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0 Introduction

How to improve the performance and competitiveness of the company is the critical issue
of Industrial and Organizational Psychology in Taiwan. We try to design an appropriate math-
ematical model of the competitiveness and the performance of the 293 benchmark enterprises
out of 655 companies. Unexpectedly, we discover the correlation of performance and competi-
tiveness is extremely high. Some benchmark enterprises present the following phenomena:

Competitive ability (Force, F'(P (n))) is a cubic function of the performance (P (n)) ; that

is, there exist positive constant performances P; > 0,7 € {0,1} and a constant k so that

k(P (n)— Py)° or
F(P(n))=< kP
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where n is the surveying rod enterprise’s composition department number or the main unit

commanders counts, the performance P (n) of the rod enterprise’s is lager than Py and F is
2

proportional to the second derivative of P with respect to n. For F(P (n)) = MY P et

dn?

u(n) == /£ (P(n)—PR) > 0, & := /2Py then we obtain a stationary one dimensional
semilinear wave equation with initial condition
w’ (n) —u(n)? (u(n) +1u) =0, n > ng,
k (0.1)
u(ng) =ug = i (P (ng) — Py) 20, u (ng)=us.

It is clear that the function u? (u + ) is locally Lipschitz, hence by the standard theory, the
local existence of classical solutions is applicable to equation (0.1). We would use our methods
used in [1-16] to discuss problem (0.1).

In Section 1, we would deal with the estimates for the existence interval of the solutions of
(0.1); in Section 2, with the blow-up rate and blow-up constant; in Section 3, with the global
existence, critical point and the asymptotic behavior; in Section 4, with triviality, stability and
instability.

Notation and Fundamental Lemmas For a given function w in this work, we use the

following abbreviations

Bl

1 2 _
ay (n) =u (”)2 , By (no) = ui — 5“3 - gﬁug, Ju (n) = ay (n)

Definition A function g : R — R with a blow-up rate ¢ means that g exists only in finite

time; that is, there is a finite number T* such that

. -1
Jim g (t) =0 (0.2)

and there exists a non-zero 3 € R with
Jim (T~ 0)7 g (1) = B, (0.3)

in this case g is called the blow-up constant of g.

According to the uniqueness of the solutions to equation (0.1), we can rewrite a, (n) =
a(n),J,(n) = J(n) and E, (n) = E(n). After some elementary calculations we obtain the
following.

Lemma 1 Suppose that u is the solution of (0.1), then we have

E(n) = ()~ Ju(n)' ~ Zau(n)’ = B (o), (0.4)
o (n) = 5/ (n)? + %a (n)? = 3E (no), (0.5)

I () = =37 )" (Ga ) =38 o)) (0:)

T (n)? — éJ(n)*2 - E(4”°>J6 (n) = %u (0.7)
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and

" 1
a’ (n) =a (ng) + 2E (ng) (n — ng) + / (3u (r)* + ?Oﬂu (r)3> dr. (0.8)

We prove briefly this Lemma 1 as follows: by (0.1), E (n) = o/ (n)® — tu (n)* — 2l (n)?,
we obtain that B (n) = 2u/ (n) u” (n) — 2u (n)* u’ (n) — 2uu (n)>u’ (n) = 0, therefore E (n) =
E (7’1,0) .

From (0.1), (0.4) and the definition of a (n),
a’ (n) = 2u" (n) u(n) + 2u’ (n)?

=2u' (n)® 4 2a (n)* + 3u (n)* — ga (n)* = 3E (no)

= 5u' (n)” + L (n)*> = 3E (ng) .

2
Using (0.4) and (0.5) we derive J' (n) = —1a (n)_% a’ (n) and
J" (n) = —ia(n)_% a’ (n) + iga(n)_z_l a' (n)?
1 -5- " ’
= —Za(n) it (a (n)a" (n) — —-a (n)2)
= —ia (n)*i*1 [a (n) (5u’ (n)* + Za(n)®> —3E (no)) ——d (n)z]
1 2
= —ZJ(n)5 (—a(n) —3E (n0)>
Also we get 2J' (n) J” (n) = —1J (n)* + 3E (no)J (n)® J’ (n) and
7= 7y = EO g0 ) = (o) = Loy 2 - B o )
f1732 1 _u%_%ué_guug 3
— gt T gte 1 0
_ 1 =

By using (0.5) and (0.4), a” (n) = 3a (n)* + Diau (n)® + 2E (ng),
(3(1 (r)? + ?au (r)3> dr.

The following lemmas are easy to prove, so we omit their proofs.

n

a’ (n) =a (no) +2F (ng) (n —no) + /

no

Lemma 2 Suppose that r and s are real constants and u € C? (R) satisfies
u' +ru' +su<0, uw>0,u(0)=0, v (0)=0,

then v must be null, that is, u = 0.
Lemma 3 If g (¢) and h (t,r) are continuous with respect to their variables and the limit

g(t)
lim h(t,r)dr
t—=T Jo

exists, then

g(t)

9(T)
lim h(t,r)dr = / h(T,r)dr.
=T Jo 0
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1 Estimates for the Life-Span

To estimate the existence interval of the solution of equation (0.1), we separate this section
into three parts: E(ng) < 0, E(ng) = 0 and E (ng) > 0. Here the existence interval N of u
means that u exists and makes sense only in the interval [ng, N) so that problem (0.1) possesses
the solution u € C? (ng, N) .
1.1 Estimates for the Existence Intervals under E(ng) < 0

We deal with two cases, E (ng) < 0, and E (ng) = 0, a’ (ng) > 0 in this subsection, but
the case F (ng) = 0 and a’ (ng) < 0 will be considered in Sections 3 and 4 later. Here we have
the following result.

Theorem 4 If N is the existence interval of the solution u to (0.1) with E (ng) < 0, then
N is finite. Further, for a’ (ng) > 0 we have the estimate

J(no)? dr
Nng:no—i—/ (1.1)
0 \/%—I—E(no)r‘l—i-%ﬂr
for a’ (ng) < 0,

J(nl)2

dr
s | \[5+ B (no)rt + Zar

J(n1)?
NSN;:’II()-F / +
0

where

J(nl):\/g \/_AJF%_\/Z’ A:(%E(no))”ﬁ(m)”?

Furthermore, if E (ng) = 0 and o’ (ng) > 0, then

— 2 2
a(n)= (\/J(NO)Q‘F%—\/%(H—NO)) —% : (1.3)

(1.4)

~—

2
N < Nii=no+ J (no) .
(Vo eal + 2+ /2)

Remark The phenomena of blow-up of u or P means that such benchmark enterprises

e

attain their maximum of performance and competitiveness.

Proof For E (ng) < 0, we know that a (ng) > 0; otherwise we would get a (ng) = 0, that
is, ugp = 0, then E (ng) = u? > 0, this contradicts F (ng) < 0. In this situation we separate the
proof of this Theorem into two subcases, a’ (ng) > 0 and a’ (ng) < 0.

(i) a’(ng) > 0. By (0.8) and (0.7) we find that

n

a' (n) = a’ (no) +2E (no) (n — ng) + /

no

<3u (") + =au (T)?’) dr
> a’ (no) +2E (ng) (n —ng) >0, Vn > no, (1.5)
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7 =y B0 oy 4 2
7 =22+ 20 o ) 1 L < 7 (), s mg (1.6)
and ) i
J(n)<a(no) * — Zﬂl(no);Z a' (no) (n —mno), VYn >no.
Thus there exists a finite number Ny (ug, u1) < no—l—i‘f((sg)) = no+22 such that J (N (uo, w1)) =

0 and so a (n) — oo as n — N7 (ug,u1). This means that N < N (ug,u1).
Now we estimate Ny (ug,u1). By (1.5) and J (N7 (ug,u1)) = 0 we find that

/J<"0> dr
J(n) \/%T—2 + E(Zo)rﬁ +

n—ng=

1 —
EU
rdr

/‘J("(J)
J(n) \/% 1 Elno) s 4 1,

J(no)* d
= / " ) vn Z o (1'7)
J(n)? \/% + E (no) r* + Zur

and hence we get estimate (1.1).
(ii) o' (ng) < 0. By (1.4), @’ (no) < 0 and the convexity of a we can find a unique finite
number ny = nq (ug,u1) such that

a (n)<0=ad (n1) for ne€ (nog,ni), (1.8)
a (n)>0 for n>nq, .

and a(ny) > 0. If not, then u(ny) = 0, thus E(n) = E(n1) = u'(n1)*> > 0; yet this is
a contradiction to F (ng) < 0. Hence, we conclude that a(n) > 0,Vn > ng, v’ (n1) = 0,

E(ng) = —%u (n1)4 — %ﬁu (n1)3 and %J(nlf2 + —E(ZO)Jﬁ (n1) + %ﬁ =0,

u, ne [’I’LO,’I’Ll] )

/J("l) dr
ny —no =
J(no) \/%r—z + Eo) o

1—
GU

J(n1)? dr
:/ 2 /1 44 20
J(no) \/5+E(no)r + sur

After arguments similar to step (i), there exists a N := NJ (uo, u1) such that the life-span
N of u is bounded by N3, that is, N < Nj. By an analogous argument, using (1.7), (0.7) and
the fact that J (N5) = 0 and
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we conclude that
1 _ E 1
J'(n)?==Jn) "+ (m0) o (n) + =i, Vn>ny,
8 4 6
1 _ E 1
J’ (n)——\/gJ(n) 4 (ZO)JG (n)—i—gﬁ, Vn > ny, (1.9)
1 _ E 1
J' (n) = \/gJ(n) B (4n0)J6 (n)—i—gﬁ, Vn € [ng,n1], (1.10)
(n1) rdr
/ =n-—ni, VYn>n, (1.11)
J(n) \/ + E(HO)TS + 11—”,2
(n1) d
/ e =MNi1 —No (112)
J(no) \/é + Blnodys 4 L2
and )
J ni d
Ni =ny +/ ) . (1.13)
0 \/% + E(ZO)T8 + %’(7,’{‘2
This estimate (1.12) is equivalent to (1.2).
(iii) For E (ng) = 0, by (0.6) and a’ (ng) > 0 we get that J' (ng) < 0,J" (n) = —2.J (n)~® <

0and J' (n) = —y/ 2t + %J(n)ﬂ, Vn > ng. Thus we conclude that

\/m\/;

1 J(no) rdr J(no) rdr
e [
J(n) 1+ 282 J(n) (24 2

n—no—\/i/‘](n?[)) T2+3 \/%(\/ n0)2+%—\/J(n)2+

9 _
/ 3 U 3
< J(nO)Q—f—E—\/g(n—no)) _E 5 VTLZTLQ,

[3 e o,
T J(”O)‘*‘E—\/g(]\% no) s

3
4% |’
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T (n0)” + 15 — /4%
N3 =no + =
i
and (1.3) is proved. m|

1.2 Estimates for the Life-span under E(ng) > 0

In this subsection we consider the case E (ng) > 0, and we have the following blow-up
result.

Theorem 5 If N* is the existence interval of « which solves problem (0.1) with E (ng) >
0, then N* is finite. Further, in case of a’ (ng) > 0, we have

J(no) rdr
N*SNI (uo,ul):no—f—/o \/1 Fno) 5 : 2. (115)
5+ =728 + car
8 1 6
In the case of a’ (ng) = 0 we have
N* < N5 (uo,ul =Ny —|—/ \/ ) . 2 (116)
+ n“ 8+ dur
For a’ (ng) < 0 and z (ug, u1) given by
e d
z (uo, u1) :no—i-/ il (1.17)
J(no) \/§ + Elodys o L2
is the zero of a. Further, we have
N* < N§ (ug,ur) := z (uo, u1) (1.18)

/ \/ + nU) /r.8 4+ u'f‘2

Proof i) For E (ng) > 0,a’ (0) > 0, by (0.8) and (0.7) we have J' (n) = —%.J (n)° a’ (n) <

J' (n) = —\/%u + éJ(n)_z + E(ZO)JG' (n) < —\/;, (1.19)

J(n)gJ(no)—\/;(n—no)HO asn—>n0+\/§J(no);

therefore a (n) blows up at finite n = NJ and J (N;) = 0. By (1.18) we obtain (1.14) and

/ o rdr
n—ng= .
J(n) \/% + E(ZO)T.S + %’17/7”2

(1.20)

ii) From a’ (ng) =0 = ug, E (ng) = u1?— %uo‘l— %ﬁuog = u12 and (0.8) we obtain J' (n) =

—1J (n)®a’ (n) < 0,n > ng and also estimate (1.15).
iii) For a’ (ng) < 0, by (0.8) we have a’ (n) > 0 for large n > ng + 520

2E(’n,()) :
Suppose z is the first positive number n so that o’ (n) = 0, then u(z) = 0; otherwise,
u'(z) =0 and E(z) = —%u(z)4 - 2au (2)* < 0, this contradicts the assumption E (ng) =

E (z) > 0. By using (0.7), we conclude that

J'(n) = \/%u—l— %J(n)*2 + E(ZO)JG (n) for n € [ng,z], (1.21)
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J(n) rdr
n—noz/ for n € [ng, 7],
J(no) \/5 + Elodys L2

> rdr

z(uo,ul)—noz/ = .
J(no) \/%_’_ (20)7‘8_’_ %’17/7”2

After the number n = z, same as the procedures given in the proof of (i), using (1.18) we
obtain (1.17). O

2 Blow-up Rate and Blow-up Constant

In this section we study the blow-up rate and blow-up constant for a,a’ and ¢” under the
conditions in Section 1. We have got the following results.

Theorem 6 If u is the solution of problem (0.1) with one of the following properties that

(i) E(ng)<0; (ii) FE(ng)> 0.

Then the blow-up rate of a is 2, and the blow-up constant K; of a is 8, that is, for
m=1,2,4,5,6,

lim (N}, —n)*a(n)=8. (2.1)

m
*
n—N*

The blow-up rate of a’ is 3, and the blow-up constant K5 of a’ is 32, that is, for m = 1,2, 4,5, 6,

lim (N}, —n)*d (n) = 32. (2.2)

n—NZ¥ m
The blow-up rate of a” is 4, and the blow-up constant K3 of a” is 32—}—1%, thatis,m =1,2,4,5,6,

)
lim a” (n) (N, —n)' =32+ —. 2.3
Proof (i) Under this condition, E (ng) <0, a’ (ng) > 0 by (1.1), (1.6) and Lemma 4 we
get

/J("O) rdr
n—mnog = )
J(n) \/% + E(ZO)Tg + %1—”2

rdr

J(’n,[))
Ny —n :/ ,
! 0 0 \/l + E(no) .8 + L2
3 1 6

- ) =1, Vn > ny, (2.4)
o Ni-n \/é + Blodys L2
J 2
lm V3L g (2.5)

n—N{ Nl* —n

This identity (2.5) is equivalent to (2.1) for m = 1.
For E (ng) <0, a’ (ng) <0 by (1.10) we have also

J(n1) d
/ rdr = N} —n,
0 \/% + E(ZO)T8 + %1_1,7"2
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rdr

/J(m)
J(n) \/% 4 E(ZO)T8+ %’UJTQ

=n-—-ni, n=>n

J(n) d
/ il =Ny —n VYn>n. (2.6)
0 \/% + E(Z")rg + Lar

Through Lemma 4 and (2.6), therefore we get (2.1) for m = 2.
Seeing (1.5) and (1.8), we find

lim J' (n)J((n)=-——, 2.7
i ) ) = o (27)
hr]r\}* a (n) (N}, —n)® =32, (2.8)
lim o (n)* (N}, —n)* = L (2.9)
n—N* m 16
for m = 1,2. Using (0.5) and (2.9) we obtain for m = 1,2,
lim o’ (n) (N}, —n)* =32+ il (2.10)

Thus, (2.10) and (2.3) are equivalent.
(ii) For E (ng) > 0, estimates (2.1.1), (2.1.2) and (2.1.3) for m = 4,5, 6, are similar to the
above arguments (i) in the proof of this theorem. |
Theorem 7 If u is the solution of problem (0.1) with one of the following properties that
E (ng) =0, a’ (ng) > 0, Then the blow-up rate of a is 2, and the blow-up constant K7 of a is
2, that is,
lim (Ni —n)’a(n)=2. (2.11)

n—Ng*

The blow-up rate of a’ is 3, and the blow-up constant K3 of o’ is 32, that is,

lim (NZ —n)®d (n) = 4. (2.12)

n—Ngz

The blow-up rate of a” is 4, and the blow-up constant K3 of a” is 12,

lim a” (n) (N —n)* =12. (2.13)

Proof For E(ng) =0, a’ (ng) > 0, by (1.13) for

\/J(n0)2+43_u_\/g

Nék:no-i-

)

e
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we get

3

4u

a(n) = <\/J(”0)2+%—\/§(n—no)>
(V2 o) -2
_ <\/g+\/§(N§—n)>2—% , (214)
a(n)?lz<\/%+\/%<N§—n>>2—%=%<zv§—n>2+ S (N5 ),

lim (Vi —n)"la(n)® =4/
ngjnv;( 5 —n) a(n) 5

2

2

By (0.7) we obtain

lim (N: —n)®d (n) = 4. (2.15)
Using (0.5) and (2.15) we have

lim (N: —n)a(n)u (n)* (Ni —n)* =4,

lim o' (n)* (Ni —n)* =2,

n—N3
2
(N3 = )" a” (n) = 5 () (N5 — )"+ 5 (o () (N5 —)?)
lim (N: —n)*a” (n) =12.

Therefore, estimates (2.11), (2.12) and (2.13) are proved. ad
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3

Global Existence and Critical Point at Infinite

In this section we study the following case that E (ng) = 0 and a’ (ng) < 0.

Here we take the global existence of the solutions to problem (0.1) in the following sense:

J(n)>0,d (n)>>0, a(n)>>0 Vnelno,N],

where N is the time that u exists, in other words, in any finite time u does not blow up in C?

sense, even though u blows up in a finite time in some sense, for example, C* or L* for some
k> 3.

This result concerning global existence of the solutions to problem (0.1) could happen and

will be explained below only in the case that E (ng) = 0 and a’ (ng) < 0. Under the condition
it is easy to see that J (n) > 0Vn € (ng, N) and for I (n) =a (n)_1/2, by using (0.4) and (0.5)

we obtain

1"(n) = Sra ) a” () + Sa (n) o' (n)?
= _71a (n)fg (51/ (n)” + %a(n)2) + ga (n)fg a
1 _3 , 1 1 3 1
= a0 0 = ) = ) (o 0 = o))
1
= gu > 0,
/ / 1_
I'(n)=1 (no)—|—§u(n—n0),

an) = (5" s (0= no) + 2 (= mo)?)

U

o (1) = = (45" — g (1= m) + 5 (0 = o))

9 3

Hence we find the limit lim a(n) =0, lim o’ (n) =0, lim a” (n) =0 and

n—oo n—oo n—oo

4 uy 3
lim (n—ng) a(n) = (E) ,
144
. 5 1
g, (n = no) @ ) =~
1008
. 6 n
g, (o) et n) =~

_ _ _ U
a’ (n) :2(u02u1—§(n—n0)) (uol—u02u1 (n—no)—i-g

Ta? 144
. (— (n— n0)2 — —u52u1 (n—mng) + 6ua4u% +

2
?uu,f) .

(n— 710)2)_3 ,

(3.1)
(3.2)

(3.3)

Theorem 8 Suppose that u is the solution of problem (0.1) with F (ng) = 0 and o’ (ng) <
0, then u can be defined globally and estimates (3.1), (3.2) and (3.3) are valid.
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4 Triviality, Stability and Instability

In this section we discuss the triviality of solution for the problem (0.1) under the case
that F (ng) =0, a’ (ng) =0.

Proposition If u is the solution of problem (0.1) with F (ng) = Oand a’ (ng) = 0, then
u must be null.

Proof Under the conditions E (ng) = 0, a’ (ng) = 0 by using (0.4), it is easy to see that

uo = 0 = uq, herein the supremum below exists

ny = sup{a:a(n) <1lVne {no,a}}a

and then 4
2u' (n)® = u(n)' + 7 (n)* >0,
" _ 1 2 1 2 _ 4 10 o 2 10 _
a” (n)=>5u" (n)" + 3@ (n)"=3u(n) + 3 (n)® = 3a (n)” + 3 (n)a(n).

By Lemma 2 we conclude that
" 10 :
a’(n) < 3+§u a(n), am)=0=wu(n) in [ng,n].

Continue these steps we get the assertion of this theorem. O
We now consider the applications of the theorems above to the stability theory for the

problem
u (n) = () (u(n) + ), W
u (’no) = al,u’ (’no) = &2.
We say problem (4.1) is stable under condition F, if any nontrivial global solution u €
C? (R™) of (4.1) under condition F satisfies

lullce — 0 for |e1]| + |e2| — 0.

According to Theorems 4-8 we have the following result.

Corollary 9.1 Problem (4.1) is stable under E, (ng) = 0, £162 < 0 and unstable under
the following one of the followings

(i) Eu(no) <0,

(ii) Ey (no) =0 < g1e9,

(iil) Ey (ng) > 0.

According to Theorems 4 and 5, we can obtain the following conclusions when we reconsider
the problem

' (n) = u(n)* (u(n) +a),

2

4.2
u(ng) = eug,u’ (ng) = e%uy (4.2)

for
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Be= (%E ( >>1/3+ (3%(0/

Theorem 9.2 If N is the existence interval of the solution u. to (4.2) with E.(ng) < 0,
then N is finite. Further, for ea’(ng) > 0, we have the estimate

dr
\/% + E. (ng)r* + %Tu‘

J=(no)
N: S Nl*,a (Uo,ul) =Ny +/
0

for ea’(ng) < 0,

Js(nl)z dT
N;SN;E (uo,ul)zno—i- </ +/ ) .
0 Je(no)? \/% + E: (no)r* + %ﬂr

Je (n1)2

Furthermore, if E.(ng) = 0 and €a’(ng) > 0, then

Je (n0)2
VE( o) + & +/2)
Theorem 9.3 If N is the existence interval of the solution u. to (4.2) with E.(ng) > 0,
then N7 is finite. Further, fin case of a’(ng) > 0, we have

N; < N§75 (uo,ul) =ng + (43)

rdr

Vo Bl

Je(no)
NE < NZ,E (w0, u1) = no +/
0

In the case of ea/(ng) = 0 we have

N* <N55(u0,u1 =ng +

/ \/ + E("0)7,8+

For ea’(no) < 0, ze (ug, u1) given by

> rdr

2e (ug, u1) :n0+/
Je(no) \/%-i— Ee(no) s | Ly

is the zero of u.. Further we have

N* <N68(’UJO,’UJ1 < / ) (Uo,ul).
\/ + E. (nO)TS +
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