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Abstract

In this paper, we applied the Ensemble Empirical Mode Decomposition (EEMD)
based Back-propagation Neural Network (BPNN) learning paradigm to two different
topics for forecasting: the hourly electricity consumption in NCCU and the historical
daily gold price. The two data series are both non-linear and non-stationary. By
applying EEMD, they were decomposed into a finite, small number of meaningful
Intrinsic Mode Functions (IMFs). Depending on the physical meaning of IMFs, they
can be regarded as important variables which are input into BPNN for training.

We also use moving-window method in the prediction process. In addition, cubic
spline interpolation as well as extrapolation as our strategy is applied to electricity
consumption forecasting, these two methods are used for smoothing the data and
finding local trend to improve accuracy of results.

The prediction results using our methods and strategy resulted in good accuracy.
However, for further accuracy, we used the ensemble average method, and compared
the results with the data produced without applying the ensemble average method.
By using the ensemble average, the outcome was more precise with a smaller error,

it results from the procedure of finding minimum error function in the BPNN training.

Keywords: Ensemble Empirical Mode Decomposition, Back-propagation Neural
Network, electricity consumption forecasting, gold price forecasting,

very-short term load forecasting
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1. Introduction

Empirical Mode Decomposition (EMD), first introduced by Huang et al. (1998)
was developed for dealing with nonlinear and non-stationary data. The method is
empirical, intuitive, direct and adaptive. By using EMD, the time-series data is
decomposed into several intrinsic modes which are nearly periodic and independent
with each other. The intrinsic modes may have its own physical meaning based on
local characteristic time scale. For instance, if an intrinsic mode is periodic with a
time scale of one month, it can be recognized as the monthly component. Similarly,
an intrinsic mode with scale of three months means the seasonal component.
Generally, complex time-series data is often mixed up with many different signal
sources thus difficult to understand their meaning. But, through the EMD
decomposition method we can divide them into several meaningful intrinsic modes,
allowing us to closely analyze their characteristics.

EMD has been successfully applied in different fields such as ocean waves
(Hwang et al., 2003), earthquake engineering (RR Zhang et al., 2003), wind
engineering (Li and Wu, 2007), biomedical engineering (Liang et al., 2005) and
structured health monitoring (R Yan, 2006). The above applications are all related to
natural science and engineering. However, in the recent years, there have been more
and more applications in social sciences. For example, financial time series analysis
(Huang et al., 2003b), transport geography (MC Chen, 2010), disease transmission
(Cummings et al., 2004), as well as combined with artificial neural networks (ANNS)
to forecast crude oil price (Lean Yu et al., 2008).

In addition to the EMD originally developed, there is an improved EMD, known as
Ensemble EMD (EEMD, Wu and Huang, 2009), which was proposed to solve the

mode mixing problem of EMD. In this study, we first applied the EEMD method and



then combined it with ANNSs to electricity consumption forecasting and gold price
forecasting.

Electricity consumption forecasting (i.e. load forecasting), is commonly classified
into four categories: long-term load forecasting, medium-term load forecasting,
short-term load forecasting and very short-term load forecasting. Long-term load
forecasting (5, 10 and 20 years ahead) is used for system planning, scheduling
construction of new generation capacity and the purchasing of generation units (Jia et
al., 2001). Medium-term load forecasting (a few months to 5 years ahead) is applied
to maintenance scheduling, coordination of load dispatching and the setting of prices
(Jia et al., 2001). Short-term load forecasting (hourly forecasting from one day to one
week ahead) is usually used for optimal generator unit commitment, fuel scheduling,
hydro-thermal co-ordination, economic dispatch, generator maintenance scheduling,
the buying and selling of power and security analysis. Very short term load
forecasting (few minutes to an hour ahead in the future) is often used for security
assessments and economic dispatching, real-time control and real-time security
evaluation (Jia et al., 2001). In this study we focused on very short-term load
forecasting and forecast load of one hour ahead.

Surprisingly, there has been very little research on very short-term load forecasting.
Yang et al. (2005) used a method based on the chaotic dynamics reconstruction
technique and fuzzy logic theory on the load data of Shandong Heze Electric Utility,
(China). Their results demonstrated that the proposed approach could calculate 15
minutes ahead load forecasting with accurate results. James W. Taylor (2008) used
minute-by-minute British electricity demand observations to evaluate different
forecasting methods, including ARIMA modeling and Holt-Winters' exponential
smoothing method for prediction between 10 and 30 minutes ahead. Liu et al. (1996)

applied the fuzzy logic method and ANNs to the previous 30 minute-by-minute
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observations as input for the online forecasting process to show that the methods
could outperform the simplistic non-seasonal AR model.

Unlike the various aforementioned methods, we used the EEMD-based ANN
algorithm for one hour ahead forecasting. ANNs are massively parallel and robust.
They contain complicated architectures of interconnected processing elements. They
can learn complex linear or non-linear input-output mappings between data sets of
measurements and future demand values. Based on the features presented in the data
they can be designed adaptively for learning and responding with high-speed
computation. The ANNs have been applied to many areas especially when dealing
with the issues of forecasting.

Hamid et al. (2004) applied ANNs to financial forecasting. Their goal was to
forecast the volatility of S&P 500 Index future prices, and compare volatility forecasts
from ANNSs with the implied volatility from S&P 500 Index futures options using the
Barone-Adesi and Whaley (BAW) model for pricing American options on futures.
Lean Yu et al. (2008) used an EMD-based neural network ensemble learning
paradigm for world crude oil spot price forecasting. In Yu’s study, West Texas
Intermediate (WT]I) crude oil spot price and Brent crude oil spot price were used to
test the effectiveness of the method. Their results showed that the EMD-based neural
network ensemble-learning model outperformed the other forecasting models in terms
of criteria. Lean Yu et al. (2010) proposed an EMD-based multi-scale neural network
learning paradigm to predict financial crisis events for early-warning purposes. They
took the currency exchange rate series of the South Korean Won (KRW) and Thai
Baht (THB) as training targets. Their tests showed that the EMD-based multi-scale
neural network learning paradigm was superior to other classification methods and
single-scale neural network learning paradigm when formulating currency crisis

forecasting. Feng Ping et al. (2009) applied EMD-based ANNSs to precipitation-runoff
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forecasting. They took the annual precipitation series from 1956 to 2000 from the
sub-water resource regions of upper Lanzhou, China as historical training data, and
showed that the EMD could decompose the data into a multi-time scale sub-series for
finding their local change rule. The results demonstrated that the EMD-based ANNs
model presented higher accuracy than any other models.

The ANNSs are also widely used in short-term load forecasting. Ruey-Hsun Liang
and Ching-Chi Cheng (2002) used an approach based on combing ANNSs with the
fuzzy system and applying it to data from the Taiwan Power Company. Nahi Kandil
et al. (2006) applied multi-layered feed-forward ANNs by using data from
Hydro-Quebec databases for forecasting. They demonstrated ANNs’ capabilities
without using load history as an input, instead final temperatures were the only data
considered in their load forecasting procedure. Mohsen Hayati and Yazdan Shirvany
(2007) used Multi-Layer Perceptron (MLP), a kind of architecture of ANNs, on data
from a three year time period (2004-2006) from the Illam (Middle Eastern country,
west of Iran) region, while G.A. Adepoju et al. (2007) applied ANNs to the Nigeria
Electric power system.

Gold has been mined since ancient times. With recent growth in production, more
than a third of the world’s gold that has ever been mined, in just the last thirty years.
The consumption of gold differs by application type: industrial, dental technology,
jewelry products and inventory. Jewelry consistently accounts for over two-thirds of
the gold demand, but in markets with poorly developed financial systems or markets
experiencing crisis, gold is an attractive investment. The demand-supply equilibrium
and inflation cause gold price to fluctuate. Gold is commonly a popular hedge
instrument for investors against devaluation of the US dollar. In recent years as the

value of US dollar has decreased relative to other major currencies, the price of gold
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has experienced a secular increase. The dramatic rises in gold price since the start of
2009 may have resulted from investors looking to preserve their wealth.

There have been several studies on gold price analysis: Baker and Tassel (1985)
used regression results to support the theoretical analysis leading to the prediction.
Akgiray, Booth, Hatem and Mustafa (1991) used the GARCH model to verify time
decency of gold price. In comparison with statistical techniques, engineering- based
systems, such as neural networks, make less restrictive assumptions on the underlying
distribution. Mirmirani and Li (2004) used neural networks and genetic algorithm to
analyze gold price. Shahriar Shafiee and ErkanTopal (2010) used long-term trend
reverting jump and dip diffusion model and took monthly historical gold price data
from January 1968 to December 2008, to forecast gold price for the next ten years.
Yen-Rue Chang (2011) used EEMD to decompose monthly gold price data into
several IMFs to observe their important properties. Following the work of Yen-Rue
Chang (2011), we used the decomposed IMFs as input factors for gold price
forecasting.

This research aimed to forecast using EEMD-based ANN algorithm, more
specifically; we used a back-propagation neural network (BPNN) which is a kind of
ANN architecture. Our testing targets were electricity load data and gold price data.
We performed one hour ahead load forecasting and gold price forecasting for 2011.
Section 2 gives brief introduction to the basic concept of EEMD and BPNN. In
section 3, we describe the subject data, and introduce our experiment strategy, and
some important measures used. Experiment results and forecast performance are
discussed in Section 4, along with the results of improvement by ensemble average. In

Section 5, we will present our conclusion and outlook.
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2. Methodology
2.1. Empirical mode decomposition

In the past, we usually used a spectral analysis method called the Fast-Fourier-
Transform (FFT) to analyze time-series data; however FFT posed a few problems:
If the nonlinear and non-stationary degrees of the time-series data were to increase,
the results of the FFT would produce large sets of physically meaningless harmonics.

Nowadays, we utilize a new spectral analysis method called
Hilbert-Huang-Transform (HHT). While the HHT can solve the problems with the
FFT, it is still limited in that it can only be used for data which are symmetric in
relation to the local zero mean. We would thus need to first use the empirical mode
decomposition (EMD) which was proposed by Huang et al. (1998) to decompose data
into several intrinsic mode functions (IMFs). The IMFs are all symmetric in relation
to the local zero mean so that we can use HHT on them.

The EMD is a data analysis method which can be used in dealing with non-linear
and non-stationary time series data. It assumes that all time series data can be
decomposed into a sum of oscillatory functions known as IMFs. The IMFs, based on

the local characteristic scale by itself, have to satisfy the two following conditions:

(1) IMFs should have the same numbers of extrema (including maxima and minima)
and zero-crossings, or differ at most by one;

(2) At any point, the mean value of the envelope defined by local maxima and the
envelope defined by local minima is zero, meaning the IMFs should be

symmetric in relation to the local zero mean.
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We then pose the question, ‘how can we extract the IMFs from original data’? We
can use the following sifting process:
(1) Identify all the local maxima and minima of the time series x(t)
(2) Connect all the local maxima and minima by cubic spline interpolation to
generate its upper and lower envelopes emax(t) and emin(t)
(3) Calculate mean m(t) from upper and lower envelopes point-by-point as
My (t) = (Emax(t)+ emin(t))/2
(4) Calculate the difference between the time series data x(t) and the mean value
my(t), than get hy(t) as:  hy(t) = x(t) - ma(t)
(5) Check the properties of hy(t):
If hy(t) doesn’t satisfy the conditions of IMF, replace x(t) with hy(t) and repeat

(1)-(4) until hy(t) satisfies the stopping criterion:

T 2
z [hae-n (®) — hye(O)]
SD = >
A hye17(0)

A typical value for SD can be set between 0.2 and 0.3.

On the other hand, if hy(t) (or hi(t)) satisfies the conditions of IMF, then it should
be an IMF, and denote h;(t) (or hi(t)) as the first IMF c,(t). Then we separate the IMF
ca1(t) from x(t) to get the residue ry(t) : X(t) - ca(t) =ry(t)

(6) Now we replace x(t) with ry(t) and repeat steps (1)-(5) to get

Ca(t).cs(t).ca(t).C5(t)........... cn(t) and final residue ry(t).

The sifting process is stopped by any of the following predetermined criteria:
either the component c,(t) or the residue ry(t) becomes so small that it is less than the
predetermined value of the substantial consequence, or the residue rn(t) becomes a
monotonic function from which no more IMFs can be extracted (Huang et al. 1998).

At the end of the sifting process, the original time series can be expressed as
13
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CEDWACETNE

i=1
Where n is the number of IMFs, r,(t) is the final residue, also the trend of x(t), and
ci(t) represents IMFs which are nearly orthogonal to each other. After the sifting
process, the original data set is decomposed into these IMFs which represent high
frequency to low frequency, and every IMF may have its own physical meaning. So
we can regard the EMD as a filter to separate high to low frequency modes, and apply

HHT on each IMF, allowing us to explore their meaning

Original

data x(t)

v N=1

Find all the local —
minimum and maximum

\ 4

Generate upper and lower envelopes
by cubic spline interpolation

Md(®)=x(t) — ci(t) Mean of envelopes :
X(1)=r(t) Mn(t) = (Emax(t)+ emin(t))/2

Not an IMF, n=n+1

A 4

[ hn() = X(8) — Ma(t) ]

A 4
[ Check the properties of hn(t) ]7

It’s an IMF

v
[ IMF Ci=h, ]__.[ IMF C;.C,. Cs ....R ]

Figure 2.1 The flowchart of EMD
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2.2. Ensemble EMD

EMD has proved to be a useful data analysis method for extracting signals from
nonlinear and non-stationary data. However, EMD still has its defects: when the
original data is intermittent, a single IMF may consist of either signals of widely
disparate scales, or a signal of similar scale belonging to different IMF components;
this phenomenon is called “mode mixing”. When mode mixing occurs, an IMF may
cease to have physical meaning by itself. Thus, EEMD was proposed by Wu and
Huang (2004) for overcoming the problem. We know that all observed data are mixed
with true time series and noise. Even if data is collected by separate observations with
different noise levels, the ensemble mean is close to the true time-series. This means
that we can extract the true meaningful signal from data by adding some white noise.
Adding white noise could provide a uniformly distributed reference scale, and help

EMD to overcome the mode mixing problem.

The simple procedure of EEMD is as follows:

(1) Add a white noise series to the original data.

(2) Decompose the data with added white noise into IMFs.

(3) Repeat the previous two steps iteratively, and add different white noise
each time, finally we obtain the ensemble means of corresponding IMFs of

decompositions.
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xi(t) = x(t) + w;(t)

EMD o [ e e E e e E
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EMD A
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EMD 1 it S
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gt b bt Ll N .
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[} [} ) | [} [}

| | ) ] | |

v v v v v v
Ensemble means=> ¢; + ¢, + ¢c3 + ¢4 + oo +¢, + R

Figure 2.2 Diagram to illustrate the procedure of Ensemble EMD

In figure2.2, x(t) is the original data, w;(t) is the added white noise series, X;(t) is
the original data mixed with different white noise series, cmn is the IMFs, and Rp,
represents the residues.

However, there is a well-established statistical rule proved by Wu and Huang

(2004) to control the effect of adding white noise:

€
&n = —

VN

In this formula, N represents the number of ensemble members, ¢ is the amplitude
of the added noise and ¢, is the final standard deviation of error defined as the
difference between the input signal and the corresponding IMFs. Empirically, the
number of ensemble members N is always set to 100 and the &, is always set to 0.1 or
0.2. The procedure of adding white noise successfully makes signals of comparable

scales to collate in one IMF, and then cancels itself out. Therefore, the EEMD, which
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can successfully reduce the chance of mode mixing, is a really good, substantial

improvement over the original EMD.

2.3. Artificial neural networks

Artificial neural networks (ANNSs), which have been widely used for data
prediction in many application domains, are a kind of intelligent learning paradigm.
They have been developed over the last 50 years, and the first, simplest model of
ANNSs which is called Perceptron was proposed by Frank Rosenblatt in 1957.

Nowadays, the most popular model of ANNSs is feed-forward back-propagation
neural network (BPNN). It adopts the Widrow-Hoff learning rule (i.e. least mean
squared (LMS) rule) (Hagan et al., 1996) and different algorithms such as the steepest
descent method, Newton’s method and Levenberg-Marquardt (LM) algorithm to train
the network. ANNSs are designed to imitate the biological neural system. Typically,

ANNSs contain three sections: neurons, connection weights and transfer functions.

bias

weight
transfer functio

O~

neurons

% O/ output layer

input layer

hidden layer

Figure 2.3 Simple structure chart of three-layers neural network
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The connection weights present the strength between neurons. A larger weight
means the connection is stronger while a smaller weight presents a weaker link. The
neurons process input signals overlap at the neuron and are sent to the transfer
function for generating output value. The transfer functions are created to restrict the
output value of ANNSs. Because different kinds of ANNs are used in different ways,
they need different transfer functions to generate different results.

The feed-forward BPNN, which is the most popular model of ANNs for
time-series data prediction, uses three kinds of transfer functions: log-sigmoid
function, hyperbolic function and linear function. Log-sigmoid function and
hyperbolic function are often used in the hidden layer. The log-sigmoid function takes
an output value between 0 and 1 while the hyperbolic function takes an output value
between 1 and -1. These two transfer functions are both differentiable so that the
training algorithms may work for the network, otherwise the linear function is usually

put in the output layer. It can produce values of any number.

Linear function :  Purelin(x) = x

Logsigmoid function : Logsig(x) = T

X _o=X

Hyperboli tion: Tansig(x) = ————
yperbolic function ansig(x) X +g-X

In this thesis, we used the feed-forward BPNN for modeling the decomposed IMFs
and the residual component. In the BPNN, there is an important parameter called the
“mean square error function”, which is a function of weights. Since our goal was to
minimize the mean square error function, we had to adjust the connection weights
iteratively by training the network. The mean square error function could be presented
as:

18



F(w) = %Zi\l [e;(W)]? z —a;j(w)]?

where g; is the final output value, a function of weight. t; is the target value, and ¢; is
the error between the values ajand t;. On the other hand, the input value of the mth
layer’s ith neuron is the nonlinear function of the output value of the (m-1)th layer’s

neurons:

The function f(n[) is the transfer function previously discussed. w;™ is the weight
between the mth layer’s ith neuron and (m-1)th layer’s jth neuron, b;" is the bias of
mth layer’s ith neuron, ™" is the output value of (m-1)th layer, and &" is the output

value of mth layer.

In the history of BPNN, there have been several algorithms used to train the
network for adjusting the weight. Here we adopted the Levenberg-Marquardt (LM)
algorithm, which combines the advantages of the steepest descent method and

Newton’s method:
Wk + 1) = W (K) — (H™(k) + 1, 1) g™(K)
H™ (k) = V2F(W™(k))

g" (k) = VF(W™(k))

19



where W™ (K) is the matrix of weights in the mth layer after the kth adjustment. H(Kk) is
called the “Hessian matrix”, which is the second derivative of the mean square error
functions, and g(k) is the first derivative of F(w). I is the identity matrix, and p IS
the control parameter.

The control parameter pg changes iteratively, set with a big value in the beginning.
Meanwhile, the LM algorithm will equal to the steepest descent method. The steepest
descent method converges quickly when our result is still far from the optimal point,
but as the result gets closer to the optimal point, the convergence speed gets slower,
so the method costs much more times to find the optimal result.

The pk becomes a very small value in the later period of training, meanwhile the
LM algorithm will become equal to Newton’s method, which converges quickly when
the result is approaching to the optimal result.

The significant reason why we chose BPNN as our prediction tool was that the
BPNN is usually regarded as a “universal approximator” (Hornik et al., 1989). Hornik
et al. found that a three-layer BPNN can approximate any continuous function
arbitrarily well with an identity transfer function (i.e. linear transfer function) in the
output layer and logistic functions (i.e. log-sigmoid function and hyperbolic function)
in the hidden layer.

In practice, the neural networks with one and occasionally two hidden layers are
widely used and perform well. In this thesis, we utilized the four-layer feed-forward
BPNN. Moreover, the number of neurons in the hidden layers were set to the same
value as the IMFs or this value plus two, respectively, since the number of neurons in
the hidden layer can range from one-half to two times (Mendelsohn, 1993) the sum of

input and output numbers.
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The applied complete four-layer BPNN is shown as follows:

transfer function|

. transfer functig

result

o

hidden layer-1

input layer

bias
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@ output layer

bias

hidden layer-2

Figure 2.4 The structure chart of complete four-layer BPNN
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Below is a flowchart of the BPNN learning progress which can help

understand it more clearly.
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Figure 2.5 The flowchart of training progress of BPNN
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2.4. Cubic spline interpolation and extrapolation

Sometimes time-series data may be missing values. In the mathematical field
of numerical analysis, interpolation is a method which is applied to fill the gaps of
missing values. For generating those intermediate values, there are several
interpolation methods, such as piecewise constant interpolation, linear interpolation,
polynomial interpolation and cubic spline interpolation. In contrast with linear
interpolation, cubic spline interpolation uses low-degree polynomials in each of the
intervals, and makes the intervals of data points smooth.

Extrapolation is a method which is used for forecasting outside of the known
values for a given range, but the results are often less meaningful. If applied to a
limited range of time-series data sets, extrapolation can extend data points, and find
the variation tendency of the future of the time-series. Extrapolation uses the same
methods as interpolation. Linear extrapolation uses the last two data values to create a
tangent line at the end of known data, extending it beyond the limit. However, it only
provides accurate results when used to extend the graph of an approximately linear
function or not too far beyond the known data. Otherwise, cubic spline extrapolation,
which needs more than the two values of the end of data, can create a low-degree
polynomial curve which is extended beyond the known data. It is suitable for data
which has curve properties, or data which we have already applied the cubic spline
interpolation to.

In the use of the electricity load data of this study, the cubic spline interpolation
method was applied to smooth the data points. Cubic spline extrapolation was
employed to generate extra points to be included in our forecasting data before using

the EEMD-based ANNSs.

23


http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Numerical_analysis

2.5. EEMD-based neural network learning paradigm

Artificial neural networks, which have already been applied in many practical
forecasting cases, still have a lot of room for improvement. A crucial challenge
nowadays is to improve the performance of the forecasting of artificial neural
networks. Some researchers advocate the cross-validation technique, but it may be
inadequate when the problem is complex, due to the method being based on a single
series representation for entire a training process. Consequently, many scholars have
done a lot of extensive research, such as Wavelet-based ANN (Ajay Shekhar Pandey
et al., 2010), Fuzzy BP (Hari Seetha and R. Saravanan, 2007), PCA-based ANN (Wei
Sun, 2010) and EEMD-based ANN (Lean Yu et al., 2008). In this study, the
EEMD-based ANN was employed to decompose time-series into several IMFs.
Each IMF had its own physical meaning so that we could regard these IMFs as the
input variables of ANN. Figure 2.6 illustrates the basic structure of EEMD-based

neural network.

>
o — —> o
EEMD .O

Original Time series data D@

>(—s(O—>
»(D—r(O—>

input layer

Figure 2.6 Simple illustration of EEMD to form the inputs of neural network
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The EEMD-based neural network learning paradigm contains following steps:

1)

EEMD.
(@)
3)

(4)

()

(6)

Decompose the original data into IMFs and residual components using

Put IMFs as the input variables into the four-layer BPNN.

The input data set and target data set are extracted from the decomposed
IMFs and original data.

In the program, the input values and target time-series data will be first
manipulated to a range between 1 and -1, and then divided into training ,
testing and validation sets. When parameters are all fixed, the four-layer
BPNN structure will be created and start to train the network.

In the network, the input data and target data will be compared and the
optimal weights are found.

The other input data will input to the trained network, and the forecasting

data is generated. Then compare the forecasted data with real data.

To summarize, in this study we used EEMD to decompose the NCCU electricity

load data into several meaningful IMFs, and then combined extrapolation with BPNN

to forecast the electricity load of every hour. However the data used first underwent

cubic spline interpolation. The forecasting results are shown in the next section.
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3. Forecasting experiments
3.1. Data description
3.1.1. Electricity load data from NCCU

The used electricity load data in this study was obtained from Office of General
Affairs of National Chengchi University (NCCU). In NCCU, the consumption of
electricity mainly comes from ten regions, labeled as GCB1 to GCB10. Among these
ten regions, only three are independent buildings while the remainders contain
numerous different sources. The three important buildings which contribute a
majority of the electricity consumption of NCCU are the Information Building
(GCB2), College of Commerce Building (GCB5) and General Building (GCB10). In
this thesis, we focused on these three buildings because the electricity is controlled
more easily. Generally, the electricity consumption of NCCU gradually increases after
the anniversary celebrations, May 20, of every year. This is mainly due to the
approach of summer and increasing temperatures prompting more use of
air-conditioners and thus more consumption of electricity.

The electricity load data possesses some important properties. To illustrate these
properties, we took the hourly data from May 5, 2008 to June 6, 2008 of GCB10 for
an example. In Figure 3.1, we can easily observe that the data regularly changes from
high to low, with peaks and valleys. Every five higher peaks follow two smaller peaks.
This is illustrates the change from day to night (or peak hours to off-peak hours) and
weekdays to weekends. These two important patterns are crucial factors influencing
the forecasting performance.

In this study we used June 6, 2008 of GCB10 as a forecasting example. The
pre-one-week data of June 6, 2008 was used as the input for historical data. We also

used an ensemble average method to improve the forecasting performance, the load
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data of May 22, 2008 of GCB10 will be the testing sample. The results are presented

in the section 4.

2008_0505-0606_GCB10 General Building
L I A B A B A B
1000
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100 200 300 400 500 G800 o0

Time ( hour }

Figure 3.1 Hourly electricity load curve of GCB10 from 2008.5.5 to 2008.6.6

3.1.2. Gold price daily data
The gold price daily data used in this study was downloaded from website

“Wikiposit” (http://wikiposit.org/w?filter=Finance/Commodities/). The data ranges

from 1968 to the present (2011.9.1) using a unit of US dollar per oz ($/ounce). The
historical gold price data was analyzed to see properties using EEMD by Yen-Rue
Chang (2011). In her study the historical monthly gold price data (date from year
1968 to 2011) was decomposed into several IMFs, and the most important one was
the trend. It is obviously most important because we know that gold prices were cheap
in the earlier years, but in recent years, the price of gold has sky-rocketed, the reason
being inflation. On the other hand, gold prices have always had a strong correlation
with historical and international events. These significant events which had disturbed
world gold prices, include the crude oil crisis in 1974, The Gulf War in 1980, the New
York Stock market crash in 1987, the economic growth in the U.S. from 1996 to 2006,

the financial crisis in 2007 and recently, the European and U.S. debt crisis of 2011; all
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have been important factors. In the study by Yen-Rue Chang (2011), these significant

events behave in the low-frequency term (Figure 3.2).

In this study, we used the historical gold price data to forecast gold prices in 2011,

and also improved the results by applying the ensemble average. These performance

results are also presented in the section 4.
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Figure 3.2 Monthly gold price and significant world events from Jan. 1968 to

Nov.2010 [Yen-Rue Chang, 2011, NCCU]
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3.2. Experiment design

In this study, the forecasting strategies are presented as the following steps:

Stepl: extract data

Based on the benchmark study (Section 4.1), we extracted data series with an
interval of one week (168 points from the electricity load hourly data), and 1005
points from daily gold price data as moving window length for training. In this section

we took the hourly electricity load data as a testing subject.

Step2: interpolation

The reason we used interpolation is that we found ANN could perform very well
when the difference of value between one point and the next point was low while
using moving window.

In this step, we applied cubic spline interpolation to the extracted data. The
extracted 168 points increased to 3341 points (i.e. with interpolation of 20 points)
while time scale transformed from one hour a point to 3 minutes per point. Figure 3.3

illustrates this procedure.

Original data

Interpolation

Interpolated

Figure 3.3 The interpolation method
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Since the original data was based on hourly intervals, the interpolated points in
step 2 are non-existent and unrealistic for forecasting purposes. If we wanted to
forecast the value of the next hour accurately, we needed to forecast the fictitious
points. We found that extrapolation could provide accurate forecasting results, but
only to a certain extent. Therefore, our strategy was based on performing the
extrapolation to an extent, and then forecasting residual virtual points. When a new
virtual point was forecasted, we took this point and used it as real forecasted data to
do the moving window forecasting procedure.

After step 2, cubic spline extrapolation was applied to the new interpolated data.
The number of extrapolation was decided empirically (e.g. in this study we found that
interpolation with twenty points combine extrapolation with twelve points performs

very well and has good efficiency for program’s working).

Step4: create a new data series for decomposition
In step 4 we combined the interpolated data produced in step 2, with the
extrapolated points discarding the same amount as the extrapolated points in front of

the interpolated data (i.e. maintain the length of data with one week, see Fig.3.4).

Dropped data
A
4 A
------ New data
A
~ N
...... ....... ...... + [1]2] ...
\_ /) N J
YT Y
Interpolated data Extrapolated data

Figure 3.4 Create a new data series by interpolation and extrapolation

30



Step5: EEMD and BPNN training

The new data was created to decompose into IMFs through EEMD. After EEMD,
the one week data was decomposed into meaningful IMFs which could be regarded as
factors that influence the consumption of electricity. In this step, the IMFs which
discarded last points were regarded as input data. The new data discarded the first
point which was regarded as target data. For BPNN training, we put input and target
data into a BPNN network, and the discarded the last IMFs’ points which were used

as input for the trained network to generate forecasting point (Fig.3.5).

Step6: Moving window and forecasting

We combined the forecast point to the new data, discarded another point in front of
the new data, and update it again. After the newer data was updated, we repeated step
5 (i.e. the method is called moving window, see Fig.3.5) until the original hourly
point was forecasted. Once we got the forecasted hourly data, we then compared it
with the real hourly data. In order to forecast the data of next hour, we took the real

data of next hour, added it into our data, and repeated step 3 to step 6.
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Figure 3.5 Training Network by Moving Window Process
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3.3. Statistical measures

In this section we shall introduce various statistical measures that are used to
analyze the IMF properties, and forecasting result performance. The measures used to
analyze IMFs are mean periods, Pearson correlation coefficient, and power percentage.
The measures used to see performance of forecasting results are RMSE, MAE and the

standard deviation of error. These measures are presented as follows:
Mean period

The mean period which is used to see the cycle of an IMF is calculated by the
inverse of mean frequency. The mean frequency is the average of “instantaneous
frequency”. To calculate the instantaneous frequency, we apply HHT to the extracted
IMFs. In the following paragraph we will briefly introduce the HHT, proposed by
Huang et al. (1998).

For any arbitrary time-series data set X(t), we can always have its

Hilbert-transform Y (t) as

1 ®X()
Y(t) = Eij_ mdt

Where p.v. indicates the Cauchy principal value.
Then we use X(t) and Y(t) to form the complex conjugate pair, and get an analytic

signal Z(t) as
Z(t) = X(D) +iY(t) = a(p)el®®
Where a(t) = /X2(t) + Y2(b)

and 0(t) = arctan (%)
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Which a(t) indicates the amplitude varied with time, and 6(t) represents the phase
also a function of time. The above is the best local fit of amplitude and phase-varying
trigonometric function to the original time series data X(t). Now we can define the
instantaneous frequency of Hilbert transform through the phase:

w(t) B 1 do(t)
2t 21 dt

f(t) =

Therefore, the mean frequency F of an IMF can be presented as:

N
1
F =N;f(t)

and the mean period T will be

CT

Notice: We didn’t calculate the mean period of residue because it is a monotonic

function, so in this study we ignored the mean period of residue.

Pearson correlation coefficient

The Pearson correlation coefficient, which’s value always ranges from -1 to +1, is
the most familiar measure used to detect the dependence between two quantities. The
Pearson correlation +1 means a perfect positive linear relationship while -1 means a
perfect negative linear relationship. As the value approaches zero, it means there is
correlation and becoming almost uncorrelated. As it approaches -1 or +1, the
correlation is stronger between two variables. Here the Pearson correlation coefficient
p xy between two variables X and Y with expected values p xand p v and standard

deviations o xando v is shown as follows:
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cov(X,Y) E[(X—px)(Y —py)]
O0xOy B 0xO0y

Pxy =

Where E is the expected value operator and cov(X,Y) means covariance between X

and Y.

Power percentage

Power percentage is a measure based on variance for detecting the weight of an
IMF on the original data. A higher value of power percentage indicates a stronger

weight an IMF is. The power percentage is defined as follows:

Var(IMF)
Power percentage(%) = Var (original data) x 100

Root mean square error and mean absolute error

Root mean square error (RMSE) and mean absolute error (MAE) are both useful
quantities to measure how closely predicted or forecasted values are to the actual data,

and are good measure of accuracy. The RMSE and MAE are given by:

N
1
RMSE = NtZ(R(t) _ P(0))?

N
1
MAE = N;m(t) —P(o)|

Where R(t) indicates the real data at time t and P(t) means predicted data value at

time t.
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Standard deviation of error

The standard deviation of error in this study is the standard deviation calculated
from the error between the predicted and real values of every hour. Using this
measure, we can find the fluctuation of errors. A lower standard deviation indicates
that the errors tend to be very close to the mean, whereas higher standard deviation

indicates that the errors are spread out over a large range of values.
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4. Results and discussion
4.1. Benchmark study

Before forecasting, we first did a benchmark study in order to choose the input data
length. Table 4.1 shows some measures of the forecasting results of the 2011 gold
price daily data which used four different data lengths as input. From this table we can
see that the input data length with 1005 points and 754 points perform little better
than 1255 points and 2759 points, and saved more time during training process. In
addition, the data length with 1005 points was better than the 754 points because it
may have contained more information. Therefore, we chose and fixed data length with

1005 points (i.e. time interval from 2007 to 2010) as our input data in this study.

Table 4.1 Comparison between different input data length for forecasting of 2011 gold price

2000-2010 2006-2010 2007-2010 2008-2010
(2759points) (1255 points) (1005 points) (754 points)
RMSE 21.7 34.2 26.0 26.1
MAE 19.0 21.1 195 19.0
Correlation coefficient 0.978 0.966 0.981 0.980
Standard deviation
20.2 26.9 17.2 18.0

of error
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Similarly, for judging the suitable input length of electricity load data, we tested
four different data lengths. The forecasting measure results of June 6, 2008, GCB10
are displayed in Table 4.2. The table shows that the data length with one-week
performed the best depending on the measures. Although the length with two-weeks
and three-weeks also had good performance, the time spent training doubled and
tripled. However, the measures of length which took only one-day perform so
poorly due to big error, occurring from 5:00 to 6:00. The case revealed that the time
interval was too short for training, and from this short training, data may have caused
the occurrence probability of big error, resulting possibly from a lack of information.
Based on the above reasons, the one-week data length is the most suitable choice for a

training set which was used in this research.
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Table 4.2 Comparison between different input data length for forecasting of

June 6, 2008 of GCB10

One day One week Two weeks Three weeks
Hour error error% error error% error error% error error%
0~1 43 0.81 17.6 3.88 194 4.28 3.2 0.71
1~2 2.8 0.53 13.8 3.11 16.7 3.76 25 0.56
2~3 4.6 0.87 3.9 0.89 7.5 1.71 16.4 3.74
3~4 2.6 0.48 5.4 1.24 15.7 3.63 8.1 1.88
4~5 9.8 1.86 33 0.76 9.8 2.24 16.9 3.86
5~6 334.1 63.63 13.4 3.12 171 3.97 8.2 1.89
6~7 10.0 1.86 1.8 0.40 5.8 1.29 12.6 2.82
7~8 15.2 2.48 31.0 6.34 35.7 7.32 31.9 6.54
8~9 18.7 2.52 125 1.85 24 0.36 19.9 2.94
9~10 29.4 3.73 24.6 3.06 41.2 5.13 323 4.02
10~11 0.7 0.08 5.3 0.62 5.8 0.68 2.8 0.33
11~12 52.4 6.51 6.3 0.72 7.9 0.90 8.3 0.94
12~13 20.5 2.49 13.7 1.59 6.0 0.69 4.2 0.48
13~14 21.8 2.61 8.6 1.00 9.4 1.09 3.3 0.39
14~15 40.7 5.01 16.4 1.83 10.8 1.21 1.9 0.21
15~16 7.6 0.95 16.4 1.80 17.0 1.86 13.6 1.49
16~17 6.5 0.82 12.3 1.40 27.9 3.17 2.9 0.33
17~18 39.0 5.12 7.6 0.92 4.3 0.52 17.6 2.13
18~19 55 0.78 21.0 2.80 3.6 0.48 14.0 1.87
19~20 39 0.57 33 0.48 15.9 2.27 3.6 0.52
20~21 8.3 1.22 3.6 0.54 0.1 0.02 10.9 1.64
21~22 4.4 0.69 18.5 2.86 23.9 3.69 26.6 4.10
22~23 1.2 0.20 13.3 243 15.2 2.78 30.8 5.63
23~24 33 0.58 23.8 4.89 0.0 0.00 0.9 0.19
RMSE 70.8 14.6 16.9 15.7
MAE 27.0 124 13.3 12.2
Standard deviation
66.9 7.8 10.6 10.1

of error
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4.2. The meaning of IMFs
Electricity load data from NCCU

The most important work in building an ANN forecasting model is the selection of
input variables. In the past some researchers had collected different types of data as
variables to input into ANNs for forecasting future data. For example, industrial
production index, exchange rate, commodity price and interest rate are the variables
used for financial stock market time series forecasting. Temperature, wind velocity,
hourly and daily historical data are used for electricity load forecasting. However, as
mentioned before, the EEMD method proposed by Huang et al. can decompose
time-series data into several IMFs which have its own physical meaning.
Consequently, we can regard IMFs as factors which influence the data for
constructing an ANN model. The EEMD-Based neural network learning paradigm
has been used by Yu et al. (2008) to forecast world crude oil spot price data. For the
above reasons, in this study we applied the EEMD-Based neural network learning

paradigm to forecast electricity load data.

Here we took an input data series for testing. The input data which length was one
week from May 30 to June 5, 2008 of General Building of NCCU was used to train
the network for forecasting data of June 6, 2008, Friday. The decomposed IMFs and
residue are shown in Figure 4.1. The measures of these IMFs are presented in Table
4.3. In the figure and table, we can see that the IMF7, IMF8 and the residue are the
most important. The IMF7 period is close to one day (24 hour means the variability of
one day). As we already know, the electricity load always has a regular pattern of
high consumption during the day and low consumption at night. The phenomenon is
also known as peak hour and off-peak hour. We can find that the consumption always

noticeably increases at 8:00, and decreases after 22:00.We can also conjecture that
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these fluctuations are determined by the activities and usage of the General Building

by faculty and students.
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Figure 4.1 The IMFs for General Building of NCCU from May 30 to June 5, 2008
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Table 4.3 Measures of IMFs for General Building of NCCU from May 30 to June 5, 2008

Mean Mean Power Pearson
period(Hour) period(Day) percentage(%6) correlation
IMF1 0.158 0.007 0.054 0.017
IMF2 0.289 0.012 0.020 0.020
IMF3 0.568 0.024 0.010 0.014
IMF4 1.414 0.059 0.052 0.107
IMF5 3.117 0.130 1.431 0.152
IMF6 6.431 0.268 1.824 0.050
IMF7 23.513 0.980 74.750 0.857
IMF8 86.408 3.600 17.913 0.445
IMF9 160.699 6.696 0.204 0.230
Residue 2.829 0.191

The IMF8, which is the second most important IMF, presents behavior of a
half-week pattern. The half-week pattern presents the highest consumption trend of
the original data. The IMF9, which period is close to 7 days, presents the one-week
pattern and the property of difference between week-days and weekends. The residue,
also known as trend of data, presents the mean consumption trend of the week.
Compared IMF8 and residue, we can find that the highest consumption of Monday
and Tuesday is higher than Wednesday and Thursday but the mean consumption of
Wednesday and Thursday is more than Monday and Tuesday. The reason is that the
arrangement of courses are centralized in certain sessions in Monday and Tuesday
while the courses in Wednesday and Thursday are more but allocated to various
sessions. Upon the IMFs’ properties, the forecasting results are revealed in section

4.3.
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Gold price daily data

Unlike the electricity load data, the daily gold price data didn’t reveal any
regularities. Gold price data is very similar to stock market series, meaning when the
moving window shifts, the property of IMFs will change. But if we could take a long
enough length of gold price data, we found that the trend was always the important
one due to the obvious increase of gold price in past years. Moreover, a major reason
for increase was inflation as well as the global financial crisis of the recent years. We
took the daily price data from Jan, 2007 to Dec, 2010 as a testing subject. The data
length (1005 points) was also the length of the moving window we used. The data was
decomposed into seven IMFs as well as one residue by EEMD (Figured.2).
Furthermore, from Table 4.4, we can see that the most dominant component was the
residue, and the second most dominant, the IMF7. The Pearson correlation coefficient
of residue was 0.942 with the power percentage reaching up to 98%. Through this
case, we validated that the trend was the most important influencing factor for gold
prices. With the fixed window length of 1005 points, the daily gold price was

predicted. The performance is displayed in section 4.4.
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Figure 4.2 The IMFs of historical gold price daily data from 2007 to 2010
Table 4.4 Measures of IMFs for gold price daily data from 2007 to 2010
Mean period(Day) Power percentage(%o) Pearson correlation
IMF1 3.090 0.119 0.049
IMF2 6.592 0.080 0.032
IMF3 14.199 0.137 0.063
IMF4 26.959 0.233 0.119
IMF5 55.593 0.444 0.174
IMF6 121.516 0.857 0.158
IMF7 404.139 7.630 0.111
Residue 98.105 0.942
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4.3. Forecasting performance

This section shows our forecasting results. Below is a sample of forecasting

performance for June 6, 2008 of GCB10 is shown in Table 4.5:

Table 4.5 Forecasted hourly load compared with actual load for June 6, 2008 of GCB10

Hour Actual load (KWH) Forecasted load(KWH) Error Error%

0~1 453 470.6 17.6 3.88
1~-2 444 457.8 13.8 3.11
2~3 439 442.9 3.9 0.89
3~4 432 426.6 54 1.24
4~5 437 433.7 3.3 0.76
5~6 431 417.6 134 3.12
6~7 446 444.2 1.8 0.40
7~8 488 457.0 31.0 6.34
8~9 676 688.5 125 1.85
9~10 803 827.6 24.6 3.06
10~11 861 866.3 5.3 0.62
11~12 876 882.3 6.3 0.72
12~13 862 848.3 13.7 1.59
13~14 859 850.4 8.6 1.00
14~15 894 877.6 16.4 1.83
15~16 911 927.4 16.4 1.80
16~17 879 891.3 12.3 1.40
17~18 825 832.6 7.6 0.92
18~19 751 772.0 21.0 2.80
19~20 699 695.7 3.3 0.48
20~21 667 663.4 3.6 0.54
21~22 648 666.5 185 2.86
22~23 546 559.3 13.3 243
23~24 487 463.2 23.8 4.89

RMSE 14.6

MAE 124

Standard deviation of error 7.8
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In the above table, the error is the difference between forecasted value and actual

value The error(%) is defined as below:

|Forecasted load — Actual load|
error(%) = x 100
Actual load

As we can see, the biggest error is 31 KWH. The error(%) is about 6.3% from 7:00
to 8:00, whereas the smallest error is only 2 KWH, and the error(%) is about 0.4%
from 6:00 to 7:00. The RMSE, MAE and standard deviation of error are also
presented in Table 4.5. The results illustrated in Figure 4.3 and Figure 4.4, and Figure

4.5 show the correlation between forecasted hourly data and actual hourly data.

NCCU electric load forecasting of GCB10(General Building) 2008 6/6 Friday
1000 T T

predicted hour
predicted data

- | A real data
el
800 \

700

KWH

600

i
Nt ot

400

0 50 100 150 200 250 300 350 400 450 500
Time(every 3 minutes)

Figure 4.3 Forecasting performance for June 6, 2008 of GCB10
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NCCU electric load forecasting of GCB10(General Building) 2008 6/6 Friday
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Figure 4.4 Forecasting performance of every hour for June 6, 2008 of GCB10
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4.4. Performance of ensemble average
4.4.1. Electricity load data from NCCU

Since the BPNN aims to find the minimum mean square error function, the
forecasting results try to approach the optimal result (i.e. global minimum). However,
the program doesn’t find minimum mean square error function every time; the results
always deviate from the best or find the local minimum. Figure 4.6 shows the sketch
of the error function surface. We can see that if the program finds a local minimum on
the right of the global minimum, the error may be positive. In contrast, the local
minimum on the left side may be a negative error. Therefore, we can apply the
ensemble average method on to the prediction result to cancel out the error. We can

see that the performance by using ensemble average was better in this section.

Error function

A

Local minimum

Global minimum

»
>

Configuration

Figure 4.6 A diagrammatic sketch of the BPNN error function surface

Here we used the load data of May 22, 2008 of GCB10 for an analysis testing. We
chose this data because its variation was not so regular compared with June 6, 2008 of
GCB10, which had been analyzed in the proceeding text. In the Figure 4.7, we can see

that the electricity load suddenly jumps over 1000KWH at the point 300 and 320 (i.e.
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14:00~16:00). It decreased gradually until about 820KWH at the point 380 (i.e.
18:00~19:00). Nevertheless, it suddenly jumped to 900KWH again the next hour.
Although we could find the precise future trend, we couldn’t get an accurate value in
the suddenly changing points. On the other hand, the smooth, stable changed points
could be predicted accurately. Based on these results, we took the data to see whether
or not the forecasting performance would be better after the ensemble average.

The forecasting results of the different ensemble levels are illustrated in Figure 4.7,
Figure 4.8 and Figure 4.9. Figure 4.7 present forecasting results without the ensemble
average. We can see that in the abruptly changed points such as 320 and 400, the large
error occurs, however, in Figures 4.8 and 4.9, which apply three and five times the
ensemble average respectively, we can clearly see that the forecasting results become
better. In addition, Table 4.6 shows the comparison of quantity between these three
different ensemble average levels. The results without ensemble average have four
points at which error percentage was over 5%. The RMSE, MAE and standard
deviation of error are 34.8, 21.0 and 28.4 respectively. When we apply the three times
ensemble average to improve the results, the points which error percentages over 5%
were three, and the RMSE, MAE and standard deviation of error become 22.8, 17.2
and 15.4 respectively, all of which are better than the results without ensemble
average. Even more, from the results using five times ensemble average, the points
which error percentage was over 5% were only one. The RMSE, MAE and standard
deviation of error were 18.5, 13.8 and 12.5 respectively, obviously better than the
other two.

In the comparison, we concluded that the forecasting error could be improved by
applying the ensemble average method. However, a crucial drawback of this method

is the large amount of time spent completing the process. For this reason, we aim to
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reduce the program processing time in the future. The outlook will be discussed in the

conclusion.
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Figure 4.8 Forecasting performance for May 22, 2008 of GCB10,

with three times ensemble average
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Table 4.6 The performance comparison between different ensemble average levels

no ensemble ensemble(3) ensemble(5)
Hour error error% error error% error error%
0~1 3.2 0.60 7.6 1.43 4.8 0.89
1~-2 0.6 0.12 4.1 0.78 3.4 0.64
2~3 2.7 0.52 5.7 1.08 5.0 0.96
3~4 0.6 0.11 0.5 0.09 1.8 0.34
4~5 54 1.04 1.9 0.36 7.7 1.48
5~6 4.4 0.84 5.6 1.07 1.6 0.31
6~7 7.4 1.38 2.3 0.42 1.8 0.33
7~8 41.6 7.20 38.0 6.57 30.9 5.35
8~9 11.4 1.51 10.2 1.34 4.5 0.60
9~10 12.7 1.45 245 2.80 5.7 0.65
10~11 22.2 2.37 21.1 2.26 14.9 1.59
11~12 18.6 1.95 4.1 0.43 13.8 1.45
12~13 15.8 1.62 21.9 2.25 10.7 111
13~14 18.5 1.86 45.2 4.55 18.7 1.88
14~15 3.7 0.34 17.8 1.65 34.0 3.15
15~16 119.8 10.82 0.1 0.01 12.7 1.15
16~17 14.9 1.50 0.4 0.04 9.2 0.93
17~18 33.0 3.68 11.6 1.30 17.0 1.89
18~19 9.9 1.20 38.4 4.68 39.1 4.75
19~20 81.3 8.96 51.3 5.65 45.1 4.96
20~21 52.2 6.96 18.2 2.42 1.2 0.16
21~22 19.0 2.89 34.4 5.25 4.6 0.70
22~23 2.6 0.42 29.0 4.74 19.9 3.26
23~24 14 0.24 17.7 3.02 22.9 3.89
RMSE 34.8 22.8 18.5
MAE 21.0 17.2 13.8
Standard deviation
28.4 154 12.6

of error




4.4.2. Gold price daily data

In this section the forecasting results of gold price daily data without the ensemble
average and five times ensemble average are both discussed. The two cases are
illustrated in Figure 4.9 and Figure 4.10, with four mark influential events on the
graph. For comparing, the RMSE of result without the ensemble average is 25.95, the
MAE is 19.46, the standard deviation of error is 17.2 and the correlation coefficient
between predicted data and actual data is 0.9813. The RMSE of result with five times
ensemble average is 19.18 and the MAE is 14.28, both better than the performance of
cases without ensemble average. The standard deviation of error is 12.84, meaning
that the error is more stable, and no large errors had occurred. Finally, the correlation
coefficient was 0.9902, presenting a stronger correlation than the one without the
ensemble average. The correlation between predicted price and real price of these two
cases are presented in Figure 4.11 and 4.13.

The gold price has abruptly sky-rocketed in this past year, the main reason being
the European debt crisis. The euro against the U.S. dollar came to the lowest level on
30 Jan 2011 meanwhile the price of gold also came to a local minimum. This data
shows a strong correlation between currency and gold price. However, in April 23,
2011, Greece applied for assistance to EU and IMF, and the gold price suddenly
increased. It could be interpreted as people were looking for a hedge by buying large
amounts of gold. Similarly, due to S&P reducing Greece’s credit rating to CC on July
4 and the U.S.’s later on August 5, as well as the world’s stock market crashing as a
result of worries about the U.S. second recession, the gold price experienced a
dramatic rise.

Our results present fine performance for prediction. However, after several times
ensemble average, the results became even better. Upon these accurate results, maybe

we can design a trading strategy in the future to see whether we can make a profit.
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5. Conclusion and outlook

An Ensemble Empirical Mode Decomposition based Back-propagation Neural
Network learning paradigm has been presented for electricity load forecasting and
gold price forecasting. In this research, the moving window method is applied to the
prediction process. Moreover, cubic spline interpolation and extrapolation were used
as our strategy for electricity load forecasting. The measures RMSE, MAE, standard
deviation of error were used to judge the performance. By using the meaningful IMFs
as training data, we can predict the electricity load for the next hour and the gold
prices for next day, all with accurate results. However, for further improvement of the
results, the ensemble average method was employed. The outcome shows that the
performance was better when using the ensemble average method than if it were not
in use.

For future research, there are several feasible improvements discussed as follows:
First, since we used MATLAB which only can be used on normal PC to process our
ANN program, in the future we can try to write an ANN program in FORTRAN
which can be used on computer cluster to promote the computing speed. Second, try
other combinations between the length of moving window, the numbers of
interpolation and extrapolation and different parameters of network. Third, and most
important, try different algorithms or architectures of neural network. For the gold
price prediction, we can design some trading strategies based on our forecasting
results in the future, and try to make a profit from trading gold. En Tzu Li (2011) has
used this algorithm to forecast TAIEX options, and designed a moving FK indicator
for algorithm trading and resulting in efficient performance. Therefore, in the future
maybe we can take another financial product time-series for forecasting and with

good trading strategy; we can earn lot of money.
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APPENDIX

In this appendix we collated the predicted results of GCB10 from May 12 to June 6,
2008 except for weekends. We selected points, error percentage are over 5%, and
sketched the statistical results in Figure A.1. The 20 days’ mean error and number of
error-percentage points over 5% are quantized in Table A.1. We found that there are
15 points over 5% of the total 20 points from 7:00 to 8:00. Since the air-condition
units are often turned on during this time, the load value jumps suddenly and the
performance of prediction are usually not satisfactory. The performance of peak hour
is better than off-peak hour, but in Table A.1 we can find that the mean errors
between these two time periods are not too different. Due to the baseline of off-peak

hour is about 400-600KWH while peak hour is about 800-1000 KWH.
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Figure A.1 Statistics of points over 5% of GCB10 from

May 12 to June 6, 2008 except for weekends
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Table A.1 The mean error and collation of points over 5% of GCB10 from

May 12 to June 6, 2008 except for weekends

GCB10 (2008.5.12-6.6 , weekdays)

Hour Mean error over 5%
0~1 134 3
1~2 145 5
2~3 114 1
3~4 131 4
4~5 15.2 4
5~6 13.9 4
6~7 154 6
7~8 36.0 15
8~9 18.2 2

9~10 23.7 2

10~11 21.8 3

11~12 12.6 2

12~13 11.6 0

13~14 13.0 1

14~15 10.7 0

15~16 17.7 1

16~17 11.9 1

17~18 12.6 0

18~19 11.5 0

19~20 14.4 1

20~21 134 1

21~22 22.6 3

22~23 11.0 2

23~24 14.2 2

RMSE 22.5

MAE 15.6

Standard deviation
16.2
of error




Reference

Ajay Shekhar Pandey, Devender Singh, and Sunil Kumar Sinha, 2010. Intelligent
Hybrid Wavelet Models for Short-Term Load Forecasting. IEEE transactions on
power systems, VOL. 25, NO. 3, August 2010.

Akgiray, V., G.G. Booth, J.J. Hatem, and C. Mustafa, 1991. Conditional Dependence
in Precious Metal Prices. The Financial Review, 26, 367-386.

Chen, M.-C., Wei, Y, 2010. Exploring time variants for short-term passenger flow. J.
Transp. Geogr. doi:10.1016/j.jtrange0.2010.04.003

Cummings, D.A.T., Irizarry, R.A., Huang, N.E., Endy, T.P., Nisalak, A., Ungchusak,
K., Burke, D.S., 2004. Travelling waves in the occurrence of dengue haemorrhagic
fever in Thailand. Nature 427 (6972), 344-347.

En Tzu Li, 2011. TAIEX Option Trading by using EEMD-based Neural Network
Learning Paradigm. Master Thesis of Graduate Institute of Applied Physics, College
of Science NCCU.

FENG Ping, DING Zhi-hong, HAN Rui-guang, ZHANG Jian-wei. 2009.
Precipitation-runo = forecasting ANN model based on EMD. Systems
Engineering-Theory & Practice, VVol.29, No.1, Jan., 2009.

G.A. Adepoju, M.Sc., S.O.A. Ogunjuyigbe, M.Sc., and K.O. Alawode, B.Tech.
Application of Neural Network to Load Forecasting in Nigerian Electrical Power
System. The Pacific Journal of Science and Technology Volume 8. Number 1. May
2007 (Spring).

Hwang, P.A., Huang, N.E., Wang, D.W., 2003. A note on analyzing nonlinear and
non-stationary ocean wave data. Applied Ocean Research 25 (4), 187-193.

Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C.,
Tung, C.C., Liu, H.H., 1998. The empirical mode decomposition and the Hilbert
spectrum for nonlinear and non-stationary time series analysis. Proceedings of the
Royal Society of London A 454 (1971), 903-995.

Huang, N.E., Wu, M.L., Qu, W.D., Long, S.R., Shen, S.S.P., 2003b. Applications of
Hilbert-Huang transform to nonstationary financial time series analysis. Applied
Stochastic Models in Business and Industry 19, 245-268.

59



Hari Seetha and R. Saravanan, 2007. Short Term Electric Load Prediction Using
Fuzzy BP. Journal of Computing and Information Technology - CIT 15, 2007, 3,
267-282.

Hong Ying Yang, Hao Ye, Guizeng Wang, Junaid Khan, Tongfu Hu, 2005. Fuzzy
neural very-short-term load forecasting based on chaotic dynamics reconstruction.
Chaos, Solitons & Fractals Volume 29, Issue 2, July 2006, Pages 462-469

Hamid S. A. and Igbal Z., Using neural networks for forecasting volatility of S&P 500
Index futures prices, Journal of Business Research, 2004, 57: 1116-112

James W. Taylor. An evaluation of methods for very short-term load forecasting
using minute-by-minute British data, 2008. International Journal of Forecasting, 24
(4). pp. 645-658. ISSN 0169-2070

K.Hornik, M.Stinchocombe, 1989. H.White, Multilayer feedforward networks are
universal approximators,NeuralNetworks2 (1989) 359-366.

Li, Q.S., Wu, J.R., 2007. Time—frequency analysis of typhoon effects on a 79-storey
tall building. Journal of Wind Engineering and Industrial Aerodynamics 95 (12),
1648-1666.

Liang, H., Lin, Q.-H., Chen, J.D.Z., 2005. Application of the empirical mode
decomposition to the analysis of esophageal manometric data in gastro esophageal
reflux disease. IEEE Transactions on Biomedical Engineering 52 (10), 1692-1701.

Lean Yu, Shouyang Wang, Kin Keung Lai., 2008. Forecasting crude oil price with an
EMD-based neural network ensemble learning paradigm. Energy Economics 30
(2008) 2623-2635.

Lean Yu, ShouyangWanga, KinKeungLai, FenghuaWenc, 2010. A multiscale neural
network learning paradigm for financial crisis forecasting. Neuro computing,
73:716-725

Liu, K. Subbarayan, S. Shoults, R.R. Manry, M.T. Kwan, C. Lewis, F.I. Naccarino, J.
Autom. & Robotics Res. Inst., Texas Univ., Arlington, TX, 1996. Comparison of very
short-term load forecasting techniques. IEEE Transactions on Power Systems. Vol. 11.
No. 2. May 1996

Mirmirani, S. and H.C. L, 2004. Gold Price, Neural Networks and Genetic Algorithm,
Computational Economics, 23, 193-200.

60



Mendelsohn L., Preprocessing data for Neural Networks, 1993. Tech Anal Stocks
Commod, 1993:52-58

Mohsen Hayati and Yazdan Shirvany, 2007. Artificial Neural Network Approach for
Short Term Load Forecasting for Illam Region. World Academy of Science,
Engineering and Technology 28 2007

N.X. Jia, R. Yokoyamaa, Y.C. Zhoub, Z.Y. Gaoc, 2001. A flexible long-term load
forecasting approach based on new dynamic simulation theory — GSIM.
International Journal of Electrical Power & Energy Systems Volume 23, Issue 7,
October 2001, Pages 549-556

Nahi Kandil, Rene” Wamkeue, Maarouf Saad, Semaan Georges, 2006. An efficient
approach for short term load forecasting using artificial neural networks. International
Journal of Electrical Power & Energy Systems Volume 28, Issue 8, October 2006,
Pages 525-530.

Ray Ruichong Zhang, M.ASCE; Shuo Ma; Erdal Safak, M.ASCE; and Stephen
Hartzell., 2003. Hilbert-Huang Transform Analysis of Dynamic and earthquake
motion recordings. Journal of Engineering Mechanics, Vol. 129, No. 8, pp. 861-875.

Ray Ruichong Zhang, Shuo Ma, and Stephen Hartzell., 2003. Signatures of the
Seismic Source in EMD-Based Characterization of the 1994 Northridge, California,
Earthquake Recordings. Bulletin of the Seismological Society of America; February
2003; v. 93; no. 1; p. 501-518.

Rugiang Yan, Student Member, IEEE, and Robert X. Gao, Senior Member,IEEE.,
2006. Hilbert—Huang Transform-Based Vibration Signal Analysis for Machine Health
Monitoring. IEEE Transactions on instrumentation and measurement, Vol. 55, No. 6.

Ruey-Hsun Liang, Ching-Chi Cheng, 2002. Short-term load forecasting by a
neuro-fuzzy based approach. International Journal of Electrical Power & Energy
Systems Volume 24, Issue 2, February 2002, Pages 103-111

Shahriar Shafiee and ErkanTopal, 2010. An overview of global gold market and gold
price forecasting. Resources Policy Volume 35, Issue 3, September 2010, Pages
178-189.

Stephen A. Baker and Roger C. van Tassel, 1985. Forecasting the price of gold: A
fundamentalist approach Atlantic Economic Journal Volume 13, No. 4, 43-51

61


http://www.springerlink.com/content/?Author=Stephen+A.+Baker
http://www.springerlink.com/content/?Author=Roger+C.+van+Tassel
http://www.springerlink.com/content/0197-4254/
http://www.springerlink.com/content/0197-4254/13/4/

Wu, Z., and N. E Huang, 2009. Ensemble Empirical Mode Decomposition: a
noise-assisted data analysis method. Advances in Adaptive Data Analysis. Vol.1,
No.1. 1-41.

Wei SUN, 2010. Research on GA-SVM Model for Short Term Load Forecasting
Based on LDM-PCA Technique. Journal of Computational Information Systems 6:10
(2010) 3183-31809.

Yen-Rue Chang, 2011. Non-stationary time series analysis by using Hilbert-Huang
transform: electricity consumption and gold price volatility. Master Thesis of
Graduate Institute of Applied Physics, College of Science NCCU.

62


http://rcada.ncu.edu.tw/reference009.pdf
http://rcada.ncu.edu.tw/reference009.pdf
http://rcada.ncu.edu.tw/reference009.pdf

63



