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Abstract

In this thesis, we consider the initial-value problem for the Boltz-

mann equation of the form





ft + ξ · ∇xf = Q(f, f), (t,x, ξ) ∈ R+ × R3 × R3,

f(0,x, ξ) = f0(x, ξ), (x, ξ) ∈ R3 × R3.

We prove that the existence of mild solution in the weighted Lebesgue

space

L1
ω(R3

x × R3
ξ) ≡

{
f ∈ L1(R3

x × R3
ξ)

∣∣∣∣ fω ∈ L1(R3
x × R3

ξ)

}

by using Banach’s fixed point theorem, and that the uniform stability

of solution with respect to the weighted norm. Here ω ≡ M(ξ)
−1
2 , and

M(ξ) is any Maxwellian.

Key words: Boltzmann equation, Maxwellian, existence of mild solution-

s, uniform stability.
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1 Introduction

The kinetic theory, introduced by Boltzmann [17] at the end of the nineteenth

century, provides a description of gases at an intermediate level between the hy-

drodynamic description which does not allow to take into account phenomena far

from thermodynamic equilibrium, and the atomistic description which is often too

complex. Nevertheless, a gas flow may be modelled at either the macroscopic or the

microscopic level. The macroscopic model regards the gas as a continuous medium

and the description is in terms of the spatial and temporal variations of the familiar

flow properties such as the velocity, density, pressure, and temperature. The Euler

and Navier-Stokes equations provide the conventional mathematical model of a gas

as a continuum.

On the other hand, the microscopic or molecular model recognizes the partic-

ulate structure of the gas as a myriad of discrete molecules and ideally provides

information on the position, velocity, and state of every molecule at all times. The

mathematical model at this level is the celebrated Boltzmann equation, which is

a mathematical model of the phenomenological kinetic theory of gases which de-

scribes the evolution, in time and space, of the one-particle distribution function

for a simple monatomic gas of a large number of identical particles.

Furthermore, the degree of rarefaction of a gas is generally expressed through

the Knudsen number, denoted by κ (or Kn), which is the ratio of the mean free

path λ to some characteristic length L of the domain containing the gas, i.e.,

κ =
λ

L
. (1.1)

It plays an essential role in the analysis of asymptotic relations between the Boltz-

mann equation and macroscopic fluid equations.

In this paper, we study the existence theory and stability of solutions to the

Boltzmann equation. The first existence theory of the solutions to the Boltzmann

equation goes back to 1932 when T.S.Carleman [18] proved the existence of glob-

al (in time) solutions to the Cauchy problem for the spatially homogeneous case.

1
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It should be stressed that this is 2 years before the incompressible Navier-Stokes

equation was solved by J.Leray on the existence of global weak solutions. On the

other hand, the research on the spatially inhomogeneous Boltzmann equation start-

ed much later. It is only in 1965 when Grad [11] constructed the first local solutions

near the Maxwellian, and it is in 1974 when the first author of this note constructed

global solutions that are also near the Maxwellian, extending Grad’s mathematical

framework, [19].

However, the process made afterward was remarkable. Up to the present, three

different methods have been developed for establishing the global existence theory.

The difference is due to difference of function spaces used for solving the Boltzmann

equation, and consequently, the methods of proof employed are also different. The

following is a short summary of the solutions established so far :

1. Solutions in L∞ framework: Grad’s scheme was extended to construct glob-

al solutions in the L∞ space for various initial and initial boundary value

problems. See, [19], etc.

2. Solutions in L1 framework: DiPerna-Lions [5] constructed global L1 solutions

without smallness assumption on initial data. These solutions are called the

renormalized solutions because they are the weak solutions to the Boltzmann

equation in the renormalized form.

3. Solutions in L2 framework: Recently, the L2 energy method, which is famil-

iar in the theory of nonlinear PDE’s, because available for the Boltzmann

equation by introducing a new decomposition of the equation and solutions,

called the macro-micro decomposition. This was developed by Liu-Yang-Yu

[16], Liu-Yu [12], Yang-Zhao [22] and independently by Guo [6, 7, 8, 9, 10].

Also, the green function for the Cauchy problem was constructed by Liu-Yu

[13].

4. Solutions in L∞β framework: The first global existence theorem was established

in the space L∞β (R3
ξ ; H

k(R3
x)), β > 5

2
, k ≥ 2, by using the spectral analysis

2
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by Nishida-Imai [14], where

L∞β (R3
ξ) ≡

{
f : (1+ | ξ |)βf ∈ L∞(R3

ξ)

}
.

The same result was obtained by Shizuta [15] for the torus case with the

space L∞β (R3
ξ ; C

k(T3
x)), β > 5

2
, k ∈ Z+. Recently, Yang-Ukai [20] present-

ed a function space L2(R3
x × R3

ξ) ∩ L∞β (R3
ξ ; L

∞(R3
x)), β > 3

2
, in which the

Cauchy problem is globally well-posed in a mild sense without any regularity

conditions.

This thesis contains five sections. In section 1, we give an introduction. In

section 2, we review the binary elastic collisions and the well-known Boltzmann e-

quation. In section 3, we introduce collision invariants, which aid in obtaining fluid

dynamic conservation equations and the H-Theorem. This theorem in turn leads to

the well-known Maxwellian distribution. We end section 3 by introducing the Grad’s

angular cutoff potential, which plays a crucial role of the existence theory. Further-

more, thanks to [16, 21, 22], we study a presentation of the few rigorous results

on the fluid dynamical limit available in section 4. These are Hilbert expansion,

Chapman-Enskog expansion, and macro-micro decomposition. They explain how

the compressible Euler equations and compressible Navier-Stokes equations arise in

suitable limits from the Boltzmann equation. Finally, in section 5, we study the ex-

istence of mild solution to the Boltzmann equation in the weighted Lebesgue space

L1
ω(R3

x × R3
ξ) by using the Banach’s fixed point theorem, and the uniform L1

ω-type

stability of solution.

3
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2 Basic Kinetic Theory of Gases and the Boltz-

mann Equation

This section begins with a review of scattering concepts important to derivation

of the Boltzmann equation. More details can be found in [1, 2, 3].

2.1 Binary elastic collisions

Intermolecular collisions in dilute gases are overwhelmingly likely to be binary

collisions involving just two molecules. An elastic collision is defined as one in which

there is no interchange of translational and internal energy. We may denote the

pre-collision velocities of the two collision partners in a typical binary collision by

ξ and ξ∗. Given the physical properties of the molecules and the orientation of the

trajectories, our task is to determine the post-collision velocities ξ′ and ξ′∗.

Linear momentum and energy must be conserved in the collision. This requires

m1ξ + m2ξ∗ = m1ξ
′ + m2ξ

′
∗ = (m1 + m2)ξm (2.1)

and

m1 | ξ |2 +m2 | ξ∗ |2= m1 | ξ′ |2 +m2 | ξ′∗ |2, (2.2)

where m1 and m2 are the masses of the two molecules and ξm is the velocity of

the center of mass of the pair of molecules. Equation (2.1) shows that this center

of mass velocity is not affected by the collision. The pre-collision and post-collision

values of the relative velocity between the molecules may be defined by





ξr = ξ − ξ∗,

ξ′r = ξ′ − ξ′∗.

(2.3)

4
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Equations (2.1) and (2.3) give




ξ = ξm + m2

m1+m2
ξr,

ξ∗ = ξm − m2

m1+m2
ξr.

(2.4)

The pre-collision velocities relative to the center of mass are ξ − ξm and ξ∗ − ξm.

Equation (2.4) shows that these velocities are antiparallel in this frame of reference

and, if the molecules are point centers of force, the force between them remains

in the plane containing the two velocities. The collision is therefore planer in the

center of mass frame. Similarly, equations (2.1) and (2.3) imply




ξ′ = ξm + m2

m1+m2
ξ′r,

ξ′∗ = ξm − m2

m1+m2
ξ′r.

(2.5)

This shows that the post-collision velocities are also anti-parallel in the center of

mass frame.

Furthermore, equations (2.4) and (2.5) show that




m1 | ξ |2 +m2 | ξ∗ |2= (m1 + m2) | ξm |2 +mr | ξr |2,

m1 | ξ′ |2 +m2 | ξ′∗ |2= (m1 + m2) | ξm |2 +mr | ξ′r |2 .

(2.6)

where mr := m1m2

m1+m2
is called the reduced mass. A comparison of equation (2.6)

with the energy equation (2.2) shows that the magnitude of the relative velocity is

unchanged by collision, i.e.,

ξ′r = ξr. (2.7)

Since both ξm and ξr may be calculated from the pre-collision velocities, the deter-

mination of the post-collision velocities reduces to the calculation of the change in

direction n of the relative velocity vector.

Now we rewrite (2.1) and (2.2) as




ξ + ξ∗ = ξ′ + ξ′∗,

| ξ |2 + | ξ∗ |2=| ξ′ |2 + | ξ′∗ |2 .

(2.8)

5
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Introduce a unit vector n directed along ξ − ξ′; this direction bisects the directions

of ξ and −ξ′. Because of our definition of n we have

ξ′ = ξ + nC, (2.9)

where C is a scalar to be determined. The first of equations (2.8) gives

ξ′∗ = ξ∗ − nC. (2.10)

Substituting (2.9) and (2.10) into (2.8) we obtain

| ξ |2 +2n · ξ + C2+ | ξ∗ |2 −2n · ξ′∗C + C2 =| ξ |2 + | ξ∗ |2,

which implies that

n · (ξ∗ − ξ∗)C + C2 = 0.

Hence, dismissing the case C = 0 which corresponds to a trivial solution of the

conservation equations, we have

C = −n · (ξ − ξ∗). (2.11)

Thus, we have 



ξ′ = ξ − n[n · (ξ − ξ∗)],

ξ′∗ = ξ∗ + n[n · (ξ − ξ∗)].

(2.12)

On the other hand, if we consider the case on a hard sphere

S2
+ ≡

{
Ω ∈ S2

∣∣∣∣ (ξ − ξ∗) · Ω ≥ 0

}
,

then (2.12) becomes 



ξ′ = ξ − [(ξ − ξ∗) · Ω]Ω,

ξ′∗ = ξ∗ + [(ξ − ξ∗) · Ω]Ω.

(2.13)

In this case, we use B(|ξ − ξ∗|, ϑ) to denote the collision cross section, where

ϑ = arccos

(
(ξ − ξ∗) · Ω
|ξ − ξ∗|

)
∈

[
0,

π

2

]
(2.14)

6
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is the scattering angle between ξ − ξ∗ and Ω. The definition of B depends on the

physics of collision. In fact, for the inverse power interaction potential, B takes the

form of

B(|ξ − ξ∗|, ϑ) = bγ(ϑ)|ξ − ξ∗|γ, −2 < γ ≤ 1, (2.15)

where bγ(ϑ) is the collision kernel. However, different values of γ corresponds to

different kinds of interactions, namely, γ ≥ 0 corresponds to the hard intersection

potential, and γ < 0 corresponds to the soft intersection potential. Moreover, the

hard sphere model satisfies

B(|ξ − ξ∗|, ϑ) = σ|ξ − ξ∗| cos ϑ

with σ being the radius of the hard sphere.

2.2 The distribution functions and macroscopic fluid vari-

ables

A gas flow would be completely described, in the classical sense, by listings of

the position, velocity, and internal state of every molecule at a particular instant.

The number of molecules in a real gas is so large that such a description is un-

thinkable, and we must resort to a statistical description in terms of probability

distributions.

To see this, consider a sample of gas which is homogeneous in physical space

and contains N identical molecules. A typical molecule has a velocity ξ with com-

ponent ξ1, ξ2, ξ3 in the direction of the Cartesian axes x1, x2, and x3. Note that

x1, x2, and x3 define a space called physical space, and a volume element in physical

space may be denoted by dx. Similarly, ξ1, ξ2, and ξ3 define velocity space, and a

volume element may be denoted by dξ. The product dxdξ then denotes a volume

element in phase space, which is the 6-dimensional (in general, 6N -dimensional)

space formed by the combination of physical space and velocity space. The state of

the gas is therefore modelled by a distribution function in phase space. In the case

7
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of a monatomic gas, the function

f(t,x, ξ), (t,x, ξ) ∈ R+ × R3 × R3

is termed the velocity distribution function. Its definition involves probability con-

cepts; any result in which it appears will be a result as to the probable, or average,

behavior of the gas; in addition,

f(t,x, ξ)dxdξ (2.16)

represents the number of particles, which at time t, have position x and velocity ξ.

Notice that f can never be negative and must either have finite bounds in velocity

space or tend to zero as |ξ| −→ ∞.

Furthermore, in order to relate the macroscopic properties to this distribution

function, we must determine the relationship between the function and the average

value of any molecule quantity q. This quantity is either a constant or a function

of the molecule velocity. The mean value principle gives

q =

∫

R3

qfdξ. (2.17)

Now, we introduce some macroscopic fluid variables, and f will be assumed to

be an expected mass density in phase space. Define the mass density

ρ(t,x) ≡
∫

R3

f(t,x, ξ)dξ. (2.18)

The fluid velocity (or bulk velocity of gas) u(t,x) is the average of the molecular

velocities ξ at a certain point x and time instant t; since f is proportional to the

probability for a molecular to have a given velocity, u is given by

u(t,x) ≡

∫

R3

ξf(t,x, ξ)dξ
∫

R3

f(t,x, ξ)dξ

=

∫

R3

ξf(t,x, ξ)dξ

ρ(t,x)
. (2.19)

Equation(2.19) can also be written as follows:

ρ(t,x)u(t,x) =

∫

R3

ξf(t,x, ξ)dξ =: m(t,x), (2.20)

8
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or, using components:

mi(t,x) ≡ ρ(t,x)ui(t,x) ≡
∫

R3

ξif(t,x, ξ)dξ, i = 1, 2, 3. (2.21)

The fluid velocity u is what we can directly perceive of the molecular motion by

means of macroscopic observation; it is zero for a gas in equilibrium in a box at

rest. Every molecule has its own velocity ξ, which can be decomposed into the sum

of u and other velocity

c ≡ ξ − u (2.22)

called the random or peculiar velocity. By (2.17), we have

c =

∫

R3

cfdξ =

∫

R3

ξfdξ −
∫

R3

ufdξ =

∫

R3

ξfdξ − uρ = 0,

i.e., the average of c is zero.

The quantity mi that appears in equation (2.21) is the ith component of the

mass flow or of the momentum density of the gas. Other quantities of similar nature

are the momentum flow:

mij ≡
∫

R3

ξiξjfdξ (i, j = 1, 2, 3); (2.23)

the energy density per unit volume:

w ≡ 1

2

∫

R3

| ξ |2 fdξ; (2.24)

and the energy flow:

ri ≡ 1

2

∫

R3

ξi | ξ |2 fdξ (i = 1, 2, 3). (2.25)

Equation (2.25) shows that the momentum flow is described by the components of

a symmetric tensor of second order, because we need to describe the flow in the ith

direction of the momentum in the jth direction. Note also that
∫

R3

cicjfdξ =

∫

R3

(ξi − ui)(ξj − uj)fdξ

= mij − ρuiuj,

9
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which implies that

mij = ρuiuj +

∫

R3

cicjfdξ = ρuiuj + pij, (2.26)

where

pij ≡
∫

R3

cicjfdξ (i, j = 1, 2, 3) (2.27)

plays the role of stress tensor.

Furthermore, we define the internal energy E per unit mass (associated with

random motions) by

ρE =
1

2

∫

R3

| c |2 fdξ. (2.28)

Note that
1

2

∫

R3

| c |2 fdξ =
1

2

∫

R3

| ξ − u |2 fdξ

= w − 1
2
ρ | u |2 .

Thus the energy density per unit volume can also be written as follows:

w =
1

2
ρ | u |2 +ρE = ρ

(
1

2
| u |2 +E

)
. (2.29)

Similarly, we define

qi =
1

2

∫

R3

ci | c |2 fdξ, (i = 1, 2, 3), (2.30)

called the components of the so-called heat-flow vector, and we can obtain

ri = ρui

(
1

2
| u |2 +E

)
+

3∑
i=1

ujpij + qi (i = 1, 2, 3). (2.31)

The decomposition in equation (2.31) shows that the microscopic energy flow is a

sum of a macroscopic flow of energy (both kinetic and internal), of the work (per

unit area and unit time) done by stresses, and of the heat flow.

We end this subsection with the definition of pressure p in terms of f ; p is

nothing other than 1/3 of the spur or trace (i.e. the sum of the three diagonal

terms) of pij and thus is given by

p =
1

3

∫

R3

| c |2 fdξ. (2.32)

10
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If we compare this with the definition of the specific internal energy E, given in

equation (2.28), we obtain the relation:

p =
2

3
ρE. (2.33)

In order to complete the connection, as a simple mathematical consequence of

the Boltzmann equation, we can derive five differential relations satisfied by the

macroscopic quantities introduced above; these relations describe the balance of

mass, momentum, and energy and have the same form as in continuum mechanics,

and we will introduce these in the following sections.

2.3 The Boltzmann equation

Now, we can drive the well-known Boltzmann equation. At a particular instant,

the number of molecules in the phase space element dxdξ is given by equation (2.16).

The rate of change of the number of molecules in the element is

∂

∂t
fdxdξ. (2.34)

The processes that contribute to the change in the number of molecules within

dxdξ, which are

(i) The convection of molecules across the face of dx by the molecular velocity ξ.

The representation of the phase space element as separate volume elements

in physical and velocity space emphasizes the fact that x and ξ are treated as

independent variables.

(ii) The ’convection’ of molecules across the surface of dξ as a result of the external

force per unit mass F.

(iii) The scattering of molecules into and out of dxdξ as a result of intermolecular

collisions. The gas is assumed to be dilute. One consequence of this assump-

tion is that a collision may be assumed to be an instantaneous event at a

11
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fixed location in physical space. A second major consequence of the dilute gas

assumption is that all collisions may be assumed to be binary collisions.

First consider process (i) which is a conservative process across the surface

dx. The number of molecules in the phase space element is fdxdξ, so the number

density of class ξ molecules within dx is fdξ. Note that the flux of the quantity q

across the element per unit area per unit time in the direction of e is 4qξ · e. So,

the total flux is obtained by summing over all velocity classes and can be written

qξ · e. (2.35)

Hence, equations (2.35) and (2.17) then enable the net inflow of molecules of this

class ξ across the surface of dx to be written as

−
∫

Sx

fξ · exdSxdξ, (2.36)

where Sx is the total area of the surface of dx, dSx is the element of this surface,

and ex is the unit normal vector of this unit element. By the Gauss-divergence

Theorem, we have

−
∫

Sx

fξ · exdSxdξ = −
∫

dx

∇ · (fξ)d(dx)dξ = −∇ · (fξ)dxdξ (2.37)

because f and ξ are constants within dx.

Also, since we are considering only molecules of class ξ, the velocity ξ may be

taken outside the divergence in physical space. Therefore, the inflow of molecules

of class ξ across the surface of dx due to the velocity ξ is

−ξ · ∇xfdxdξ, (2.38)

and the inflow of molecules across the surface of dξ due to the external force F per

unit mass is

−F · ∇ξfdxdξ. (2.39)

Furthermore, the volume swept out in physical space by the collision cross sec-

tion B(|ξ − ξ∗|, ϑ) in the hard sphere is B(|ξ − ξ∗|, ϑ)dΩ, and the number of class

12
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ξ∗ molecules per unit volume in physical space is f∗dξ∗, where f∗ denotes the value

of f at ξ∗. The number of collisions in the hard sphere per unit time is

f∗B(|ξ − ξ∗|, ϑ)dΩdξ∗. (2.40)

Since the number of class ξ molecules in the phase space element is fdξdx, the

number of class ξ, ξ∗ −→ ξ′, ξ′∗ collisions per unit time in the element is

ff∗B(|ξ − ξ∗|, ϑ)dΩdξ∗dξdx. (2.41)

Just as f denotes the value of the velocity distribution function f at ξ, f∗

denotes the value of f at ξ∗. Similarly, f ′ and f ′∗ denote the values of f at ξ′ and

ξ′∗, respectively.

The existence of inverse collisions means that an analysis, exactly similar to

that leading to equation (2.40) may be made for the collisions of class ξ, ξ∗ ←− ξ′, ξ′∗

that scatter molecules into class ξ. This yields

f ′f ′∗B(|ξ′ − ξ′∗|, ϑ)dΩ′dξ′∗dξ′dx (2.42)

for the collision rate in the phase space element dξ′dx. By equation (2.7), we have

| B(|ξ − ξ∗|, ϑ)dΩdξ∗dξ |=| B(|ξ′ − ξ′∗|, ϑ)dΩ′dξ′∗dξ′ | . (2.43)

So, equation (2.42) may be written

f ′f ′∗B(|ξ − ξ∗|, ϑ)dΩdξ∗dξdx. (2.44)

The rate of increase of molecules of class ξ in the phase space element dξdx as a

result of the combined direct and inverse collisions of class ξ, ξ∗ ←→ ξ′, ξ′∗ is obtained

by the subtracting the loss rate (equation (2.40)) from the rate of gain(equation

(2.43)). This gives

(f ′f ′∗ − ff∗)B(|ξ − ξ∗|, ϑ)dΩdξ∗dξdx. (2.45)

The total rate of increase of molecules of class ξ in the element as a result of collisions

is given by ∫

R3

∫

S2+
(f ′f ′∗ − ff∗)B(|ξ − ξ∗|, ϑ)dΩdξ∗dξdx. (2.46)

13
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Hence, equations (2.34),(2.38),(2.39), and (2.46) give

∂

∂t
fdξdx = −ξ · ∇xfdξdx− F · ∇ξfdξdx

+

∫

R3

∫

S2+
(f ′f ′∗ − ff∗)B(|ξ − ξ∗|, ϑ)dΩdξ∗dξdx.

(2.47)

If the latter terms are transferred to the left-hand side and the complete equation

is divided by dξdx, we have the Boltzmann equation for a sample dilute gas:

∂

∂t
f + ξ · ∇xf + F · ∇ξf =

∫

R3

∫

S2+
(f ′f ′∗ − ff∗)B(|ξ − ξ∗|, ϑ)dΩdξ∗. (2.48)

The term on the right-hand side of the Boltzmann equation is called the collision

operator or simply the collision term, and is denoted by Q(f, f).

14
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3 Element Properties of the Collision Operator

In this section, we review some element properties of the collision operator

and introduce the celebrated H-Theorem. Finally, we introduce the Grad’s angular

cutoff potential, which plays a role of the existence theory.

3.1 Collision invariants

In this subsection, we study some elementary properties of the collision integral

on a hard sphere

Q(f, f) =

∫

R3×S2+
(f ′f ′∗ − ff∗)B(|ξ − ξ∗|, ϑ)dΩdξ∗ (3.1)

where

S2
+ ≡

{
Ω ∈ S2 : (ξ − ξ∗) · Ω ≥ 0

}
.

Actually it turns out that it is more convenient to study the slightly more general

bilinear expression associated with Q(f, f), i.e.,

Q(f, g)(ξ) =
1

2

∫

R3×S2+
(f ′g′∗ + g′f ′∗ − fg∗ − gf∗)B(|ξ − ξ∗|, ϑ)dΩdξ∗. (3.2)

It is clear that when g ≡ f , equation (3.2) reduces to equation (3.1) and

Q(f, g) = Q(g, f). (3.3)

Our first aim is to study the eightfold integral:

∫

R3

Q(f, g)ψ(ξ)dξ =
1

2

∫

R3×R3×S2+
(f ′g′∗+ g′f ′∗− fg∗− gf∗)ψ(ξ)B(|ξ− ξ∗|, ϑ)dΩdξ∗dξ,

(3.4)

where f , g, and ψ are functions such that the indicated integrals exist and the order

of the integration does not matter. Furthermore, by the Fubini’s Theorem and the

15
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fact that the Jacobian | ∂(ξ,ξ∗)
∂(ξ′,ξ′∗)

|= 1, we have

∫

R3

Q(f, g)ψ(ξ)dξ =
1

2

∫

R3×R3×S2+
(f ′g′∗ + g′f ′∗ − fg∗ − gf∗)ψ(ξ)B(|ξ − ξ∗|, ϑ)dΩdξdξ∗

(3.5)

=
1

2

∫

R3×R3×S2+
(fg∗ + gf∗ − f ′g′∗ − g′f ′∗)ψ(ξ′)B(|ξ′ − ξ′∗|, ϑ)dΩdξ′dξ′∗

(3.6)

=
1

2

∫

R3×R3×S2+
(fg∗ + gf∗ − f ′g′∗ − g′f ′∗)ψ(ξ′)B(|ξ − ξ∗|, ϑ)dΩdξdξ∗

(3.7)

=
1

2

∫

R3×R3×S2+
(fg∗ + gf∗ − f ′g′∗ − g′f ′∗)ψ(ξ′∗)B(|ξ − ξ∗|, ϑ)dΩdξdξ∗

(3.8)

Taking the sum of equations (3.4), (3.5), (3.7), and (3.8) and dividing by four we

obtain

∫

R3

Q(f, g)ψ(ξ)dξ =
1

8

∫

R3×R3×S2+
(f ′g′∗+g′f ′∗−fg∗−gf∗)(ψ+ψ∗−ψ′−ψ′∗)B(|ξ−ξ∗|, ϑ)dΩdξdξ∗.

(3.9)

This relation expresses a basic property of the collision term, which is frequently

used. In particular, when g ≡ f , equation (3.9) becomes

∫

R3

Q(f, f)ψ(ξ)dξ =
1

4

∫

R3×R3×S2+
(f ′f ′∗−ff∗)(ψ+ψ∗−ψ′−ψ′∗)B(|ξ−ξ∗|, ϑ)dΩdξdξ∗.

(3.10)

Observe that the integral in (3.9) is zero independent of the particular functions f

and g, if

ψ + ψ∗ = ψ′ + ψ′∗ (3.11)

is valid almost everywhere in velocity space. Since the integral appearing in the

left-hand side of equation (3.10) is the rate of change of the average value of the

function ψ due to collisions, the functions satisfying (3.11) is called collision invari-

ants.

16
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Definition 3.1. A function ψ(ξ) is called the collision invariant if it satisfies equa-

tion (3.11), or, equivalently, if it satisfies

∫

R3

Q(f, g)ψ(ξ)dξ = 0. (3.12)

for all f, g ∈ C∞
0 (R3

ξ ,R+).

Remark 3.1. 0

(i) In fact, Q has five collision invariants in R3, which are

ψ0(ξ) = 1, ψi(ξ) = ξi (i = 1, 2, 3), ψ4(ξ) =
1

2
|ξ|2. (3.13)

This leads to the conservation laws of the Boltzmann equation (2.48) introduced

latter.

(ii) The first discussion of equation (3.11) is due to Boltzmann [17], who assumed

φ to be differentiable twice and arrived at the result that the most general solution

of equation (3.11) is given by

ψ(ξ) = A + B · ξ + C | ξ |2, (3.14)

where A, B, and C are constants.

3.2 The H-Theorem and the Maxwellian distribution

Now consider the case that the external force F = 0, and let f be a nonnega-

tive solution to (2.48) with rapid decay properties in (x, ξ). Then the Boltzmann

equation (2.48) becomes
∂f

∂t
= Q(f, f). (3.15)

Furthermore, if we let f be a density function of a gas, and since it is nonneg-

ative, we may define the H-function by

H(t) =

∫

R3×R3

f log(f)dxdξ. (3.16)
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Theorem 3.1 (The Boltzmann’s H-Theorem). If f is a nonnegative solution

to the equation (3.15), i.e., the Boltzmann equation (2.48) is under the assumptions

that f is a nonnegative solution to (2.48) with rapid decay properties in (x, ξ) and

F = 0, then
dH

dt
≤ 0. (3.17)

Proof. Note that

dH

dt
=

∫

R3×R3

∂

∂t

(
f log (f)

)
dxdξ (3.18)

=

∫

R3×R3

∂f

∂t
(1 + log (f))dxdξ (3.19)

=

∫

R3×R3

Q(f, f)(ξ)

(
1 + log (f)

)
dxdξ (3.20)

=

∫

R3×R3

Q(f, f)(ξ) log (f)dxdξ (3.21)

=

∫

R3×R3

Q(f, f)(ξ∗) log (f∗)dxdξ∗ (3.22)

=

∫

R3×R3

−Q(f, f)(ξ′) log (f ′)dxdξ (3.23)

=

∫

R3×R3

−Q(f, f)(ξ′∗) log (f ′∗)dxdξ∗ (3.24)

because ψ ≡ 1 is a collision invariant. From (3.21) to (3.24), we obtain

dH

dt
=

1

4

∫

R3×R3×R3×S2+
(f ′∗f

′ − ff∗) log

(
ff∗
f ′f ′∗

)
B(|ξ − ξ∗|, ϑ)dΩdξ∗dξdx. (3.25)

Since the logarithm function is increasing on (0,∞), then

(f ′∗f
′ − ff∗) log

(
ff∗
f ′f ′∗

)
≤ 0. (3.26)

Thus, from (3.25) and (3.26), we conclude that
dH

dt
≤ 0.

In above proof, we also obtain

18
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Corollary 3.1. If f is a nonnegative function such that log (f)Q(f, f) is integrable

and the manipulations of the previous section when ψ ≡ log (f), then the Boltzmann

inequality ∫

R3

log (f)Q(f, f)dξ ≤ 0. (3.27)

holds. In particular, the equality holds if and only if log (f) is a collision invariant

by equation (3.26), or equivalently,

f = exp (a + b · ξ + c | ξ |2), (3.28)

where a, b, and c are constants.

Remark 3.2. 0

(i) The integral

D(t,x) := −
∫

R3×R3×S2+
(f ′∗f

′ − ff∗) log

(
ff∗
f ′f ′∗

)
B(|ξ − ξ∗|, ϑ)dΩdξ∗dξ (3.29)

in the equation (3.25) is called the entropy dissipation integral. It is non-

negative as seen (3.26).

(ii) In the equation (3.28) c must be negative, since f ∈ L1(R3). If we rewrite

(3.28) as

f ≡ ρ

(2πRθ)3/2
exp

(
− | ξ − u |2

2Rθ

)
, (3.30)

where θ > 0 is the temperature and R is the gas constant. The function ap-

pearing in equation (3.30) is the celebrated Maxwell distribution or Maxwellian,

and is always denoted by M(ξ) or M[ρ,u,θ](ξ).

(iii) The Maxwellian is known to describe the velocity distribution of a gas in an

equilibrium state. Here (ρ, u, θ) are taken to be parameters, and if they are

constants, M is called a global Maxwellian while if they are functions of (t,x),

it is called a local Maxwellian.

(iv) Without loss of generality, we may take a global Maxwellian as

M ≡ M[1,0,1](ξ) =
1

(2π)3/2
exp

(
− |ξ|2

2

)
(3.31)
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in R3. Evidently, the global Maxwellian is a stationary solution of the Boltz-

mann equation (2.48) if the external force F is absent.

(v) By the Corollary 3.1, we conclude that

Q(f, f) = 0 ⇐⇒
∫

R3

log (f)Q(f, f)dξ = 0 ⇐⇒ f ≡ M(ξ).

Remark 3.3. The H-Theorem provides many physical implications as follows:

(i) It says that the entropy is increasing with time.

(ii) As far as the total entropy dissipation integral

∫

R3

Ddx

is bounded in t, the H-function may play a role of the Lyapounov function,

to prove that the solution of the Boltzmann equation converges to a limit.

Corollary 3.1 then asserts that this limit should be a Maxwellian; that is, the

Maxwellian is the only possible asyptotically stable stationary solution of the

Boltzmann equation.

(iii) Physically, this can be rephrased as the equilibrium state of the gas is uniquely

described by the Maxwellian, not by any other distribution functions. Thus,

one can say that the Maxwellian is built-in in the Boltzmann equation.

3.3 Grad’s angular cutoff potential

Note that the properties of the collision operator Q stated in the previous

section are valid only when the relevant integrals converge. However, there are two

different singular properties of the collision kernel, which are the strong singularity

at ϑ = π
2

in (2.15) due to the grazing collision and the unboundedness as |ξ| −→ ∞.

The first singularity does not guarantee the convergence of integral over S2 in

(3.1) under a mild assumption on f such that it is bounded. To avoid this difficulty,
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Grad [11] introduced an idea to cutoff the singularity at ϑ = π
2

assuming that bγ(ϑ)

vanishes near ϑ = π
2
. The assumption was highly successful for existence theory of

the Boltzmann equation in the sense that almost all progresses made after Grad

owe to his idea. This is known as the Grad’s angular cutoff assumption.

In the following sections, we assume that bγ(ϑ) is a nonnegative measurable

function satisfying ∫

S2+
bγ(ϑ)dΩ ≥ b0, bγ(ϑ) ≤ b1| cos ϑ| (3.32)

for some constants b0, b1 > 0.

Under this assumption, the collision operator Q becomes well-defined. To see

this, let M = M(ξ) be any Maxwellian and introduce the function

νM(ξ) =

∫

R3×S2+
B(|ξ − ξ∗|, ϑ)M(ξ∗)dΩdξ∗, (3.33)

which satisfies under the assumption (3.32),

ν0(1 + |ξ|)γ ≤ νM(ξ) ≤ ν1(1 + |ξ|)γ, (3.34)

for some positive constants ν0 and ν1. Notice that (3.34) only holds in the case on

hard potentials, i.e., γ ∈ [0, 1].
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4 Hydrodynamical Limits:Expansions and Decom-

position

In this section, we will use the decomposition of the solution into the macroscopic

and microscopic components to reformulate the Boltzmann equation

ft + ξ · ∇xf =
1

κ
Q(f, f), (t,x, ξ) ∈ R+ × R3 × R3, (4.1)

where κ is the Knudsen number introduced in section 1, as a system of conservation

laws for the macroscopic components coupled with an equation for the microscopic

components. This kind of thinking is similar to the Hilbert and Champman-Enskog

expansions where the leading term is a local Maxwellian with its macroscopic com-

ponents governed by the conservation laws, either the Euler equations or Navier-

Stokes equations.

4.1 A formal discussion on conservation laws

Note that if we multiply both sides of (4.1) by one of the element collision

invariants ψα (α = 0, 1, 2, 3, 4) which are given by (3.13), and integrate with respect

to ξ, we have ∫

R3

ψα(ft + ξ · ∇xf)dξ = 0

or

∂t

∫

R3

ψαfdξ +
3∑

j=1

∂xj

∫

R3

ξjψαfdξ = 0 (α = 0, 1, 2, 3, 4). (4.2)

If α = 0, then equation (4.2) becomes

ρt +
3∑

j=1

∂xj

∫

R3

ξjfdξ = 0,

which implies

ρt + divxm = 0.
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If α = i, i = 1, 2, 3, then equation (4.2) becomes

mi
t +

3∑
j=1

∂xj

∫

R3

ξjξifdξ = 0.

By (2.23) and (2.26), we get

mi
t +

3∑
j=1

∂xj(miuj + pij) = 0.

Similarly, if α = 4 we have

∂t

(
1

2
ρ | u |2 +ρE

)
+

3∑
j=1

∂xj

[
ρuj

(
1

2
| u |2 +E

)
+

3∑
i=1

uipji + qj

]
= 0.

Hence, form above discussion, we have the system of conservation laws:





ρt + divxm = 0,

mi
t +

(
3∑

j=1

(miuj + pij)

)

xj

= 0, i = 1, 2, 3,

[
ρ

(
|u|2
2

+ E

)]

t

+

{
3∑

j=1

[
ρuj

( | u |2
2

+ E

)
+

3∑
i=1

uipji + qj

]}

xj

= 0.

(4.3)

These equations have the so-called conservation form because they express the cir-

cumstance that a certain quantity neither created nor destroyed in a certain region

D ⊆ R3 because something is flowing through the boundary ∂D.

4.2 Hilbert expansion

In this subsection, we assume that κ is a small constant and use it as the

parameter for the expansion. In 1912, Hilbert [4] introduced the following famous

expansion of the solution to the Boltzmann equation:

f =
∞∑

n=0

κnfn. (4.4)
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By putting this expansion into the Boltzmann equation (4.1) and comparing the

terms by the order of κ, we have the following equations for fn:





Q0 = 0,

(fn−1)t + ξ · ∇xfn−1 = Qn, n ≥ 1,
(4.5)

where

Q0 = Q(f0, f0), Qn = 2Q(f0, fn) +
n−1∑

k=1

Q(fk, fn−k), n ≥ 1. (4.6)

Hence, by the Remark 3.2 (iv), the first equation in (4.6) implies that f0 is a local

Maxwellian, i.e.,

f0 = M0 ≡ M[ρ0,u0,θ0] =
ρ0

(2πRθ0)3/2
exp

(
− | ξ − u0 |2

2Rθ0

)
, (4.7)

where ρ0, u0, and θ0 are functions of (t,x), and f0 satisfies

(f0)t + ξ · ∇xf0 = Q1. (4.8)

Here, Q1 is a microscopic component which is orthogonal to the five collision in-

variants ψα(ξ), α = 0, 1, · · · , 4. The solvability condition for (4.8) gives the system

of conservation laws ∫

R3

ψα((f0)t + ξ · ∇xf0)dξ = 0, (4.9)

which are exactly the compressible Euler equations





ρ0
t +∇x · (ρ0u0) = 0,

(ρ0u0)t +∇x · (ρ0u0 ⊗ u0) +∇xp
0 = 0,

[
ρ0(E0 + 1

2
|u0|2)]

t
+∇x ·

{
[ρ0(E0 + 1

2
|u0|2) + p0]u

}
= 0,

(4.10)

where the pressure function is given by p0 = Rρ0θ0 and the internal energy E0 =

3
2
Rθ0.

For n ≥ 1, let

Sn =
n−1∑

k=1

Q(fk, fn−k), (4.11)
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and

LM0h = 2Q(h, f0), (4.12)

which is the linearized collision operator with respect to the local Maxwellian M0.

Then under the solvability condition for the second equation in (4.5)

∫

R3

ψα

(
(fn−1)t + ξ · ∇xfn−1

)
dξ = 0, (4.13)

fn can be represented in terms of fk for k = 0, 1, · · · , n− 1 by

fn =
4∑

α=0

cαψαM0 + L−1
(
(fn−1)t + ξ · ∇xfn−1 − Sn

)
. (4.14)

Thus, the conservation laws

∫

R3

ψα

(
(fn)t + ξ · ∇xfn

)
dξ = 0, α = 0, 1, · · · , 4, (4.15)

are the systems of linearized Euler equations around the fluid variables (ρ0, u0, θ0)

for the macroscopic components in fn.

Since to determine the value of fn in the Hilbert expansion involves the dif-

ferentiation of fn−1, by induction, the convergence of this expansion can only be

expected when the solution is infinitely differentiable and bounded with respect to

the Knudsen number κ. Therefore, in general, the Hilbert expansion does not con-

vergence, especially in the present of initial layer, shock layer and boundary layer

where the value of the differentiation grows when κ decreases.

4.3 Chapman-Enskog expansion

The Chapman-Enskog expansion was introduced by Chapman and Enskog in

1916 and 1917 independently. The advantage of this expansion is that the first order

correction yields the Navier-Stokes equations for the macroscopic components so

that the viscosity and heat conductivity are correctly represented.

Formally, we can write
∂f

∂t
=

∞∑
n=0

κn ∂(n)fn

∂t
. (4.16)
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Since the conserved quantities are unexpanded, the consistency requires that for

n ≥ 1, ∫

R3

ψαfndξ = 0, α = 0, 1, 2, 3, 4, (4.17)

which implies that all the function fn for n ≥ 1 are microscopic. Substituting (4.4)

and (4.16) into the Boltzmann equation (4.1), we have





Q0 = Q(f0, f0) = 0,

n−1∑

k=0

∂(k)fn−k−1

∂t
+ ξ · ∇xfn−1 = 2Q(f0, fn) + Sn, n ≥ 1,

(4.18)

where the notation has the same meaning as in the last subsection. However, notice

that here each fn is a functional of the conserved quantities which are not expanded.

Again, the first equation in (4.18) implies that f0 must be a local Maxwellian, i.e.,

f0 = M ≡ M[ρ,u,θ] =
ρ

(2πRθ)3/2
exp

(
− | ξ − u |2

2Rθ

)
. (4.19)

Furthermore, for n = 1, the second equation in (4.18) can be written as

∂(0)f0

∂t
+ ξ · ∇xf0 = LMf1. (4.20)

The solvability condition for (4.20) immediately gives the following Euler equations





∂(0)ρ

∂t
= − ∂

∂xi
(ρui),

∂(0)ui

∂t
= −uj ∂ui

∂xj
− 1

ρ

∂p

∂xi
, i, j = 1, 2, 3,

∂(0)θ

∂t
= −ui ∂θ

∂xi
− 2

3
θ
∂ui

∂xi
,

(4.21)

where p = Rρθ, here and in what follows, the summation is over any repeated

indices. By plugging the expression of the local Maxwellian of f0 into the equation

(4.20), we have

1

ρ
MB0ρ +

1

θ

( |c|2
2Rθ

− 3

2

)
MB0θ +

1

Rθ
cjB0uj = LMf1, (4.22)
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where c = ξ−u is the random velocity introduced in (2.22) and B0 is the following

linear operator

B0 ≡ ∂(0)

∂t
+ ξ · ∇x. (4.23)

Now we can substitute the time derivative ∂(0)

∂t
of (4.21) into the equation (4.22) to

obtain

( |c|2
2Rθ

− 5

2

)
M

ci

θ

∂θ

∂xi
+

1

Rθ

(
cicj − 1

3
|c|2δij

)
M

∂ui

∂xj
= LMf1. (4.24)

By using the Burnett functions defined by





Aj(ξ) = |ξ|2−5
2

ξj, j = 1, 2, 3,

Bij(ξ) = ξiξj − 1
3
δij | ξ |2, i, j = 1, 2, 3,

(4.25)

we have

f1 = L−1
M

(√
RAi

( c√
Rθ

)
M

∂θ

∂xi
+ Bij

( c√
Rθ

)
M

∂ui

∂xj

)
. (4.26)

Notice that we have used the fact that the operator LM is invertible in the micro-

scopic space which is the space orthogonal to the null space of LM.

Before going further, we review the properties of the Burnett functions.

Proposition 4.1. Let

A′ = L−1
M A, B′ = LMB. (4.27)

Then there exist positive functions a(r) and b(r) defined on [0,∞) such that

A′(ξ) = −a(|ξ|)A(ξ), B′(ξ) = −b(|ξ|)B(ξ). (4.28)

And the following properties hold, where 〈·, ·〉 denotes the inner product of L2(R3).

(1) 〈−Ai, A
′
i〉 is positive and independent of i.

(2) 〈Ai, A
′
j〉 = 0 for any i 6= j.

(3) 〈Ai, B
′
jk〉 = 0 for any i, j, k.
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(4) 〈Bij, B
′
kl〉 = 〈Bkl, B

′
ij〉 = 〈Bji, B

′
kl〉 holds and is independent of i, j for any

fixed k, l.

(5) −〈Bij, B
′
ij〉 is positive and independent of i, j when i 6= j.

(6) −〈Bii, B
′
jj〉 is positive and independent of i, j when i 6= j.

(7) −〈Bii, B
′
ii〉 is positive and independent of i.

(8) 〈Bij, B
′
kl〉 = 0 unless either (i, j) = (k, l) or (l, k), or i = j and k = l.

(9) 〈Bii, B
′
ii〉 − 〈Bii, B

′
jj〉 = 2〈Bij, B

′
ij〉 holds for any i 6= j.

These proofs are quite technical and can be found in [23].

With the Burnett functions, the viscosity µ(θ) and heat condutivity coefficient

ℵ(θ) can be represented by





µ(θ) = −κRθ

∫

R3

Bij

(
c√
Rθ

)
L−1

M

(
Bij

(
c√
Rθ

)
M

)
dξ > 0, i 6= j,

ℵ(θ) = −κR2θ

∫

R3

Al

(
c√
Rθ

)
L−1

M

(
Al

(
c√
Rθ

)
M

)
dξ > 0,

(4.29)

Note that these coefficients are independent of the density function ρ.

Now, if we put f1 into the conservation laws to include the first order approxi-

mation, then the conservation laws take the form

∫

R3

ψα

(
(f0)t + ξ · ∇x(f0 + κf1)

)
dξ = 0. (4.30)

Since f1 is microscopic, its contribution to the conservation of mass is zero. And

its contribution to the equations of conservation of momentum and energy is rep-

resented by the stress tensor and heat flux:

p
(1)
ij = κ

∫

R3

cicjf1dξ, q
(1)
i =

κ

2

∫

R3

ci|c|2f1dξ. (4.31)
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With the proposition 4.1, it is straightforward to calculate the stress tensor and

heat flux in terms of the fluid variables:




p
(1)
ij = −µ(θ)

(
∂ui

∂xj
+

∂uj

∂xi

)
+

2

3
µ(θ)

∂uk

∂xk
δij,

q
(1)
i = −ℵ(θ)

∂θ

∂xi
.

(4.32)

In summary, the first order approximation in the Chapman-Enskog expansion is

the compressible Navier-Stokes equations:





ρt + divxm = 0,

mi
t + divx(m

iu) + pxi =
[
µ(θ)

(
ui

xj + uj
xi − 2

3
δijdivxu

)]
xj , i, j = 1, 2, 3,

[
ρ

(
E + 1

2
|u|2

)]

t

+ divx

{[
ρ

(
E + 1

2
|u|2

)
+ p

]
u

}

= µ(θ)ui

(
ui

xj + uj
xi − 2

3
δijdivxu

)
+

(ℵ(θ)θxi

)
xj .

(4.33)

Again, similar but tedious calculation can be used to find the next terms, f2, f3, · · · ,
in the Chapman-Enskog expansion, however, without good mathematical theory.

4.4 Micro-macro decomposition

In this subsection, we study a micro-macro decomposition of the Boltzmann

equation (4.1), which is based on the decomposition of the solution into its macro-

scopic (fluid dynamic) and microscopic (kinetic) component, we can reformulate the

Boltzmann equation into a system of conservation laws for the time evolution of

the macroscopic variables and an equation for the time evolution of the microscopic

variable. The main idea is not to have any approximation, but a complete descrip-

tion of the solutions to the Boltzmann equation so that the analytic techniques

from the theory of conservation laws can be applied in the study of the Boltzmann

equation.
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To see this, let f(t,x, ξ) be the solution to the Boltzmann equation (4.1),

we will decompose it into the macroscopic fluid part, the local Maxwellian M =

M(t,x, ξ) = M[ρ,u,θ](ξ), and the microscopic, non-fluid part G = G(t,x, ξ),

f(t,x, ξ) = M(t,x, ξ) + G(t,x, ξ). (4.34)

The local Maxwellian M(t,x, ξ) is constructed from the fluid variables, the five con-

served quantities, the mass density ρ(t,x), momentum m(t,x) and energy E(t,x)+

1
2
| u(t,x) |2 of the Boltzmann equation:





ρ(t,x) ≡
∫

R3

f(t,x, ξ)dξ,

mi(t,x) ≡
∫

R3

ψif(t,x, ξ)dξ, (i = 1, 2, 3),

ρ
(
E + 1

2
| u |2 )

(t,x) ≡
∫

R3

ψ4f(t,x, ξ)dξ,

(4.35)

and

M ≡ M[ρ,u,θ](ξ) ≡ ρ

(2πRθ)3/2
exp

(
− | ξ − u |2

2Rθ

)
. (4.36)

With respect to the local Maxwellian, we define an inner product in ξ ∈ R3 as

〈h, g〉M ≡
∫

R3

1

M
h(ξ)g(ξ)dξ (4.37)

for functions h, g of ξ such that the integral is well defined. Using this inner product

with respect to this Maxwellian, the subspace spanned by the collision invariants

has the following set of orthogonal basis:




χ0 ≡ χ0(ξ; ρ, u, θ) ≡ 1√
ρ
M,

χi ≡ χi(ξ; ρ, u, θ) ≡ ξi − ui

√
Rθρ

M, for i = 1, 2, 3,

χ4 ≡ χ4(ξ; ρ, u, θ) ≡ 1√
6ρ

( | ξ − u |2
Rθ

− 3

)
M,

〈χα, χβ〉 = δαβ for α, β = 0, 1, 2, 3, 4.

(4.38)
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With this basis, we can define the macroscopic projection P0 and microscopic pro-

jection P1 as follows:

P0h ≡
4∑

α=0

〈h, χα〉Mχα, (4.39)

P1h = h−P0h. (4.40)

Note that the operators P0 and P1 are projections, that is,

P0P0 = P0, P1P1 = P1, P0P1 = P1P0 = 0.

We view the above decomposition of Boltzmann equation as the linearization around

the local Maxwellian states so that the linear collision operator LM is

L ≡ L[ρ,u,θ]g = Q(M + g,M + g)−Q(g, g). (4.41)

Definition 4.1. A function h(ξ) is called non-fluid if it gives raise to zero conserved

quantities, that is, ∫

R3

h(ξ)ψαdξ = 0, α = 0, 1, 2, 3, 4. (4.42)

Note that functions in the range of the microscopic projection P1 are non-

fluid. It is clear that for the solution f(t,x, ξ) of the form (4.34) of the Boltzmann

equation (4.1), we have

P0f = M, P1f = G.

From the decomposition of the solution f = M + G, the Boltzmann equation (4.1)

becomes

(M + G)t + ξ · ∇x(M + G) =
1

κ

(
2Q(G,M) + Q(G,G)

)
. (4.43)

We now decompose the Boltzmann equation. Using the same method as above,

if we multiply equation (4.43) by ψα (α = 0, 1, 2, 3, 4) and integrate with respect
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to ξ we obtain the system of conservation laws:




ρt + divxm = 0,

mi
t +

(
3∑

j=1

miuj

)

xj

+ pxi +

∫

R3

ψi(ξ · ∇xG)dξ = 0, i = 1, 2, 3,

[
ρ

(
|u|2
2

+ E

)]

t

+
3∑

j=1

{
uj

[
ρ

( | u |2
2

+ E

)
+ p

]}

xj

+

∫

R3

ψ4(ξ · ∇xG)dξ = 0.

(4.44)

Here p is the pressure for the monatomic gases same as Equation(2.33).

The microscopic equation is obtained by applying the microscopic projection

P1 to the Boltzmann equation (4.43). Note that Mt, as a function of ξ, is in the

space spanned by χα, α = 0, 1, 2, 3, 4. Hence

P0Mt = Mt.

Note also that P0h = 0 if
∫

R3

hψαdξ = 0, α = 0, 1, 2, 3, 4.

Thus the projection of collision terms under P0 is zero. We also have
∫

R3

Gtψαdξ = ∂t

∫

R3

Gψαdξ = 0.

Therefore, we have

P0Gt = 0,

and so

P1(Mt + Gt) = (Mt + Gt)−P0(Mt + Gt) = Gt.

With these, the microscopic equation is

Gt + P1

(
ξ · ∇xG + ξ · ∇xM

)
=

1

κ
LG +

1

κ
Q(G,G). (4.45)

From (4.45), we have

G = κL−1

(
P1ξ · ∇xM

)
+ L−1

(
κ
(
∂tG + P1ξ · ∇xG

)−Q(G,G)

)

= κL−1

(
P1ξ · ∇xM

)
+ Θ,

(4.46)
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where

Θ := L−1

(
κ
(
∂tG + P1ξ · ∇xG

)−Q(G,G)

)
,

and substitute this into (4.44) yields the following fluid-type system for the macro-

scopic components:





ρt + divxm = 0,

mi
t +

(
3∑

j=1

miuj

)

xj

+ pxi + κ

∫

R3

ψi(ξ · ∇xL
−1P1ξ · ∇xM)dξ

+

∫

R3

ψi

(
ξ · ∇xΘ

)
= 0, i = 1, 2, 3,

[
ρ

(
|u|2
2

+ E

)]

t

+
3∑

j=1

{
uj

[
ρ

( | u |2
2

+ E

)
+ p

]}

xj

+ κ

∫

R3

ψ4(ξ · ∇xL
−1P1ξ · ∇xM)dξ

+

∫

R3

ψ4

(
ξ · ∇xΘ

)
= 0.

(4.47)

In the above system, the terms

−κ

∫

R3

ψi(ξ · ∇xL
−1P1ξ · ∇xM)dξ = −κ

∫

R3

ψi(ξ · ∇xL
−1
[ρ,u,θ]P1ξ · ∇xM[ρ,u,θ])dξ

= −κ

∫

R3

ψi(ξ · ∇xL
−1
[1,u,θ]P1ξ · ∇xM[1,u,θ])dξ

and

−κ

∫

R3

ψ4(ξ · ∇xL
−1P1ξ · ∇xM)dξ = −κ

∫

R3

ψ4(ξ · ∇xL
−1
[ρ,u,θ]P1ξ · ∇xM[ρ,u,θ])dξ

= −κ

∫

R3

ψ4(ξ · ∇xL
−1
[1,u,θ]P1ξ · ∇xM[1,u,θ])dξ

are the viscosity and heat conductivity terms which are the same as those in the

compressible Navier-Stokes equations; and they are independent of the density gra-

dient ∇xρ. In fact, with the Burnett functions defined by (4.25), and the viscosity

coefficient µ(θ) and heat conductivity coefficient ℵ(θ) defined by (4.29), the fluid-
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type system (4.47) can be written as





ρt + divxm = 0,

mi
t +

(
3∑

j=1

miuj

)

xj

+ pxi

=
3∑

j=1

[
µ(θ)

(
ui

xj + uj
xi − 2

3
δij divxu

)]

xj

−
∫

R3

ψi

(
ξ · ∇xΘ

)
dξ, i = 1, 2, 3,

[
ρ

(
|u|2
2

+ E

)]

t

+
3∑

j=1

{
uj

[
ρ

( | u |2
2

+ E

)
+ p

]}

xj

=
3∑

j=1

[
µ(θ)

(
ui

xj + uj
xi − 2

3
δij divxu

)]

xj

+
3∑

j=1

(
ℵ(θ)θxj

)

xj

−
∫

R3

ψ4

(
ξ · ∇xΘ

)
dξ.

(4.48)

From this fluid-type system, we can easily deduce the structure of the compress-

ible Euler and the compressible Navier-Stokes equations. For example, when the

Knudsen number κ is set to be zero, the system (4.48) becomes the compressible

Euler equations; and when Θ is set to be zero in (4.48), it becomes the compressible

Navier-Stokes equations. These fluid equations as derived through the Hilbert and

Chapman-Enskog expansions are approximations to the Boltzmann equation. How-

ever, the above system is part of Boltzmann equation. Nevertheless, our approach

is consistent in spirit with these expansions in that the higher order terms beyond

first order in the expansions must satisfy a solvability condition, which means that

these terms are microscopic. Furthermore, the above analysis also indicates that if

we deduce the compressible Navier-Stokes equations from the Boltzmann equation,

the viscosity coefficient µ(θ) > 0 and the heat conductivity coefficient ℵ(θ) > 0 are

smooth functions of the temperature θ.
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5 Solutions in a Weighted Lebesgue Space

This section we are going to discuss the initial-value problem for the Boltzmann

equation for the hard-sphere monatomic gas in the whole space R3:




ft + ξ · ∇xf = Q(f, f), (t,x, ξ) ∈ R+ × R3 × R3

f(0,x, ξ) = f0(x, ξ), (x, ξ) ∈ R3 × R3,
(5.1)

where

Q(f, g)(ξ) ≡ 1

2

∫

R3×S2+
(f ′g′∗ + g′f ′∗ − fg∗ − gf∗)B(|ξ − ξ∗|, ϑ)dΩdξ∗,

S2
+ =

{
Ω ∈ S2 : (ξ − ξ∗) · Ω ≥ 0

}
,

and

ξ′ = ξ − [
(ξ − ξ∗) · Ω

]
Ω, ξ′∗ = ξ∗ +

[
(ξ − ξ∗) · Ω

]
Ω

as before.

5.1 Preliminaries

In this subsection, we give the definition of the mild solution, and present some

lemmas which will be needed in the proofs of our main results.

Motivation for definition of mild solutions. We first consider the case for

the collision term Q(f, f) ≡ 0 in (5.1) so that the Boltzmann equation in (5.1)

becomes the free transport equation with initial data:




ft + ξ · ∇xf = 0, (t,x, ξ) ∈ R+ × R3 × R3,

f(0,x, ξ) = f0(x, ξ), (x, ξ) ∈ R3 × R3.
(5.2)

Fix any point (t,x, ξ) ∈ R+ × R3 × R3 and define

z(s) := f(t + s,x + sξ, ξ) for s ∈ R. (5.3)
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Then
d

ds
z(s) = ∇xf(t + s,x + sξ, ξ) · ξ + ft(t + s,x + sξ, ξ) = 0.

Hence, z is a constant function of s, and therefore for each point (t,x, ξ), f is

constant on the line through (t,x, ξ) with the direction (1, ξ, 0) ∈ R5. Furthermore,

since f(0,x− tξ, ξ) = f0(x− tξ, ξ), we deduce

f(t,x, ξ) = f0(x− tξ, ξ), (t,x, ξ) ∈ R+ × R3 × R3. (5.4)

Hence, if (5.2) has a sufficiently regular solution f , it must certainly be given by

(5.4). And conversely, we can check directly that if f0 is C1, then f defined by (5.4)

is indeed a solution of (5.2).

Now, we return to the I.V.P. (5.1). As above, fix (t,x, ξ) ∈ R+ ×R3 ×R3 and,

inspired by the calculation above, set z(s) := f(t + s, x + sξ, ξ) for s ∈ R. Then

d

ds
z(s) = ∇xf(t+s,x+sξ, ξ)·ξ+ft(t+s,x+sξ, ξ) = Q(f, f)(t+s,x+sξ, ξ). (5.5)

Thus,

f(t,x, ξ)− f0(x− tξ, ξ) = z(0)− z(−t)

=

∫ 0

−t

d

ds
z(s)ds

=

∫ 0

−t

Q(f, f)(t + s,x + sξ, ξ)ds

=

∫ t

0

Q(f, f)(s,x + (s− t)ξ, ξ)ds,

which implies that

f(t,x, ξ) = f0(x− tξ, ξ) +

∫ t

0

Q(f, f)(s,x + (s− t)ξ, ξ)ds. (5.6)

The definition of mild solutions can be stated as follows:

Definition 5.1. A nonnegative function f ∈ C([0, T ); L1
+(R3

x × R3
ξ)) is a mild

solution to (5.1) with a nonnegative initial data f0 if and only if for all t ∈ [0, T )

and a.e. (x, ξ) ∈ R3 × R3, f satisfies the integral equation (5.6).
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Next, we define a weighted Banach space as follows: Let M ≡ M(ξ) be any

Maxwellian, and let ω := M
−1
2 . Define

L1
ω(R3

x × R3
ξ) =

{
f ∈ L1(R3

x × R3
ξ)

∣∣∣∣ ‖f‖L1
ω

< +∞
}

, (5.7)

where

‖f‖L1
ω

:=

∫

R3×R3

| f | ω dξdx. (5.8)

To prove our main results, we now state the assumptions on cross section and

the collision frequency as follows:

(A1) The cross section B(|ξ − ξ∗|, ϑ) satisfies (2.15).

(A2) bγ(ϑ) is a nonnegative measurable function satisfying (3.32) for γ ∈ [0, 1] and

inequality (3.34) holds.

Under these assumptions, we have the following estimates for Q.

Lemma 5.1. Under the assumptions (A1) and (A2), for any p ∈ [1,∞], k ∈ [0, 1],

and f, g ∈ Lp(R3
x × R3

ξ), there exists a constant C > 0 such that

∥∥∥ν−k
M ω

(
Q(f, f)−Q(g, g)

)∥∥∥
Lp

≤ C

{(
‖ν1−k

M ωf‖Lp + ‖ν1−k
M ωg‖Lp

)
‖ω(f − g)‖Lp +

(
‖ωf‖Lp + ‖ωf‖Lp

)
‖ν1−k

M ω(f − g)‖Lp

}
,

(5.9)

where ‖ · ‖Lp ≡ ‖ · ‖Lp(R3
x×R3

ξ).

Proof. Write

Q(f, g) =
1

2
[Q+(f, g) + Q+(g, f)−Q−(f, g)−Q−(g, f)], (5.10)

where

Q+(f, g) =

∫

R3×S2+
f ′g′∗B(|ξ − ξ∗|, ϑ)dΩdξ∗, (5.11)
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and

Q−(f, g) =

∫

R3×S2+
fg∗B(|ξ − ξ∗|, ϑ)dΩdξ∗. (5.12)

Then we can write

Q(f, f)−Q(g, g) = [Q+(f, f)−Q+(g, g)] + [Q−(g, g)−Q−(f, f)]. (5.13)

First, we prove this lemma for Q+. To do this, put f = M
1
2 h1 and g = M

1
2 h2. By

the conservation laws of collision (2.8) and the definition of Maxwellian (3.30), we

have

M(ξ′)M(ξ′∗) = M(ξ)M(ξ∗). (5.14)

Hence, the Hölder inequality gives

|Q+(f, f)−Q+(g, g)|

≤
∫

R3×S2+
|f ′f ′∗ − g′g′∗|B(|ξ − ξ∗|, ϑ) dΩdξ∗

=

∫

R3×S2+
M(ξ)

1
2M(ξ∗)

1
2 |h1(ξ

′)h1(ξ
′
∗)− h2(ξ

′)h2(ξ
′
∗)|B(|ξ − ξ∗|, ϑ) dΩdξ∗

≤
( ∫

R3×S2+
M(ξ)

q
2M(ξ∗)

q
2 B(|ξ − ξ∗|, ϑ)q dΩdξ∗

)1/q( ∫

R3×S2+
|h1(ξ

′)h1(ξ
′
∗)− h2(ξ

′)h2(ξ
′
∗)|p dΩdξ∗

)1/p

≤ CνM(ξ)M(ξ)
1
2

(∫

R3×S2+
|h1(ξ

′)h1(ξ
′
∗)− h2(ξ

′)h2(ξ
′
∗)|p dΩdξ∗

)1/p

≤ C
(
νM(ξ′) + νM(ξ′∗)

)
M(ξ)

1
2

(∫

R3×S2+
|h1(ξ

′)h1(ξ
′
∗)− h2(ξ

′)h2(ξ
′
∗)|p dΩdξ∗

)1/p

,

where p ∈ [1,∞), 1
p

+ 1
q

= 1,

∫

R3×S2+
M(ξ∗)

q
2 B(|ξ − ξ∗|, ϑ)q dΩdξ∗ ≤ C

(
1 + |ξ|)γq ≤ CνM(ξ)q
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by assumption (A2), and

νM(ξ) ≤ C
(
1 + |ξ|)γ

= C
(
1 + |ξ′ − [(ξ′ − ξ′∗) · Ω]Ω|)γ

≤ C
(
2 + |ξ′|+ |ξ′∗|

)γ

≤ C
(
νM(ξ′) + νM(ξ′∗)

)

by (2.13) and (3.34). Here C is a positive constant depending on b∗, ν0, ν1, ρ, u, θ.

Since the Jacobian of the change of variable (ξ, ξ∗,x, Ω) ←→ (ξ′, ξ′∗,x, Ω) is unity,

then by the Minkowski’s inequality, we can obtain
∥∥∥ν−k

M ω
(
Q+(f, f)−Q+(g, g)

)∥∥∥
Lp

≤ C

(∫

R3×R3×R3×S2+

(
νM(ξ′) + νM(ξ′∗)

)(1−k)p|h1(ξ
′)h1(ξ

′
∗)− h2(ξ

′)h2(ξ
′
∗)|p dΩdξ′∗dξ′dx

)1/p

≤ C

{∫

R3×R3×R3×S2+

[(
νM(ξ′)1−k + νM(ξ′∗)

1−k
)(|h1(ξ

′)||h1(ξ
′
∗)− h2(ξ

′
∗)|+ |h1(ξ

′)− h2(ξ
′)||h2(ξ

′
∗)|

)]p

dΩdξ′∗dξ′dx
}1/p

≤ C

{(
‖ν1−k

M ωf‖Lp + ‖ν1−k
M ωg‖Lp

)
‖ω(f − g)‖Lp +

(
‖ωf‖Lp + ‖ωf‖Lp

)
‖ν1−k

M ω(f − g)‖Lp

}
.

This proves (5.9) for Q+ for the case p ∈ [1,∞). The case p = ∞ can be proved

similarly, and the proof for Q− is also similar. Now, the proof of this lemma is

complete.

Lemma 5.2. Under the assumptions (A1) and (A2), for any f, g ∈ L1
ω(R3

x × R3
ξ),

there exists a constant C > 0 such that

‖Q(f, f)−Q(g, g)‖L1
ω
≤ C‖νM‖L∞

(‖f‖L1
ω

+ ‖g‖L1
ω

)‖f − g‖L1
ω
. (5.15)
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Proof. Setting k = 0 and p = 1 in (5.9), and using the Hölder inequality, we obtain

‖Q(f, f)−Q(g, g)‖L1
ω

≤ C

{(
‖νMωf‖L1 + ‖νMωg‖L1

)
‖f − g‖L1

ω
+

(
‖f‖L1

ω
+ ‖f‖L1

ω

)
‖νMω(f − g)‖L1

}

≤ 2C‖νM‖L∞
(‖f‖L1

ω
+ ‖g‖L1

ω

)‖f − g‖L1
ω
,

as desired.

Furthermore, we recall that a mapping F : X −→ X, where X is a Banach

space with norm ‖·‖X, is said to be a contraction of X if there is a positive constant

α < 1 such that

‖ F (u)− F (v) ‖X ≤ α ‖ u− v ‖X, ∀u,v ∈ X. (5.16)

Lemma 5.3 (Banach’s Fixed Point Theorem). A contraction F of a Banach

space X has a unique fixed point.

Finally, in order to derive our main result for stability of mild solutions, we

also need a fundamental inequality which is the well-known Gronwall’s inequality :

Lemma 5.4 (Gronwall’s Inequality). Let u : [a, b] −→ [0,∞) and v : [a, b] −→
R be two continuous functions, and let C be a constant. If

v(t) ≤ C +

∫ t

a

v(s)u(s) ds (5.17)

for t ∈ [a, b], then we have

v(t) ≤ C exp

( ∫ t

a

u(s) ds

)
(5.18)

for t ∈ [a, b].
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5.2 Existence of the mild solution

Now, we give the crucial estimate for the local existence of the mild solution to

(5.1) by the Banach’s fixed point theorem. To do this, given T > 0, let us denote

the closed subset X0 of L1
ω(R3

x × R3
ξ) by

X0 =

{
f ∈ X

∣∣∣∣ ‖f‖L1
ω
≤ 2M0 for some M0 > 0

}
, (5.19)

and

C([0, T ]; X0) =

{
f(t,x, ξ)

∣∣∣∣ ‖ f ‖< ∞
}

, (5.20)

where

‖ f ‖:= max
t∈[0,T ]

‖ f ‖L1
ω(R3

x×R3
ξ) . (5.21)

Theorem 5.1. Under the assumptions (A1) and (A2), if f0 ≥ 0, f0 ∈ L1
ω(R3

x ×
R3

ξ) ∩ C(R3
x × R3

ξ) and ‖f0‖L1
ω
≤ M0, then there exists a unique mild solution

f ∈ C([0, T ]; X0) to the initial-value problem (5.1).

Proof. Let X := C([0, T ]; X0). We will apply Banach’s fixed point theorem in the

space X. From the integral equation (5.6), we may define a mapping F on X by

F (f) = f0(x− tξ, ξ) +

∫ t

0

Q(f, f)(s,x + (s− t)ξ, ξ)ds, t ∈ [0, T ]. (5.22)

Assume ‖f0‖L1
ω
≤ M0, then by lemma 5.2, we see that F (f) ∈ X. Furthermore, for

f, g ∈ X, we have

F (f)− F (g) =

∫ t

0

(Q(f, f)−Q(g, g))(s,x + (s− t)ξ, ξ)ds, t ∈ [0, T ]. (5.23)

Apply lemma 5.2 again, we obtain

‖ F (f)− F (g) ‖L1
ω
≤

∫ t

0

( ∫

R3×R3

| (Q(f, f)−Q(g, g))(s,x + (s− t)ξ, ξ) | ω dξdx

)
ds

≤ 4M0CT‖νM‖L∞‖f − g‖

= α ‖ f − g ‖,
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where α := 4M0CT‖νM‖L∞ . Maximizing the left hand side over all t ∈ [0, T ], we

get

‖ F (f)− F (g) ‖≤ α ‖ f − g ‖ . (5.24)

Thus F is a contraction, provided T > 0 is so small that α < 1, and so F has a

unique fixed point f in X by Banach’s fixed point theorem. Therefore, (5.1) has a

unique mild solution f in X.

5.3 Uniform stability of solutions

In this subsection, we deal with the uniform L1
ω-type stability estimate.

Definition 5.2. Suppose that the Banach space X with norm ‖ · ‖X is a solution

space where the Cauchy problem is well-posed, and that f(t), g(t) ∈ X, t ≥ 0, are

two solutions to the Cauchy problem with initial data f0, g0 ∈ X, respectively. We

say that the solution to the Cauchy problem is uniformly stable in time if there exists

a constant C, which is independent of t, such that

‖(f − g)(t)‖X ≤ C‖f0 − g0‖X, ∀t ≥ 0. (5.25)

Theorem 5.2. Under the assumptions (A1) and (A2), if f(t,x, ξ) and g(t,x, ξ)

are mild solutions to (5.1) corresponding to initial data f0(x, ξ) and g0(x, ξ) in the

closed subset X0 of L1
ω(R3

x × R3
ξ), respectively, then, for any t ≥ 0, there exists a

constant C > 0 such that

‖(f − g)(t)‖L1
ω
≤ C‖f0 − g0‖L1

ω
. (5.26)

Proof. If f and g are mild solutions to (5.1), then we can write

f(t,x, ξ) = f0(x− tξ, ξ) +

∫ t

0

Q(f, f)(s,x + (s− t)ξ, ξ)ds

and

g(t,x, ξ) = g0(x− tξ, ξ) +

∫ t

0

Q(g, g)(s,x + (s− t)ξ, ξ)ds

42



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

for t ≥ 0. Taking difference of the above two equations, we obtain

(f − g)(t,x, ξ) = (f0 − g0)(x− tξ, ξ) +

∫ t

0

(Q(f, f)−Q(g, g))(s,x + (s− t)ξ, ξ)ds.

Then by lemma 5.2, we have

‖(f − g)(t)‖L1
ω
≤ ‖f0 − g0‖L1

ω
+

∫ t

0

u‖f − g‖L1
ω
(s) ds,

where

u := 4M0C‖νM‖L∞ .

Hence, by lemma 5.4, we obtain

‖(f − g)(t)‖L1
ω
≤ ‖f0 − g0‖L1

ω
exp

( ∫ t

0

u ds

)
,

as desired.
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[18] T.S.Carleman. Sur la théorie de l’équation intégro-differentielle de Boltzmann.

Acta.Math,60, pages p.91–146, 1932.

[19] S. Ukai. On the existence of global solutions of mixed problem for non-linear

Boltzmann equation. Proc. Japan Acad. 50, 1974. pp. 179�184.

[20] S. Ukai and T. Yang. The Boltzmann equation in the space L2 ∩ L∞β : Global

and time-periodic solutions. Anal. Appl. 4, 2006. pp. 263�310.

[21] S. Ukai and T. Yang. Mathematical Theory of Boltzmann Equation. Liu Bie

Ju Centre for Mathematical Sciences, Lecture Notes Series, No. 8, 2006.

[22] T. Yang and H.-J. Zhao. A new energy method for the Boltzmann equation.

J. Math. Phys. 47, 2006. p. 053301.

45



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

[23] Shih-Hsien Yu. Hydrodynamic limits with shock waves of the Boltzmann e-

quation. Commun. Pur. Appl. Math, 58, pages 409–443, 2005.

46


