
addition and multiplication defined by:

z @y = max{z,y},
TOY=1r+Y,

which is also called “max-plus” algebra. The additive identity is Oy = —oo, while
the multiplicative identity is 1 = 0. Observe that such a structure is not a ring,
since not all elements have tropical additive inverses. For example, there is no

solution in T for the equation z & 3 = 2.

What we usually deal with in tropical algebraic geometry is convex piecewise

linear functions.



Figure 1.1:

For basic tropical geometry, one can see [1], [5], and [8]. In [1], Andrea Gath-
mann give an introduction about tropical algebraic geometry, including the con-
struction of tropical curves, and the tropical version of some well-known theorem,

e.g. Bézout theorem. The main references of this thesis is [1], [2], and [8].

In Section 2.2, we introduce the definitions of tropical curves. In Section 2.3,
we study the tropical factorization, and define an equivalence relation so that we
may have an one-to-one correspondonce between tropical polynomials and tropical
curves. In Chapter 3, we give an algorithm to recover polynomials from the given
tropical curves. In Chapter 4, we give a similar algorithm to recover polynomials

from Newton subdivisions.



Chapter 2

Tropical Algebraic Geometry

2.1 Tropical polynomials

Definition 2.1.1 (Tropical Semiring). Let T = RU{—o00}. The Tropical semiring

(T, &, ®) is an algebraic structure with two binary operations defined as followings:

a® b= max{a, b},
a®b=a+0b,

where @ is called tropical addition and © is called tropical multiplication.

Definition 2.1.2. A polynomial g(z) € T[xq,xs,...,z,] is called a tropical poly-

nomial.
Example 2.1.3 (A tropical polynomial in one variable).

g(z) = 302" 6202"0102ra0
= max{3x + 3,2z + 2,2+ 1,0}

Example 2.1.4 (A tropical polynomial in two variables).

g(z,y) = (-2)0re(-3)0ya0
= max{xr — 2,y — 3,0}



2.2 Tropical curves

For a complex plane curve C, we restrict it to the open subset (C*)? of the

(affine or projective) plane and then map it to the real plane by the map
Log: (C*)?* — R?
z2=(21,29) — (x1,22) := (log|z1],log|z]|).

The image A = Log(C N (C*)?) is called the amoeba of the given curve C.

Example 2.2.1. O = {z € C*|e %z, + e %2 = 1}

A

Figure 2.1: Amoeba of C' = {z € C*|e %z + e 2, = 1}

In fact, the shape of the picture above (that also explains the name “amoeba’)
can easily be explained. The curve C' above contains exactly one point whose
z1-coordinate is zero, namely (0,¢*). As log0 = —oo, a small neighborhood of
this point is mapped by Log to the tentacle of the amoeba A pointing to the left.
Similarly, a neighborhood of (¢?,0) is mapped by Log to the tentacle pointing down,

3

and points of the form (z, e’—ez) with |z| — oo to the tentacle pointing to the upper

right.



Now, to make the amoeba into a combinatorial object, we consider the maps

Log; : (C*)? — R?

_1og|21| _log|z2|>

(o) (= log sl — o ) = (£, B L2

and the family of curves C; = {z € C?|t*2; +1°2, = 1} for small ¢ € R. This family
has the property that C; passes through (0,¢7%) and (¢t~2,0) for all ¢, and hence all
Log;(Cy N (C*)?) have their horizontal and vertical tentacles at z, = 3 and z; = 2,
respectively. That is why we consider the family C; instead of the original curve C.
So if we now take the limit as t — 0, we shrink the width of the amoeba to zero but

4

keep its position in the plane, and this “zero-width amoeba” is called the tropical
curve determined by the family Cy. In Figure 2.2, The tropical curve I' is usually

called a tropical line.

Figure 2.2: The tropical curve corresponding to the amoeba in Figure 2.1

There is an elegant way to hide the limiting process by replacing the ground

field C by the field of Puiseuz series.

Definition 2.2.2. A formal power series of the form Z aqt?, a, € C satisfying:
qeQ

(i) the set {¢ € Q|a, # 0} is bounded below,



(ii) the denominators of ¢ € {q € Q|a, # 0} is a finite set

is called a Puiseuz series or a fractional power series. A field K of Puiseux series is

a collection of Puiseux series.

Definition 2.2.3. For a = Z aq t? € K,a # 0, we may define the valuation of a
by the map val(a) = inf{q eq(&?aq # 0}.
Remark 2.2.4. The infimum of the set {g € Q|a, # 0} is actually a minimum. i.e.
val(a) = inf{q € Q|a, # 0} = min{q € Q|a, # 0}.
Example 2.2.5. Let

a =1+t 420 436 RO

b=14¢72 4¢3 ¢4 VR

and

c =1+ ff (LS 5 bugpmy pibilia™\ RS 6 |~

111
a is a Puiseux series, while b and ¢ is not, since the set of denominators of {0, 331
1 2 3 k
is not finite, and {0, 7o el Tens et .} is not bounded below.

It is easy to see that C C K, so we can consider a curve C' in C? to be a curve
in K2, for example,

C={re K|’z + P2 =1}

For t — 0, we have

~ vala
a =~ aV&la t :

So applying the map log, to a, we get for a small ¢

log, |a| ~ log, |a tvala| = vala + log, |ay,,| =~ vala.

vala

Therefore, the process of applying the map Log; and taking the limit for ¢ — 0

correspond to the map
Val : (K*)* — Q?

(z1,20) +— (21,22) := (—val 21, —val 25).

P

o =



Using this observation we can now give our first definition of plane tropical curves.

Definition 2.2.6. A plane tropical curve is a subset of R? of the form A = Val(C'N
(K*)?) , where C' is a plane algebraic curve in K? . (Strictly speaking we should
take the closure of Val(C'N (K*)?) in R? since the image of the valuation map Val

is by definition contained in Q?)

Note that this definition is now purely algebraic and does not involve any limit

taking processes.

Example 2.2.7. For the example above, C = {(z1,25) € K?|t?2 +t32 = 1}. If
(21,22) € O N (K*)?, then Val(z1, z») can give three kind of result:

o If val z; > —2, then the valuation of z5 = t73 — 712 is =3 since all exponent
of t in t 7'z, are bigger then —3. Hence these points map precisely to the left
edge of the tropical curve determined by C'

o Ifvalz, > —3, then the valuation of z; =t 2 —tz; is —2 since all exponent of
t in tz; are bigger then —2. Hence these points map precisely to the bottom

edge of the tropical curve determined by C'.

o Ifvalz; < —2 and val 2, < —3, then the equation t?z; + 32 = 1 shows that
the leading terms of t?z; and t3z, must have the same valuation, i.e. that
val z; = val zo + 1. This leads to the upper right edge of the tropical curve
determined by C.

So we can get the same graph by this definition.

Let C' C K? be a plane algebraic curve given by the polynomial equation

C = {(21,22> € K?| f(21,22) = Z a2z = }

1,jEN

for some a;; € K of which only finitely many are nonzero. Note that the valuation

of a summand of f(z1, 22) is

val(a;;2i23) = vala;; + ival 21 + jval z,.



Now if (21, 22) is a point of C' then all these summands add up to zero. In particular,
the lowest valuation of these summands must occur at least twice since otherwise
the corresponding terms in the sum could not cancel. For the corresponding point
(x1,x2) = Val(z1, 22) = (—val 21, —val z5) of the tropical curve, this obviously means

that in the expression
g(w1,2) := max{iz; + jry — vala;;| (i, ) € N* with a;; # 0} (2.1)

the maximum is taken on at least twice. It follows that the tropical curve determined
by C' is contained in the “corner locus” of this convex piecewise linear function g,

i.e. in the locus where ¢ is not diffrentiable.

Theorem 2.2.8 (Kapranov). The closure of the amoeba A C R? coincides with

the corner locus of the convex piecewise linear function g.

Remark 2.2.9. Kapranov’s theorem shows that the tropical curve determined by

C' is precisely the corner locus of g.

Figure 2.3: A tropical curve as the corner locus of a convex piecewise linear function



Example 2.2.10. Let us consider the curve C' = {z € K?|t?z + t32, — 1 = 0}

again. The corresponding convex piecewise linear function is
g(x1,z9) = max{x, — 2,29 — 3,0}

Figure 2.3 shows that the relation between tropical curve and the convex piecewise

linear function g.

Now, with the two tropical operations defined in Section 2.1, we can rewrite g
as

g(x1,29) = (=2) Oz B (=3) ©x2 B0

which is of the form of tropical polynomials.

So we can also rewrite our convex piecewise linear function (2.1) above as

g(x1,29) = EB (=vala;) @ 22 © 257
ijEN

Therefore, we can give an alternative definition of plane tropical curves that

does not involve the somewhat complicated field of Puiseux series any more:
Definition 2.2.11. A plane tropical curve is a subset of R? that is the corner locus
of a rational tropical polynomial.

From examples above, we may observe a simple proposition:

Proposition 2.2.12. Suppose
9(1‘17552) :CL@x@b@y@oa

where a,b € Q, and let I" be the corner locus of g. Then the coordinate of the
vertex of I' is (—a, —b).
Remark 2.2.13. Let g(z1,x9) = @ a; © 27" © xy) = max{iz, +jretay | (i,7) €

ijeN
N? a;; € Q}. Each term of g(wy, z5) corresponds to a plane g(zy, z9) = iz + jy+a;;.



Y Tty

Figure 2.4: The correspondence between coefficients and planes

Example 2.2.14. There is a special case of plane tropical curves. If the tropical
polynomial ¢ is the maximum of linear functions without constant terms, i.e.
al? i i ,
g(xq, xa) @3:@1 292 —max{ag)xl—i—ag)xﬂz:1,...,n} (2.2)
(OO

for some o = (a\”,ay’) € N?, then, since for each 4,5 = 1,...,n,i # j,

(4) (%) ()

az1 + alay = a2y + a¥ 1,

is a line passing through the origin, the corner locus of g is a cone.

We have seen that a tropical curve is a graph in R? whose edges are line seg-
ments. Let us consider I' locally around a vertex V. € I'. For simplicity we shift
coordinates so that V is the origin in R? and thus I' becomes a cone locally around

V. Then I is locally the corner locus of a tropical polynomial of the form (2.2)
Example 2.2.15. For convenient, we consider the tropical polynomial
g(x1,x9) = max{2z + 3y, 4z + vy, 3z, x, 2y, 2x + y }.
to be an example, and let
aV = (2,3),a? = (4,1),a® = (3,0),a® = (1,0),a® = (0,2),a® = (2,1).

Let A be the convex hull of the points a®” and T' be the tropical curve of g. We

may discover that a(® is irrelevant for the tropical curve T', since

10
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Figure 2.5: A local picture of a tropical curve

o for z; > 0, we have agz)xl + af)a:g =41 + a9 > 221 + 29 = agﬁ)xl + a§6)a:2;

o for x9 > 0, we have agl)xl + agl)xg =2x1 +3x9 > 221 + 20 = a§6)x1 + agi):rg;

o for 1 <0, x5 <0, we have aYL)xl + agl)xg =T > 201 + 29 = a§6)x1 + a(26)m2.

Hence g and I" remains the same if we drop this term.

In fact, it is impossible for any point a” which is not a vertex of A that the
expression agi)wl + aéi)xg is strictly bigger than all the other agj Vo) + a(zj )25 for some

X1,Te € R.

It is now easy to see that the corner locus of g consists precisely of those points

where
g(x1,x0) = a(li)xl + aéi)xg = agj)xl + a;‘j)xQ

for two adjacent vertices a and a¥) of A. For instance, if g(z1, ;) = agl)xl +
agl)xg = a§2)a:1 + af)mg for some x1, x5 € R, then we have 1 = x5, 27 > 0,29 > 0,
i.e. the half-ray starting from the origin and pointing in the direction (1, 1), which
is the outward normal of the edge joining a™) and a'®. By the same way, we will
get the other four half-rays shown in Figure 2.5 on the right. The tropical curve I'

is simply the union of all these half-rays around V.

Remark 2.2.16. In particular, all edges of I' have rational slopes, since each a(®

is in N2,

11



There is one more important condition on the edges of I' around V', which is

called the balancing condition.

If M, ..., a™ are the vertices of A in clockwise direction, then an outward
normal vector of the edge joining a” and a1 (where we set ™V = ¢ is
@ = (ag) — aé”l), agiﬂ) — agi)) fori=1,...,n. In particular, it follows that

> i =o. (2.3)
=1

Let u' be the primitive integral vector in the direction of v and w® € Ny such
that v@ = w® - 4@, We call w? the weight of the corresponding edge of I'. Thus,

we may consider I" to be a weighted graph and rewrite (2.3) as

S w® -l = o, (2.4)
=1

which states that the weighted sum of the primitive integral vectors of the edges

around every vertex of I" is 0.

Example 2.2.17. Let us continue the Example 2.2.15. The edges of I' pointing

upper-right and pointing down have weight 2 (since v = (2,2) = 2-(1,1) and

v®) = (0,-2) = 2-(0,-1)), whereas all other edges have weight 1. Then the
g g

balancing condition around the vertex V' reads
2- (L, )+ (1L, -1)+2-(0,—-1)+(—=2,—1)+ (—=1,2) = (0,0)
in this example.

Remark 2.2.18. In this thesis, we will usually label the edges with their corre-

sponding weights unless these weights are 1.

Definition 2.2.19. The (toric) degree of a plane tropical curve I is a collection D
of integral vectors such that: a positive multiple of an integral vector u € D if and
only if there exists an end (i.e. an unbounded edge) of T" which is in the direction
of u. In such case, we include mu into D, where m is the sum of multiplicities of

all such ends.

12



Example 2.2.20. Again in the Example 2.2.15, the degree of the plane tropical
curve I' is {2(1,1), (1,—-1),2(0,—-1),(-2,—-1),(—1,2)}.

Definition 2.2.21. If the degree of a plane tropical curve I is {(—d, 0), (0, —d), (d, d)},

then I' is called a plane tropical curve of degree d.

Definition 2.2.22. A plane tropical curve of degree d is a weighted graph I' in R?
such that

(a) every (bounded) edge of I is a line segment with rational slope;

(b) T has d ends each in the direction (—1,0), (0,—1),(1,1) (where an end of weight

w counts w times);

(c) at every vertex V of I' the balancing condition holds: the weighted sum of the

primitive integral vectors of the edges around V is zero.

Remark 2.2.23. Strictly speaking, we have only explained above why a plane
tropical curve in the sense of Definition 2.2.11 gives rise to a curve in the sense
of Definition 2.2.22. One can show that the converse holds as well; according to

Andreas Gathmann [1], a proof can be found in [3] or [7] chapter 5.
Remark 2.2.24. With this definition it has now become a combinatorial problem

to find all types of plane tropical curves of a given degree.

In fact, the construction given in Example 2.2.15 globalizes well. Assume that

' is the tropical curve given as the corner locus of the tropical polynomial
_ (i) (i) (i), _
g(x1,x0) = max{a; &1 + ay’x2+ 0" |i=1,...,n}

If ¢ is the tropicalization of a polynomial of degree d, then the a'? are all integer
points in the triangle Ay = {(a1,a2) € N?|a; + as < d}. Consider two terms
i,j €{1,...,n} with a®” # a9 If there is a point (z,x5) € R? such that

g(x1,29) = agi)xl + agi)m + ) = agj)xl + aéj)xg + V),

13



then we draw a straight line in A, through the points a'” and a). In this way,
we obtain a subdivision of A; whose edges correspond to the edges of I' and whose

2-dimensional cells correspond to the vertices of I'.

Figure 2.6: Tropical lines are “dual” to A,

Definition 2.2.25. The subdivision obtained by the construction above is usually

called Newton subdivision corresponding to I'.

Definition 2.2.26. A plane tropical curve is called smooth if it is of degree d and

1
its Newton subdivision is maximal (i.e. consists of d* triangles of area 3 each).

Example 2.2.27. Figure 2.7 shows all types of smooth plane tropical curves of
degree two.

SN
v F T

Figure 2.7: The four types of (smooth) tropical plane conic
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Although it is a quite convenient way to draw a tropical curve by drawing its
Newton subdivision first, there still have some problems. For example, not every

subdivision gives rise to a type of tropical curves.

Example 2.2.28. Here is an example of subdivisions that is not induced by a

tropical curve. In Figure 2.8 on the left, we see that the edge E; should meet E5 at

Figure 2.8: A subdivision that is not induced by a tropical curve

the vertex V', which is impossible (see Figure 2.8 on the right), since E; is parallel
to Eg.

Definition 2.2.29. A subdivision that corresponds to a tropical curve is usually

called a reqular polyhedral subdivision.

Proposition 2.2.30. If a Newton subdivision is maximal, then it must be a regular

polyhedral subdivision.

2.3 Tropical factorization

Definition 2.3.1. Let g be a tropical polynomial. If a tropical curve I' is a corner

locus of g, then we say that I' is a tropical curve of g, and denote it by T (g).

Theorem 2.3.2. Let g1, go be two tropical polynomials. We have

T(91© g2) = T(92) UT(g2).

15



i.e. The tropical curve of g ® go is exactly the union of the tropical curves of ¢;
and go. In particular, the union of two plane tropical curves of degree d; and ds is

always a plane tropical curve of degree d; + ds

Example 2.3.3. Let g1(z,y) = (—3)0z@(—1)Oy®0 and gs(z,y) = 102G10y$0.
We have

g1(2,y) © ga2(z,y) = (-2) 02 B (z 0y Dy BlOre10YS0.

In Figure 2.9, we see that T (g1 ® ¢2) is indeed the union of 7 (g1) and T (g2).

(_1:_1)

Figure 2.9: T(g1 © g2) = T (g1) U T (g2)

Corollary 2.3.4. Let I' be a tropical curve of degree > 2. If T" is an union of two
tropical curves I'1 and I'y of degree lower than I', then there exists two tropical
polynomials ¢; and g with I'y = T (g;) and I's = T (g2), resp, such that I' =
T(91© 92)

Example 2.3.5. Let g(z,y) = x ® y & 0. We now consider the tropical square of
this polynomial
g(z,y) O g(r,y) = 1P @ (20y) OYPOr Y0
= max{2z,z +y,2y,z,y,0},

then the tropical curve determined by this polynomial is still the same as g (but

with weight 2). But as piecewise linear maps the function g(z,y) ® g(x,y) is the

16



salne as

max{2z,2y,0} = 2* @ y** @0,
and this tropical polynomial cannot be written as a product of two linear tropical
polynomials.
From Example 2.3.5, we know that the reducibility of tropical polynomials (of
degree 2) and of plane tropical curves may not be the same.
Definition 2.3.6. Two tropical polynomials are said to be equivalent(~) if their

tropical curves are the same.

It is easy to see that this equivalence is an equivalence relation. Hence we may
define the equivalence class of a tropical polynomial g with respect to ~, and denote

it by 7.

Now, we may introduce the definition of maximal coefficients of a tropical poly-

nomial.

Definition 2.3.7. A coefficient a;; of a tropical polynomial g(z,y) is a maximal
coefficient if for any b € Q with b > a;;, the tropical polynomial h(x,y) formed by

replacing a;; with b is not equivalent to g(z,y).

Definition 2.3.8. A tropical polynomial is said to be mazimally represented if all

its coeflicients are maximal coefficients.

Remark 2.3.9. If g(z,y) is a tropical polynomial that 7 (g) is smooth, then g must

be maximally represented.

For any tropical polynomial g(x,y), the maximally represented polynomial of g

may be unique, but not for the equivalence class g, see the following example.

Example 2.3.10. Let us consider the following three polynomials:

gi(z,y)=102010ya0,

17



G(z,y) =602B60 YD 5,
and
g(2,y)=102010 (z0y) & .

In Figure 2.10, we see that g1, 9> and g3 are not the same piecewise linear func-
tions, but with the same corner locus. Since tropical lines are smooth, these three

polynomials are all the maximally represented polynomials.

Figure 2.10:

Although the maximally represented polynomials of g are not unique, we dis-

cover the relation between them,

g2(z,y) = 5O g1z, y)

and
g3(z,y) =2 O g1, y),

which would lead us to the following proposition.

Proposition 2.3.11. Let g(z,y) be a tropical polynomial. Then we have
T(9)=T(ge (a0 ©y™))

where a € Q,b,c € N.

With Proposition 2.3.11, we have the “uniqueness” of the maximally represented

polynomial of g.

18



Chapter 3

Recovering Tropical Polynomials from Trop-

ical curves

In this chapter, we will introduce algorithms to recover the tropical polynomial

from a given tropical curve.

3.1 Tropical curves of degree two

Theorem 3.1.1. Let I' be a smooth plane tropical curve of degree two. Then I"

can be represented as a corner locus of the tropical polynomial which is a product

of two linear tropical polynomials plus a certain tropical polynomial.

Before the proof of Theorem 3.1.1, We first consider a tropical curve I' locally
around a vertex V € I' in the following two cases.

Example 3.1.2. For convenience, we let g(z,y) = (=5) @z @& (—4) @y ® 0. If we

add the coefficient of the constant term by —2, then we have

hz,y) = (=5)0xd(—4)0yd(-2)
= (—2) ® ((—3) OxdD (—2) ©Oyd 0)

~ (=3)0ra(-2)0ys0,

19



r/ |Rr,

Figure 3.1: The tropical line shift to right by 2

which means that the tropical line at (5,4) shift to the tropical line at (3, 2).

From the construction of Newton subdivisions in Section 2.2, we know the ray

R; shown in Figure 3.1 is determined by g(z,y) = 2 — 5 = 0, where

gxy)=2-5=0 & max{z —5y—40=0-5=0
&S y—4<z-5=0

& =95, y<4

If we add the coefficient of constant term by —2, then the ray R; moves to R} =
{(z,y) € R? | h(z,y) = x — 5 = —2}, where

h(z,y)=x—-5=-2 < max{z —-5,y—4,-2}=x—-5= -2
& y—4<r—-5=-2

S =3, y<2

There are similar results of Ry and Rz, which move to R}, and Rj, respectly.

Example 3.1.3. Let g(z,y) = (r©y) @z d y & 0. The corresponding tropical

curve is in Figure 3.2.

Since a tropical curve T (g), for g(z,y) = max{a\"z + a{’y + @ |i =1,... ,n},

is the union of all these rays

{(z,9) e R? | g(z,y) = oz + oYy + b = Pz + Py + b9}

20



R,

I

R 0.0[

Figure 3.2: The tropical curve of g(z,y) = (z Qy)@x By B0

where 7,7 = 1,...,n, i # j. In this example, the rays is determined by these four
planes: z =0, z =z, 2=y, and z = z+y. So if we add a negative number, e.g. —2,
to the coefficient of constant term of g, we will have a similar result in Example 3.1.2
that the rays R; and Ry move to R and R}, respectly. Furthermore, we have a new
edge FE; determined by h(x,y) = © =y, where hy(z,y) = (x Oy) Dax Dy d (—2).
Explicitly,

hMz,y)=rz=y & max{z+yz,y 2t=c=y
& etyszr=y, —2<r=y

&S r=y, —2<uz,y <0,
which implies the line segment £ shown in Figure 3.3 on the left.
Now if we add a positive number, e.g. 3, to the coefficient of constant term of

g, then we will have the result shown in Figure 3.3 on the right. The edge F, is
determined by hs(x,y) = x+y = 3, where hy(x,y) := (xOy) Drdy P 3. Explicitly,

ho(z,y)=2+y=3 & max{zx+y,z,y,3} =x+y=3
S r<rt+y=3,y<z+y=3
S r4+y=3 02,y <3,
which implies the line segment FEj.

Remark 3.1.4. One may observe that the “weight” of F; is just the added number
| — 2| = 2, where (0,0) — (—2,—-2) = (2,2) = 2(1,1). And the “weight” of E is just
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(0,0)

Ry

Figure 3.3: The effect of adding numbers to the coefficient of constant term

the number 3, where (3,0) —(0,3) = (3, —3) = 3(1,—1).

In Example 3.1.3, we show the effect on tropical curves that tuning a coefficient
of the corresponding tropical polynomials.

Let us beginning the proof of Theorem 3.1.1.
Proof of Theorem 3.1.1. Since there are just four types of smooth plane tropical
curves of degree two, we will prove this theorem by cases.

case 1.

Vs

Figure 3.4:

Let V; = (vf), véi)), 1=1,2,3,4, and g be the corresponding tropical polynomial
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of this tropical curve. In this case, we may observe that the local graphs around
Vi, V3, and Vj are locally tropical lines. If we “push” the vertex Vj to V5 (which
actually means that adding a positive number to the coefficient of the 2®*-term of
g so that such tropical line would shift to V3), the resulting curve would become an

union of two tropical lines, i.e. the tropical line at V; and the tropical line at V3.

The number we should add to z®*-term of g is ¢; = 1154) — 052) in this case,

so that the vertex V; would move to V5, and the curve becomes the union of two

tropical lines.

Figure 3.5:

Conversely, if we substrct the 2”-term of the tropical polynomial of this union
by ¢, then we will get the polynomial that corresponds to the original tropical

curve. The polynomial of this union is

G(z,y) = (—vf)ozr® (-v <”>@yeao>@<< vi”)@x@( v oy @)
= (o) @ (=) @22 @ ((—v§") © (—v{”)) @ (z O y)
(o) o (—vP) oy @ (- “)@x@( w)oyeo.

Next, we do the substraction to the z®%-term by adding the number to the other
terms. For example, if we want to substract the z-term of 3 x &4 © y H 0 by 2,
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then due to the equivalence ~, we may write the substraction as
Bordd0yd0)d(60yd2) = 302660y d2
= 2010z040yd0)
~ 1010460y ®0.

By this way, we add the coefficients of all the other terms but #*-term by ¢,
then we have
g(r.y) = Gr.y) & (-u”)o(-v?)oe)o (@oy)
(~) o (-i)) o o) 0y

case 2.

Figure 3.6:

Let V; = (v1 ,vél)) 1=1,2,3,4, and g be the corresponding tropical polynomial
of this tropical curve. In this case, we may observe that the local graphs around V;
and Vj are locally tropical lines. From our experience, if we add ¢, = U§3) vf) to
the coefficient of 2®%-term of
Glz.y) = () ore(- <U@y@on>«z$b@x@< ) ©y®0)
= () o (") o e (-n) o (") o (@ oy)
<a&¢b@vé%mW@@v%h@x@<<%@y@o

24



then we will get the polynomial corresponding to the original tropical curve, i.e

g(z,y) = h(z,y) ® (—{") @ (o) © ) © 2°2).

case 3.
Vs
Y Vi
Vi
Figure 3.7:
Let V; = (vl ,vél)) 1=1,2,3,4, and g be the corresponding tropical polynomial

of this tropical curve.
This case is similar to case 2. We first compute the polynomial of the union of

the tropical curve at V4 and the tropical curve at Vj,
vé”)@y@@)@« vi‘”)@x@( ) Oy ®0)
o) e @oy)
Eb@x@nﬂéUQy@o

G(z,y) = ((—vf"

Noza (-
= (—u)o

(—o{")) @22 @ ((—v
—us") 0y @ (~v

Second, we add c3 = v§3) ( ) to the coefficient of the y“%-term of G(z,y), then
we will have the desired polynomial
=Glz.y) @ (-1) © (-}") O &) 0 y2).

9(x,y)

case 4.
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Figure 3.8:

Let V; = (vl ,vél)) i1 =1,2,3,4, and g be the corresponding tropical polynomial

of this tropical curve.

This case is also similar to case 2. We first compute the polynomial of the union

of the tropical curve at V; and the tropical curve at V,

G(z,y) = (i) oze(-u)yoye0) o (- vi‘*)@x@( oy o)
= ((—o) @ (=) @22 @ ((—v{") © (—u5")) @ (z O y)
((—vi) o (<) 0y @ (—of' >>@x@< wWyeyeo.

Second, we add ¢4 = UF’) X vﬁz) to the coefficient of the constant term of G(z,vy),

then we will have the desired polynomial

g(m,y) = G(!E,y) D cy.

By these four cases, the proof is completed.
]

Algorithm 3.1.5. Here we give an algorithm to recover the polynomial of a given

smooth plane tropical curve of degree two.

Now, given a smooth plane tropical curve of degree two, denoted by I.
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1. Choose two vertices V; and V5 of I' that are locally tropical lines, and let V;

and V be the last two vertices.

2. Compute the product of the polynomials of these two tropical lines, and denote

it by G(z,y).

3. Let V5 be the intersection point of these two tropical lines. Let v; be the
vector from V5 to V3, and vy be the vector from V5 to V4. Then we compute

the vector v = vy + va.

4. Write v = w - u, where u = (uy,us) is a primitive integral vector, and w is

11
a positive rational weight. For example, (—=2,0) = 2-(—1,0) and (=, =) =

X 272
3 (1,1).
5. (1) If v = (—1,—1), then we substract the coefficient of constant term of

G(z,y) by w;

(2) if v = (1,1), then we add the coefficient of constant term of G(z,y) by w;

(3) if v = (—1,0), then we add the coefficient of °*-term of G(x,y) by w;

(4) if v = (1,0), then we substract the coefficient of z®%term of G(z,y) by
w;

(5) if v = (0, ~1), then we add the coefficient of y“*-term of G(z,y) by w;

(6) if v = (0,1), then we substract the coefficient of y®*-term of G(z,y) by
wy
After these five steps, we will get the desired polynomial corresponding to I'.

Example 3.1.6. Given a plane tropical curve of degree 2 as in Figure 3.9.

With some observations, we may discover that the graphs locally around (1, 1),
(2,5), and (4,2) are tropical lines. Then we first compute the polynomial of the
union of the tropical line at (1,1) and the tropical line at (2,5), i.e.

hz,y) = (-)ozad(-1)oyd0)0((-2)0zd (=5)0ya0)
= (-3) 0z (-3)0z0yd (-6) 0y e (-1)eza(-1)Oyd0.
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Figure 3.9: An example of smooth plane tropical curves of degree 2

Next, the vector stated in Algorithm 3.1.5 is

So, by Algorithm 3.1.5, we substract the coefficient of z®*term of h(z,y) by 2.

Thus, the desired polynomial is
(=5) 022 @ (=3)0ryd(—6) 0y’ @ (-1)0z® (-1) Oy ®0

Example 3.1.7. Given a plane tropical curve of degree 2 as in Figure 3.10.

Figure 3.10: An example of smooth plane tropical curves of degree 2

By the similar way in Example 3.1.6, we first compute the polynomial of the
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union of the tropical line at (—4, —4) and the tropical line at (12,4), i.e.

hMz,y) = Aozdd0yd0)o((-12)0xd (—4)0y®0)
= (801”0 r0yey?e40r040y00.

Figure 3.11: The union of T4z &40y & 0) and 7((—12) 0z & (—4) ©y # 0)

Next, the vector stated in Algorithm 3.1.5 is

So, by Algorithm 3.1.5, we add the coefficient of y®*-term of h(z,y) by 4. Thus,

the desired polynomial is

(-8)0rP?0roydd40y? 0402040y a0.

3.2 Tropical curves of degree three

Definition 3.2.1. A maximal Newton subdivision of degree three is said to be

normal if it is not one of the types shown in Figure 3.12.

Proposition 3.2.2. Let A be a Newton subdivision of degree three which is max-
imal. If A is normal, then there must be a maximal Newton subdivision of degree

two as a subgraph of A.
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Figure 3.12: The special four types

Proof. There are only the four types of Newton subdivisions shown in Figure 3.12
that does not have a maximal subdivision of degree two as a subgraph, we may

check in Appendix A for all types of maximal subdivisions of degree three.

]

Theorem 3.2.3. Let I be a smooth plane tropical curve of degree three. Then I'
can be represented as a corner locus of the tropical polynomial which is a product

of three linear tropical polynomials plus a certain tropical polynomial.

We leave the proof to the end of Section 4.2.

Algorithm 3.2.4. Here we give an algorithm to recover the polynomial of a given

smooth plane tropical curve of degree three.

Now, given a smooth plane tropical curve of degree three, denoted by I'. Let A

be the Newton subdivision corresponding to I'.

case 1. A is normal.

1. Up to isomorphic, we may just consider the six types shown in Figure 3.13.

2. Let Ay be the subdivision of degree two which is a subgraph of A. Let A; be
a subdivision of degree one which is also a subgraph of A but not a subgraph
of Ay. Let I'y and I's be the local graph of I' corresponding to A; and As,
respectly.

3. Compute the corresponding polynomials of I'; and I'y, and then compute their

product, we denote the product by G(x,y).
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A, A, A,

vi/ W
Vs Vs
- ‘/2 - ‘/2 -
V1| V1|
Figure 3.13:

4. Let V; = (0! i), i =1,2,3,4.

(1) For the first type in Figure 3.13, let ¢; = U§2)—v§1), and ¢y = U§4)—v§3). We
add the coefficient of the y®*-term of G(z,y) by c1, and add the coefficient
of the y®*-term of G(x,y) by ¢ — cs.

(2) For the second type, let ¢; = 7152) — vél), and ¢y = vgl) — U§3). We add the
coefficient of the y®*-term of G(z,y) by c¢;, and add the coefficient of the
y“3-term of G(z,y) by ¢ + .

(3) For the third type, let ¢; = 1152) - Uél), and ¢y = 054) — véz). We add the
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coefficient of the y®*-term of G(z,y) by ¢, and add the coefficient of the
y“3-term of G(z,y) by ¢ + .

(4) For the forth type, let ¢; = v§2) — vél), and ¢y = '054) — v§3). We add the
coefficient of the constant term of G(z,y) by ¢i, and add the coefficient
of the y™*-term of G(z,y) by c.

(5) For the fifth type, let ¢; = v§2) —vél), and ¢y = v§4) —vé?’). We substract the
coefficient of the constant term of G(z,y) by ¢;, and add the coefficient
of the y™*-term of G(x,y) by c.

(6) For the sixth type, let ¢; = v§2) - vél), and ¢, = vV — vég). We substract
the coefficient of the constant term of G(z,y) by ¢, and substract the
coefficient of the y®*-term of G(z,y) by co.

After these steps, we will get the desired polynomial corresponding to I'.
case 2. A is not normal.

1. Up to isomorphic, we may just consider the two types shown in Figure 3.14.

Figure 3.14:
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2. For the first type in Figure 3.14,

(1) we observe that the graphs locally around V;, V5, and V3 are tropical lines.
Let I'y, I's, and I's be the tropical lines whose vertices are at Vi, V5, and
V3, respectly.

(2) Find out the tropical polynomials of I'y, 'y, and I's. Then, compute their
product, and denote it by G(z,vy).

(3) Let ¢; = véQ) - v§4), o =l - véQ) — o 4 vég), and c3 = ¢1 + ¢ +
%(véﬂ + vég)) — v§5). Next, we add the coefficients of the y®*-term, the
r ® y®*term, and the y®*-term of G(z,y) by c1, ¢z, and c3, respectly.

And the resulting polynomial is the desired tropical polynomial.

3. For the second type in Figure 3.14,

1
(1) let wy = v§5) —vé ) wy = v§7) véﬁ), and ws = vgs) —’UQ . Let g = 2(w1 +

1
—(w1 +w2+w3)—w3, and C3 = 5(11)1"‘11)2 ‘|—’UJ3)—U)1.

Z
(2) Let V = (0 +ci,0fY), Vs = (0 =2, v =), and Vy = (07,05 +-¢3).

Wy +w3) — wa, 3 =

Let g1, g2, and g3 be the tropical polynomials corresponding to the tropical
lines at V}, V5, and V5.

(3) Compute G(z,y) = g1(2,y) © g2(2,y) © gs(, y).
(4) We add the coefficients of the z-term, the y®*-term, and the > ® y-term
of G(z,y) by c1, ca, and ¢z, respectly. And the resulting polynomial is the

desired tropical polynomial.
Example 3.2.5. Let us consider the curve in Figure 3.15:

We see in Figure 3.16 that the corresponding subdivision is normal and is the
forth type in Figure 3.13, so we compute the polynomials of I'; and I'y, and denote

them by g1 and go, respectly. Next, we compute G(z,vy) = g1(z,y) © go(z,y).

Since I'y is a tropical line at (—2,—2), we have

g(z,y) =202620y®0.
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Figure 3.15:

Figure 3.16:

By Algorithm 3.1.5, we have

7
pry) =(-5) 0P e (B)oroys(-)oy”e (- oreysl.

Next, we have the product

G(r,y) = g1(r,y) © g2(7,y)

3
= (jloxPe(-)erPoye(-)oroy” e (-2)0y”
Pl 02020y020y? 202020y ®0.

Let ¢ =1—-0=1and cg =4—3 = 1. So we add the coefficients of constant

term and the y®3-term of G (x,y) by ¢; and ¢z, respectly. Thus, we have the desired
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polynomial

3
(—iﬂaﬁﬁ@(—Ucm@%ay@@4)®x®y”eﬂ—ncnﬁ3

310202020y 209y?@20s420y P 1.
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Chapter 4

Recovering Tropical Polynomials from New-

ton Subdivisions

4.1 Newton subdivisions of degree two

Lemma 4.1.1. Each (maximal) Newton subdivision of degree two has two subdi-

visions of degree one as subgraphs.

~7 N ' N

type 1 type 2 type 3 type 4

Figure 4.1: Four type of Newton subdivision of degree two

Theorem 4.1.2. For a Newton subdivision of degree two, there is a tropical poly-
nomial corresponding to this subdivision, obtained by replacing a coefficient of a

product of two tropical linear polynomials with a suitable number.

Proof. For a maximal Newton subdivision of degree two, by Proposition 2.2.30,
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there is a tropical curve corresponding to this subdivision. Thus, by Theorem 3.1.1,
there is a polynomial obtained by replacing a coefficient of a product of two tropical

linear polynomials with a suitable number. [

Example 4.1.3. Let us consider the Newton subdivision of type 4 shown in Fig-

ure 4.1.

Vi

Figure 4.2: Type 4 of the Newton subdivision of degree two

In Figure 4.2, we see that the 1-cell V; is at the upper right of V5, since the
corresponding vertex of V] is at the upper right of the corresponding vertex of V5.
If the corresponding vertex of Vj is at (ay, as), and the corresponding vertex of V5
is at (b1, by), we have a3 > by, ag > by, and as — a; > by — by. So we may suppose
(a1,a2) = (4,7) and (by,b2) = (0,0) for example. The product of these tropical

linear polynomials is
() eza(-Toyd0)o(zeya0)

=(-4) 01" (-4 0z0yd (-0 ydzoyd0.

In Figure 4.3, the edge FE is incident to the vertices corresponding to y-term
and 2z-term, which means that E is determined by the coefficients of y-term and
2z-term. So we replace the coefficient of y, for instance, with 3. The resulting

polynomial is
(—-4) 0z (-4)0z0yd (-1 0y 02030y ®0,
which is an example of tropical polynomials corresponding to Newton subdivisions

of type 4.
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Figure 4.3: The edge E is determined by y-term and 2z-term

4.2 Newton subdivisions of degree three

Theorem 4.2.1. For a normal subdivision A, there exist three tropical polynomials
g1(z,y), g2(x,y), and h(z,y), where g; corresponds to a subdivision of degree one,
and g corresponds to a maximal subdivision of degree two that is a subgraph of

A, such that gi(z,y) ® go(z,y) & h(z,y) corresponds to A.

Proof. By Proposition 3.2.2, each normal subdivision has a maximal subdivision
of degree two as a subgraph, so up to isomorphic, we have six types shown in

Figure 4.4, where A, is a maximal subdivision of degree two.

We see in Figure 4.4 that these six types can be obtained from the following

two subdivisions shown in Figure 4.5.
case 1. Let us start from the subdivision in Figure 4.5 on the left.
Let g1 and g5 be the corresponding tropical polynomials of A; and As, respectly.

In Figure 4.6, we see that if we add a suitable number ¢; to the coefficient of
y“%term of the tropical polynomial Gy(x,y) := g1(z,y) ® ga(x,y), then we get a
polynomial G5 which corresponds to the second case in Figure 4.6, where Go(x,y) :=

G1(z,y) @ hi(z,y), and hy(z,y) is the tropical polynomial obtained by adding ¢;
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A,

Figure 4.4: Six types of maximal subdivisions of degree three

Figure 4.5:

to the coefficient of y®*-term of G;. In the same way, if we add a siutable number
co to the y®3-term of G, then we will have a polynomial G5 which corresponds to
the third case in Figure 4.6, where G3(z,y) := Ga(x,y) ® hao(z,y), and hy(z,y) is
the tropical polynomial obtained by adding ¢, to the coefficient of y®3-term of Gs.
On the other hand, if we add a siutable number ¢3 (which is larger than ¢;) to the
y@3-term of G, then we will have a polynomial G4 which corresponds to the forth
case in Figure 4.6, where G4(z,y) := Ga(z,y) ® hs(x,y), and hs(x,y) is the tropical
polynomial obtained by adding ¢; to the coefficient of y©3-term of Gs.

In detail, suppose

gy =a10rPayd0
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Figure 4.6: The local graph of the corresponding subdivisions

and
0(1,9) = 017 @by by eb Or® b ®y 0.
Then we have
Gi(z,y) = qi(z,y) © ga(z,y)
= (10b0) 02 (a10bDa; ®b) Oz Oy

®lay, ©bs ®ag ®by) © O Y% D (ay © bs) © Yy
Dlar O by ®by) @2 @ (a1 O bs B az ©byDby) Gz Oy
Dlaz © by B b3) O y** @ (a1 D bs) ©z B (as D bs) Oy & 0.

Choose 0 < ¢; < ay — bs, and let hy(2,y) = ((aa ® bs ® bs) ® ¢;) © y©2. Then we
have
Ga(z,y) = Gi(z,y) ® h(z,y)
= (Oh)OzP B (a1 Obdadbh) s oy
Dla1 © b3 B az © by) © © y*? @ (az © bg) © y*
@(a1®b4@b1)®$®2@(a1®bs@a2®b4@52)®m@y
B((aa O bs B b3) ©c1) OY? @ (a1 Dby) O D (a2 B bs) ©y B 0.
Let Hi(z,y) = hi(z,y), then we have Go(z,y) = G1(z,y) ® Hi(x,y).

Next, choose ¢; < ¢y < ¢1 + 2b5 — bs. Let

ha(x,y) = ((a2 ® bs) © ) © y=°.
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Then we have

Gs(z,y) = Ga(z,y) ® ha(z,y)
= Gi(z,y) ® hi(z,y) ® ho(z,y)
= (01 0b) 02D (a1 ObBaOb)Or Oy
Bla1 O by ®as O bs) OOy @ ((as ® bs) © ) @ y™*
Bl O by Bb) O B (a1 ObsBazObi®B b)) OOy
(a3 O bs Dbs) ®c1) Oy B (a1 D by) @D (a3 B bs) Oy D 0.
Let Hy(x,y) = hi(z,y) ® he(z,y), then we have G3(x,y) = G1(z,y) & Ha(x,y).

Again, we choose ¢; + 2bs — b3 < ¢35 < 2¢; + 2bs — bs, and let

ha(z,y) = ((az © b) © c3) © y*.
Then we have

Ga(z,y) = Galz,y) ® hs(z,y)
= Gi(z,y) ® h(z,y) ® hs(z,y)
= (10bh)O02®B(a10b®adb) 0y
Ba1 @ by B as © by) ©2 O y** & ((az © by) @ ¢3) @ y*
B(a Ob b)) Q@ (a1 Obs B ay O by D) Oz Oy
B((aa Obs B b3) ©c1) Oy> ® (a1 B by) @z P (a3 ® bs) Oy ® 0.
Let Hz(z,y) = hi(z,y) ® hs(z,y), then we have G4(z,y) = G1(x,y) ® Hz(z,y).

Thus, we complete the proof in this case.
case 2. Now, let us consider the lower three cases in Figure 4.4.

Let g1 and g5 be the corresponding tropical polynomials of A; and As, respectly.
In Figure 4.7, we see that the three cases can be obtained by tuning the coefficients of

constant term and 3y-term of the tropical polynomial G(x,y) := g1(z,y) ® g2(z, ).

Suppose

gzy)=a0rdayd0
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Figure 4.7: The local graph of the corresponding subdivisions

and
@2, Y) =1 022 P OOy bOY P ObOor @b Oy D0,

then we have
Gi(z,y) = gi(z,y) O ga(z,y)
= (m0bh)0rP B (a0bhDaOb) s oy
®(a1 0 by B.ay O by) ©x O Y & (ay © by) © y**
B(a1 Obs®b) O D (), ObsDag @by b)) Ox Oy
Blaa ® bs B b3) O y? D (a1 B by) OB (as ®bs) ©y & 0.

Now, we choose 0 < ¢; < as + b5 — bz and 0 < ¢ < b5 — as. Let hy(x,y) =
((az ® bs) ® ¢1) ® Yy @ c3. Then we have

GZ(xvy) = G1<l’,y)@h1($,y)
= (1Obh) Oz (a0bBaOb) ®rP Oy

Dla1 ©bs B as ©by) ©z O Y @ ((a2 © b3) © 1) © Yy
Dla1 © by D b)) Oz ® (a1 Obs D az @by Dby) OOy
@(a2®b5@b3)®y®2@(al@b4)®x@(ag@b5)®y@02,

which corresponds to the second case in Figure 4.7.
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Next, choose c¢3 > 0 and the same ¢; for convenience. Let

h2(£7 y) =

(a1 ©b1) ©c3) 2P @ (a1 O by B az O by) ©ez) ¥ Oy

(a1 O by B ay O by) ©c3) Oz QY B ((a2 © bs) © 1 @ ¢3) © y©*
(a1 Oby®b) ©c3) 02D (a1 Obs Dag @by Dby) Oc3) Or Oy
B(a2 O bs Db3) ©c3) Oy B ((a1 D by) O c3) O

©((az @ bs) ©¢c3) O .

Then we have

G3($7y>

= Gi(z,y) ® ho(z,y)
= (a100)0x)022 e (a1 ®b®a0b) ) ®r? oy

(a1 O by ® ay @ by) © ¢3) ©2 O Y™ D (a2 © bg) © 1 © ¢3) © Y
(a1 O by ®b) ©c3) O D (g Obs Dag @by Dby) Oc3) O Oy
B(
(

(
(ag ©bs D b3) ©e3) QY D ((a1 B by) O c3) O
B((ag B bs) ®c3) Oy @0,

which corresponds to the third case in Figure 4.7.

Next, for convenience, we choose the same c3, and let

h?)(x? y)

(a1 ©b1) ©c3) @2 @ (a1 O by B ag ® b)) Oe3) O Oy

B((a1 ObsDag O by) ®e3) @ Y@ (a1 © by D by) © c3) © 2
B((a1 Obs B asOby P b)) Dc3) OOy

B((ay ®bs B b3) ®c3) O Y2 @ ((a1 B by) O c3) O

®((az ® bs) ®c3) O .

Then we have

G4(ZE, y)

= Gy(z,y) ® hs(z,y)

= (6100)0c)02”0 (a1 Ob®ay b)) Ocs) @2 Oy
D((a1 Obs B ay O by) O c3) 1 @y @ (ay © bs) @ y™>
B(a10bsDb) ©c3) @D (4 Obs B as O by D by) ©Oc3) O Oy
D((ag ©bs ®b3) ©c3) Oy2 @ (a1 D by) Oc3) O

((

D((ay ® bs) ®c3) ©y @ 0.

which corresponds to the last case in Figure 4.7, and we complete the proof.
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Figure 4.8:

Example 4.2.2. Let us consider the normal subdivision in the left of Figure 4.8.

Use the algorithm in Section 4.1, we may suppose the tropical polynomial of

As to be
(zo(-4)0y00)o(-4deroyod) ol
=(-HozTezoye (-4 oy”erayal,
and the tropical polynomial of Ay to be (=8) ®x @& (—8) ®y ® 0.

Then we have the product of A; and Ay to be

(-12) 02 (-8) 0a¥ oy® (-8) 0z 0 y? @ (—12) © y*?
B(—4) 0rP?Pr0y® (—4) 0y ey 1.

Next, we replace the coefficients of £ and y®* by —11, then we have the desired

polynomial

(-11) 0z @ (-8) 0220y @ (=8) O r Oy @ (~11) @ y©*
B(—4) 0P Pr0y® (—4) 0y croyal.
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Now, let us start the proof of Theorem 3.2.3.

Proof of Theorem 3.2.3. First, we prove the theorem for tropical curves which cor-

respond to normal subdivisions.

In the proof of Theorem 4.2.1, we know that there are six types for normal
subdivisions, up to isomorphic. So we may just prove the theorem for these six

types.

Let us consider the following example first.

5

Figure 4.9:

This curve is of the type shown in Figure 4.10. The right part of this curve is
just a smooth plane tropical curve of degree two, so we can use the algorithm in

Section 3.1 to find out its polynomial.

. .

Figure 4.10:

For the left part of this curve, with a similar way in the proof of Theorem 4.2.1,
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we may first consider the case in Figure 4.11, and find out the polynomial of the
curve shown in Figure 4.12. Next, we add the suitable numbers to the coefficients

of y®*-term and y®*-term. Then we will get the polynomial corresponding to the

L.
A

original curve.

Figure 4.11:

/
7

Figure 4.12:

Let V; = (v}, 0§)), i = 1,...,9. Let gi(z,y) = () @ 2 & (—§”) © y @ 0,
g(z,y) = (o) oz (- “)@yea093<xy>=< Weze () oyeo,

and h(x,y) = ¢o, where ¢y = U%S) — U1 . Then we have the polynomial of the right

part to be
Gi(z,y) = qi(z,y) O gz, y) ® hi(z,y)
= (- ore () oye0) o (—v”)or® (—v))) Oy e 0)
Dcy

= () o (") 01 @ (—v”) @ (—) & (z © y)
(=S @ (=" 0 y? @ (=N ez e (i) 0y & «.
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Let ¢; = vé?’) — v§2) and ¢y = 1155) — 1154). Let

ha(z,y) = (—05”) © (—o3”) @ (—oi) @ (i) @ 1) @ y*2.

Then we have

G2($, y) = Gl(xvy) © 93(x7y) S hQ(w7y)v

which is of the same type of the original curve.

Next, we compare ¢; and c¢,. If ¢; > ¢o, then we add the coefficient of y®3-term
of G5 by ¢; — ¢o; otherwise, we add all terms but y®>-term of G5 by ¢y — ¢1. We let
hs(z,y) to be this coefficient tuning polynomial.

So we have that the polynomial of the original curve can be represented as

Go(z,y) ® hs(z,y)

(Gi(z,y) © g3(z, y) ® ha(2,y)) S hs(z,y)

(91(z,y) © g2(,y) & ha(2,9)) © g3(z,y) ® hao(z,y) & hs(z, y)
g1(x, y) © g2(2,9) © g3(,y)

S(hi(z,y) © g3(z,y) @ ha(z,y) ® ha(x, y))-

By this way, we may have similar results in other cases. We may find out the
polynomials of curves corresponding to A; and A,, and also their product, and
then use the algorithm in the proof of Theorem 4.2.1 to construct the polynomial

of the original curve.

Now, let us consider the last four cases of which subdivision is not normal.

Figure 4.13: The special four types

In Figure 4.13, We see that the first type and the third type are isomorphic,
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while the second type and the forth type are isomorphic. So we may just consider

the first two types.

For the first type, we may observe that it can be obtained from the type shown
in Figure 4.15 by adding a suitable number to the coefficient of the y®*-term. So

this case is done.

/

Figure 4.14: A special type of tropical curve

Figure 4.15:

For the second type, we may observe that it can be obtained from the union
of three tropical lines shown in Figure 4.17 by adding suitable numbers to the

coefficients of z-term, y®*-term, and (2 ® y)-term.

Let the weight of the edges Ei, F,, and E5 to be wy, wy, and w3, respectly.
Suppose we add ¢, ¢y, and c3 to the coefficients of 2, y©2, and (2% © y)-term of the

polynomial of the union shown in Figure 4.17 to obtain the original curve. Then

we have
C1 + Co = Wy,
Cy + C3 = Waq,
c3+c = ws.
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Figure 4.16: A special type of tropical curve

‘/Tz/

A

Figure 4.17: The union of three tropical lines

‘/1/

Thus, we have

( 1
1 = §(w1+w2—|—w3)—w2,

1
Co = §(w1+w2+w3) — ws,
L C3 = §(w1+w2+w3)—w1.

Let V; = (vﬁi),véi)),i =1,2,3. We have

Vll = (,051) + ¢, Uél))v

Vi = (0 —eu? — o),

Vio= (00 + ).

Let g1, g2, and g3 be the tropical polynomials of the tropical lines at V{, V, and
V3, respectly. Suppose

Gi(z,y) = g1(7,y) © g2(2,y) © g3(z, ).
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For convenience, we let

Gir,y) = 102001 0yda0r0y? ® a0y ®as @ 1™
BagOrOYD Oy BasOrBayg Oy d0.

Then we have the polynomial of the original curve to be

Go(r,y) = a1 01 ®(1203) 01 0yPaz 00y @ ay 0y @ as © 1™
PagOrOYD (a0 )0y D (as®c) OB ag®y @ 0.

It may also written as

Go(z,y) = Gi(z,y) © (ha(7,y) © ha(z,y) © hs(7,y)),

where hy(z,y) is the tropical polynomial obtained by adding ¢; to the coefficient
of z-term of Gy; hs(x,y) is the tropical polynomial obtained by adding ¢y to the
coefficient of y®?-term of G1; hs(w,y) is the tropical polynomial obtained by adding
cs to the coefficient of (2% ® y)-term of G.

Therefore, we complete the proof of Theorem 3.2.3. [
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Appendix A

All types of maximal Newton subdivisions

of degree three

Ad e

a4

o1



LERE



S R B B




o4



Bibliography

1]

[7]

8]

Andreas Gathmann. Tropical algebraic geometry. Jahresber. Deutsch. Math.-
Verein., 108(1):3-32, 2006.

Nathan Grigg. Factorization of tropical polynomials in one and several variables.

Honor’s thesis, Brigham Young University, 2007.

Grigory Mikhalkin. Counting curves via lattice paths in polygons. C. R. Math.
Acad. Sci. Paris, 336(8):629-634, 2003.

Grigory Mikhalkin. Enumerative tropical algebraic geometry in R%. J. Amer.

Math. Soc., 18(2):313-377, 2005.

Jirgen Richter-Gebert, Bernd Sturmfels, and Thorsten Theobald. First steps
in tropical geometry. In Idempotent mathematics and mathematical physics,
volume 377 of Contemp. Math., pages 289-317. Amer. Math. Soc., Providence,
RI, 2005.

Imre Simon. Recognizable sets with multiplicities in the tropical semiring. In
Michal Chytil, Ladislav Janiga, and Vaclav Koubek, editors, MFCS, volume 324
of Lecture Notes in Computer Science, pages 107-120. Springer, 1988.

David Speyer. Tropical geometry. PhD thesis, UC Berkeley, 2005.

Yen-Lung Tsai. Working with tropical meromorphic functions of one variable.

Taiwanese J. Math., 16(2):691-712, 2012.

25



