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1 Introduction

The economic indices we are interested in are often compounds of multiple components.
For example, national product is the summation of the outputs from various sectors in
the economy, and the unemployment rate is the ratio of the number of unemployed to
the number of people in the labor force. In many applications, it is necessary to look into
changes from each of the constituent components, rather than the overall growth of an index.
A decomposition technique seeks ways to disintegrate the overall growth rate of an index to
gain insight into the roles of each individual component in the overall change.

In demography, Kitagawa (1955) developed a method called “components of a difference
between two rates” to explain the difference between the total rates of two groups in terms
of differences in their specific rates and differences in their composition. Its extensions to
multiple component decomposition are proposed by Retherford and Cho (1973), Das Gupta
(1978), and Kim and Strobino (1984). In economics, the decomposition method dates back
to Leontief, who analyzed the change in the structure of production (Dietzenbacher and
Los, 1998; Canudas Romo, 2003). Oosterhaven and van der Linden (1997) suggested polar
decomposition, which was extended by Dietzenbacher and Los (1998) and Andreev et al.
(2002). These methods give very similar decomposition results. For a more detailed review
on decomposition technique, see Canudas Romo (2003).

This note introduces a generalized version of multi-component decomposition, which can
be applied to two classes of indices: the additive-product form and the product-additive form.
Section 2 introduces the method and the formula, and Section 3 provides an example of the
application.

2 Decomposition Method

Let y(t) be a generic positive economic index. Let X(t) := (xj,k(t)), a J × K matrix, be
the components of y(t), so that y(t) ≡ f(X(t)) where f is a known function. In a typical
application, the subscript j indicates groups and k indicates variables.

Example 1 (Nominal GDP)
Let y be the nominal GDP, xj,1 be the price level of the j-th sector, and xj,2 be the quantity
produced in the j-th sector. Then y is represented as

y =
J∑
j=1

xj,1xj,2.

Example 2 (Unemployment rate)
Let y denote the unemployment rate. Suppose the population is divided exhausitively into
J exclusive groups. Let xj,1 be the number of unemployed in group j and xj,2 the labor force
of group j. Then y is represented as

y =

∑J
j=1 xj,1∑J
j=1 xj,2

.
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Consider a case where y is the summation of a variable over J > 1 groups, i.e. K = 1:

y(t) =
J∑
j=1

xj(t).

Take the first order difference of y(t) and divide it by y(t):

∆y(t)

y(t)
=

J∑
j=1

∆xj(t)

y(t)
=

J∑
j=1

cdj(t), (1)

where ∆y(t) := y(t + 1) − y(t) and ∆xj(t) := xj(t + 1) − xj(t). The growth rate of y(t),
shown on the left-hand side, is decomposed into J components, and cdj(t) ≡ ∆xj(t)/y(t) is
the degree of contribution of group j to the growth of y at time t. Notice that decomposition
formula (1) can be seen as a weighted average of the variable’s group-specific growth rates.
To see this, suppose xj(t) 6= 0 for all j; then

∆y(t)

y(t)
=

J∑
j=1

xj(t)

y(t)

[
∆xj(t)

xj(t)

]
.

In the following, we generalize the decomposition technique to two classes of indices, the
additive-product form and the product-additive form.

2.1 Additive-Product Form

Suppose y is in the additive-product form defined as

y =
J∑
j=1

K∏
k=1

xj,k. (2)

Note that the nominal GDP in Example 1 belongs to this class.
Differentiate the logarithm of both sides of (2) and replace the derivatives by differences:

∆y(t)

y(t)
'

J∑
j=1

K∑
k=1

[∏
l 6=k xj,l(t)

y(t)

]
∆xj,k(t) =

J∑
j=1

K∑
k=1

cdj,k(t), (3)

where cdj,k(t) ≡
[∏

l 6=k xj,l(t)/y(t)
]
·∆xj,k(t). Notice that decomposition formula (3) can be

seen as a weighted sum of the variables’ group-specific growth rates. To see this, suppose
xj,k(t) 6= 0 for all j and k; then

∆y(t)

y(t)
'

J∑
j=1

K∑
k=1

∏K
l=1 xj,l(t)

y(t)

[
∆xj,k(t)

xj,k(t)

]
.
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2.2 Product-Additive Form

Suppose y is in the product-additive form defined as:

y =
K∏
k=1

(
J∑
j=1

xj,k

)γk

(4)

where γ ≡ (γ1, . . . , γK)′ is a fixed K-vector. Note that the unemployment rate in Example
2 belongs to this class with K = 2 and γ = (1,−1)′.

Differentiate the logarithm of both sides of (4) and replace the derivatives by differences:

∆y(t)

y(t)
'

K∑
k=1

J∑
j=1

[
γk∑J

j=1 xj,k(t)

]
∆xj,k(t) =

K∑
k=1

J∑
j=1

cdj,k(t), (5)

where cdj,k(t) ≡
[
γk/

∑J
j=1 xj,k(t)

]
·∆xj,k(t). Notice that decomposition formula (5) can be

seen as a weighted sum of the variables’ group-specific growth rates. To see this, suppose
xj,k(t) 6= 0 for all j and k, then:

∆y(t)

y(t)
'

K∑
k=1

J∑
j=1

[
γkxj,k(t)∑J
j=1 xj,k(t)

]
∆xj,k(t)

xj,k(t)
.

3 Application

In this section, we provide an application of the decomposition technique to measure the
impacts of various components of an index of interest.1

Figure 1 plots the 10-year Japanese mortality rate of cardiac disease from 1999.2 The
graph exhibits a significant increase in the mortality rate from 120.00 to 142.21 per 100,000
people, or 18.5%.

It is known that overall death by cardiac disease can be characterized by the age group
specific rates and the age structure of the population; therefore, we decompose the overall
growth rate of death by cardiac disease into changes in the age group specific rates and
changes in the age structure of the population. The following equation suggests that this
index belongs to the class of the additive-product form:

overall cardiac disease mortality rate

=
∑
j

[
the j-th age group mortality rate by cardiac disease×

the population share of the j-th age group
]

1See Chen et al. (2009) for an application of the decomposition technique to an investigation of recent
suicide trends in Japan.

2Mortality rate is the ratio of the number of deaths to the population. We obtained the mortality
data from Vital Statistics, Ministry of Health, Labour, and Welfare, Japan, and the population data from
Demographics based on the Basic Resident Register, Ministry of Internal Affairs and Communications, Japan.
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The decomposition result is shown in Table I. The numbers in the cells are the cumulated
degrees of contribution of the age group specific rates and the age structure of the population.
The result implies that the increase in the mortality rate of cardiac disease is because of the
aging population, as the largest contributions are from the population shares of those aged
60–79 and 80 and older. Whereas, the numbers in the “Mortality Rate” column for age
groups 60–79 and 80 and over show large negative contributions, probably because of the
progress made in the treatment of cardiac disease and improvements in the welfare system
for the elderly. Rapid aging, however, outweighs such progress, resulting in a steady growth
of mortality rate overall.

As a final point, the decomposition creates residuals since derivatives are approximated
by differences. In this application, the sum of the cumulative degrees of contribution is
18.21%, while the growth rate of the overall mortality rate is 18.5%.3 The approximation
becomes more accurate as the time interval of data shortens.

Figure 1: Japanese Mortality Rate of Cardiac Disease, 1999–2009

Table I: Cumulative Degrees of Contribution, 1999–2009
Age Group Mortality Rate Population Share Sum

00–19 -0.06% -0.03% -0.10%
20–39 -0.13% -0.07% -0.20%
40–59 -0.55% -0.63% -1.17%
60–79 -8.75% 7.32% -1.43%

80 and above -8.56% 29.67% 21.11%

Sum -18.05% 36.26% 18.21%

3The sum of the annual growth rates is 17.58%.
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