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摘      要 

 

本研究主要應用基於總體經驗模態分解法(EEMD)之倒傳遞類神經網路(BPNN)

預測兩種不同的非線性時間序列數據，包括政大逐時用電量以及逐日歷史黃金價

格。透過 EEMD，這兩種資料會分別被拆解為數條具有不同物理意義的本徵模態

函數(IMF)，而這讓我們可以將這些 IMF 視為各種影響資料的重要因子，並且可

將拆解過後的 IMF 放入倒傳遞類神經網路中做訓練。 

另外在本文中，我們也採用移動視窗法作為預測過程中的策略，另外也應用

內插法和外插法於逐時用電量的預測。內插法主要是用於補點以及讓我們的數據

變平滑，外插法則可以在某個範圍內準確預測後續的趨勢，此兩種方法皆對提升

預測準確度占有重要的影響。 

利用本文的方法，可在預測的結果上得到不錯的準確性，但為了進一步提升

精確度，我們利用多次預測的結果加總平均，然後和只做一次預測的結果比較，

結果發現多次加總平均後的精確度的確大幅提升，這是因為倒傳遞類神經網路訓

練過程中其目標為尋找最小誤差函數的關係所致。 

 

 

 

 

關鍵字：總體經驗模態分解法、倒傳遞類神經網路、用電量預測、黃金價格預測、 

超短時間負荷預測 
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Abstract 

 

 

In this paper, we applied the Ensemble Empirical Mode Decomposition (EEMD) 

based Back-propagation Neural Network (BPNN) learning paradigm to two different 

topics for forecasting: the hourly electricity consumption in NCCU and the historical 

daily gold price. The two data series are both non-linear and non-stationary. By 

applying EEMD, they were decomposed into a finite, small number of meaningful 

Intrinsic Mode Functions (IMFs). Depending on the physical meaning of IMFs, they 

can be regarded as important variables which are input into BPNN for training. 

We also use moving-window method in the prediction process. In addition, cubic 

spline interpolation as well as extrapolation as our strategy is applied to electricity 

consumption forecasting, these two methods are used for smoothing the data and 

finding local trend to improve accuracy of results.  

The prediction results using our methods and strategy resulted in good accuracy. 

However, for further accuracy, we used the ensemble average method, and compared 

the results with the data produced without applying the ensemble average method.  

By using the ensemble average, the outcome was more precise with a smaller error,  

it results from the procedure of finding minimum error function in the BPNN training. 

 

 

 

Keywords: Ensemble Empirical Mode Decomposition, Back-propagation Neural 

Network, electricity consumption forecasting, gold price forecasting, 

very-short term load forecasting 
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1. Introduction 

Empirical Mode Decomposition (EMD), first introduced by Huang et al. (1998) 

was developed for dealing with nonlinear and non-stationary data. The method is 

empirical, intuitive, direct and adaptive. By using EMD, the time-series data is 

decomposed into several intrinsic modes which are nearly periodic and independent 

with each other. The intrinsic modes may have its own physical meaning based on 

local characteristic time scale. For instance, if an intrinsic mode is periodic with a 

time scale of one month, it can be recognized as the monthly component. Similarly, 

an intrinsic mode with scale of three months means the seasonal component. 

Generally, complex time-series data is often mixed up with many different signal 

sources thus difficult to understand their meaning. But, through the EMD 

decomposition method we can divide them into several meaningful intrinsic modes, 

allowing us to closely analyze their characteristics.  

EMD has been successfully applied in different fields such as ocean waves 

(Hwang et al., 2003), earthquake engineering (RR Zhang et al., 2003), wind 

engineering (Li and Wu, 2007), biomedical engineering (Liang et al., 2005) and 

structured health monitoring (R Yan, 2006). The above applications are all related to 

natural science and engineering. However, in the recent years, there have been more 

and more applications in social sciences. For example, financial time series analysis 

(Huang et al., 2003b), transport geography (MC Chen, 2010), disease transmission 

(Cummings et al., 2004), as well as combined with artificial neural networks (ANNs) 

to forecast crude oil price (Lean Yu et al., 2008).  

In addition to the EMD originally developed, there is an improved EMD, known as 

Ensemble EMD (EEMD, Wu and Huang, 2009), which was proposed to solve the 

mode mixing problem of EMD. In this study, we first applied the EEMD method and 
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then combined it with ANNs to electricity consumption forecasting and gold price 

forecasting. 

Electricity consumption forecasting (i.e. load forecasting), is commonly classified 

into four categories: long-term load forecasting, medium-term load forecasting, 

short-term load forecasting and very short-term load forecasting. Long-term load 

forecasting (5, 10 and 20 years ahead) is used for system planning, scheduling 

construction of new generation capacity and the purchasing of generation units (Jia et 

al., 2001). Medium-term load forecasting (a few months to 5 years ahead) is applied 

to maintenance scheduling, coordination of load dispatching and the setting of prices 

(Jia et al., 2001). Short-term load forecasting (hourly forecasting from one day to one 

week ahead) is usually used for optimal generator unit commitment, fuel scheduling, 

hydro-thermal co-ordination, economic dispatch, generator maintenance scheduling, 

the buying and selling of power and security analysis. Very short term load 

forecasting (few minutes to an hour ahead in the future) is often used for security 

assessments and economic dispatching, real-time control and real-time security 

evaluation (Jia et al., 2001). In this study we focused on very short-term load 

forecasting and forecast load of one hour ahead. 

Surprisingly, there has been very little research on very short-term load forecasting. 

Yang et al. (2005) used a method based on the chaotic dynamics reconstruction 

technique and fuzzy logic theory on the load data of Shandong Heze Electric Utility, 

(China). Their results demonstrated that the proposed approach could calculate 15 

minutes ahead load forecasting with accurate results. James W. Taylor (2008) used 

minute-by-minute British electricity demand observations to evaluate different 

forecasting methods, including ARIMA modeling and Holt-Winters' exponential 

smoothing method for prediction between 10 and 30 minutes ahead. Liu et al. (1996) 

applied the fuzzy logic method and ANNs to the previous 30 minute-by-minute 
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observations as input for the online forecasting process to show that the methods 

could outperform the simplistic non-seasonal AR model. 

Unlike the various aforementioned methods, we used the EEMD-based ANN 

algorithm for one hour ahead forecasting. ANNs are massively parallel and robust. 

They contain complicated architectures of interconnected processing elements. They 

can learn complex linear or non-linear input-output mappings between data sets of 

measurements and future demand values. Based on the features presented in the data 

they can be designed adaptively for learning and responding with high-speed 

computation. The ANNs have been applied to many areas especially when dealing 

with the issues of forecasting.  

Hamid et al. (2004) applied ANNs to financial forecasting. Their goal was to   

forecast the volatility of S&P 500 Index future prices, and compare volatility forecasts 

from ANNs with the implied volatility from S&P 500 Index futures options using the 

Barone-Adesi and Whaley (BAW) model for pricing American options on futures. 

Lean Yu et al. (2008) used an EMD-based neural network ensemble learning 

paradigm for world crude oil spot price forecasting. In Yu‘s study, West Texas 

Intermediate (WTI) crude oil spot price and Brent crude oil spot price were used to 

test the effectiveness of the method. Their results showed that the EMD-based neural 

network ensemble-learning model outperformed the other forecasting models in terms 

of criteria. Lean Yu et al. (2010) proposed an EMD-based multi-scale neural network 

learning paradigm to predict financial crisis events for early-warning purposes. They 

took the currency exchange rate series of the South Korean Won (KRW) and Thai 

Baht (THB) as training targets. Their tests showed that the EMD-based multi-scale 

neural network learning paradigm was superior to other classification methods and 

single-scale neural network learning paradigm when formulating currency crisis 

forecasting. Feng Ping et al. (2009) applied EMD-based ANNs to precipitation-runoff 
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forecasting. They took the annual precipitation series from 1956 to 2000 from the 

sub-water resource regions of upper Lanzhou, China as historical training data, and 

showed that the EMD could decompose the data into a multi-time scale sub-series for 

finding their local change rule. The results demonstrated that the EMD-based ANNs 

model presented higher accuracy than any other models. 

The ANNs are also widely used in short-term load forecasting. Ruey-Hsun Liang 

and Ching-Chi Cheng (2002) used an approach based on combing ANNs with the  

fuzzy system and applying it to data from the Taiwan Power Company. Nahi Kandil 

et al. (2006) applied multi-layered feed-forward ANNs by using data from 

Hydro-Quebec databases for forecasting. They demonstrated ANNs‘ capabilities 

without using load history as an input, instead final temperatures were the only data 

considered in their load forecasting procedure. Mohsen Hayati and Yazdan Shirvany 

(2007) used Multi-Layer Perceptron (MLP), a kind of architecture of ANNs, on data 

from a three year time period (2004-2006) from the Illam (Middle Eastern country, 

west of Iran) region, while G.A. Adepoju et al. (2007) applied ANNs to the Nigeria 

Electric power system.  

Gold has been mined since ancient times. With recent growth in production, more 

than a third of the world‘s gold that has ever been mined, in just the last thirty years. 

The consumption of gold differs by application type: industrial, dental technology, 

jewelry products and inventory. Jewelry consistently accounts for over two-thirds of 

the gold demand, but in markets with poorly developed financial systems or markets 

experiencing crisis, gold is an attractive investment. The demand-supply equilibrium 

and inflation cause gold price to fluctuate. Gold is commonly a popular hedge 

instrument for investors against devaluation of the US dollar. In recent years as the 

value of US dollar has decreased relative to other major currencies, the price of gold 
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has experienced a secular increase. The dramatic rises in gold price since the start of 

2009 may have resulted from investors looking to preserve their wealth.  

There have been several studies on gold price analysis: Baker and Tassel (1985) 

used regression results to support the theoretical analysis leading to the prediction. 

Akgiray, Booth, Hatem and Mustafa (1991) used the GARCH model to verify time 

decency of gold price. In comparison with statistical techniques, engineering- based 

systems, such as neural networks, make less restrictive assumptions on the underlying 

distribution. Mirmirani and Li (2004) used neural networks and genetic algorithm to 

analyze gold price. Shahriar Shafiee and ErkanTopal (2010) used long-term trend 

reverting jump and dip diffusion model and took monthly historical gold price data 

from January 1968 to December 2008, to forecast gold price for the next ten years. 

Yen-Rue Chang (2011) used EEMD to decompose monthly gold price data into 

several IMFs to observe their important properties. Following the work of Yen-Rue 

Chang (2011), we used the decomposed IMFs as input factors for gold price 

forecasting. 

This research aimed to forecast using EEMD-based ANN algorithm, more 

specifically; we used a back-propagation neural network (BPNN) which is a kind of 

ANN architecture. Our testing targets were electricity load data and gold price data. 

We performed one hour ahead load forecasting and gold price forecasting for 2011. 

Section 2 gives brief introduction to the basic concept of EEMD and BPNN. In 

section 3, we describe the subject data, and introduce our experiment strategy, and 

some important measures used. Experiment results and forecast performance are 

discussed in Section 4, along with the results of improvement by ensemble average. In 

Section 5, we will present our conclusion and outlook. 
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2. Methodology 

2.1. Empirical mode decomposition  

In the past, we usually used a spectral analysis method called the Fast-Fourier- 

Transform (FFT) to analyze time-series data; however FFT posed a few problems: 

If the nonlinear and non-stationary degrees of the time-series data were to increase, 

the results of the FFT would produce large sets of physically meaningless harmonics. 

Nowadays, we utilize a new spectral analysis method called 

Hilbert-Huang-Transform (HHT). While the HHT can solve the problems with the  

FFT, it is still limited in that it can only be used for data which are symmetric in 

relation to the local zero mean. We would thus need to first use the empirical mode 

decomposition (EMD) which was proposed by Huang et al. (1998) to decompose data 

into several intrinsic mode functions (IMFs). The IMFs are all symmetric in relation 

to the local zero mean so that we can use HHT on them. 

The EMD is a data analysis method which can be used in dealing with non-linear 

and non-stationary time series data. It assumes that all time series data can be 

decomposed into a sum of oscillatory functions known as IMFs. The IMFs, based on 

the local characteristic scale by itself, have to satisfy the two following conditions: 

 

(1) IMFs should have the same numbers of extrema (including maxima and minima) 

and zero-crossings, or differ at most by one;  

(2) At any point, the mean value of the envelope defined by local maxima and the 

envelope defined by local minima is zero, meaning the IMFs should be 

symmetric in relation to the local zero mean. 
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We then pose the question, ‗how can we extract the IMFs from original data‘? We 

can use the following sifting process: 

(1) Identify all the local maxima and minima of the time series x(t) 

(2) Connect all the local maxima and minima by cubic spline interpolation to   

generate its upper and lower envelopes emax(t) and emin(t) 

(3) Calculate mean m(t) from upper and lower envelopes point-by-point as  

m1(t) = (emax(t)+ emin(t))/2 

(4) Calculate the difference between the time series data x(t) and the mean value 

m1(t), than get h1(t) as :   h1(t) = x(t) - m1(t) 

(5) Check the properties of h1(t): 

If h1(t) doesn‘t satisfy the conditions of IMF, replace x(t) with h1(t) and repeat 

(1)-(4) until hk(t) satisfies the stopping criterion: 

     
                 

 

    
    

 

   

 

A typical value for SD can be set between 0.2 and 0.3. 

On the other hand, if h1(t) (or hk(t)) satisfies the conditions of IMF, then it should 

be an IMF, and denote h1(t) (or hk(t)) as the first IMF c1(t). Then we separate the IMF 

c1(t) from x(t) to get the residue r1(t) :    x(t) - c1(t) = r1(t) 

(6) Now we replace x(t) with r1(t) and repeat steps (1)-(5) to get 

c2(t).c3(t).c4(t).c5(t)………..cn(t) and final residue rn(t). 

 

The sifting process is stopped by any of the following predetermined criteria: 

either the component cn(t) or the residue rn(t) becomes so small that it is less than the 

predetermined value of the substantial consequence, or the residue rn(t) becomes a 

monotonic function from which no more IMFs can be extracted (Huang et al. 1998). 

At the end of the sifting process, the original time series can be expressed as  
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Where n is the number of IMFs, rn(t) is the final residue, also the trend of x(t), and 

ci(t) represents IMFs which are nearly orthogonal to each other. After the sifting 

process, the original data set is decomposed into these IMFs which represent high 

frequency to low frequency, and every IMF may have its own physical meaning. So 

we can regard the EMD as a filter to separate high to low frequency modes, and apply 

HHT on each IMF, allowing us to explore their meaning 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 The flowchart of EMD 

Not an IMF, n=n+1 

rk(t)=x(t) – ck(t) 

x(t)= rk(t) 

IMF C1 .C2. C3 …..R 

It‘s an IMF  

n=1 

Mean of envelopes : 

mn(t) = (emax(t)+ emin(t))/2 

 

hn(t) = x(t) – mn(t) 

Check the properties of hn(t) 

IMF Ck=hn 

Find all the local  

minimum and maximum 

Generate upper and lower envelopes  

by cubic spline interpolation 

Original 

data x(t) 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

15 
 

2.2. Ensemble EMD 

EMD has proved to be a useful data analysis method for extracting signals from 

nonlinear and non-stationary data. However, EMD still has its defects: when the 

original data is intermittent, a single IMF may consist of either signals of widely 

disparate scales, or a signal of similar scale belonging to different IMF components; 

this phenomenon is called ―mode mixing‖. When mode mixing occurs, an IMF may 

cease to have physical meaning by itself. Thus, EEMD was proposed by Wu and 

Huang (2004) for overcoming the problem. We know that all observed data are mixed 

with true time series and noise. Even if data is collected by separate observations with 

different noise levels, the ensemble mean is close to the true time-series. This means 

that we can extract the true meaningful signal from data by adding some white noise. 

Adding white noise could provide a uniformly distributed reference scale, and help 

EMD to overcome the mode mixing problem. 

 

The simple procedure of EEMD is as follows: 

(1) Add a white noise series to the original data. 

(2) Decompose the data with added white noise into IMFs. 

(3) Repeat the previous two steps iteratively, and add different white noise 

each time, finally we obtain the ensemble means of corresponding IMFs of 

decompositions. 
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Figure 2.2 Diagram to illustrate the procedure of Ensemble EMD 

 

In figure2.2, x(t) is the original data, wi(t) is the added white noise series, xi(t) is 

the original data mixed with different white noise series, cmn is the IMFs, and Rm 

represents the residues. 

However, there is a well-established statistical rule proved by Wu and Huang 

(2004) to control the effect of adding white noise: 

   
 

  
 

In this formula, N represents the number of ensemble members,   is the amplitude 

of the added noise and  n is the final standard deviation of error defined as the 

difference between the input signal and the corresponding IMFs. Empirically, the 

number of ensemble members N is always set to 100 and the  n is always set to 0.1 or 

0.2. The procedure of adding white noise successfully makes signals of comparable 

scales to collate in one IMF, and then cancels itself out. Therefore, the EEMD, which 
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weight

input layer

hidden layer

output layer

bias

transfer function

neurons

can successfully reduce the chance of mode mixing, is a really good, substantial 

improvement over the original EMD. 

 

2.3. Artificial neural networks 

Artificial neural networks (ANNs), which have been widely used for data 

prediction in many application domains, are a kind of intelligent learning paradigm. 

They have been developed over the last 50 years, and the first, simplest model of 

ANNs which is called Perceptron was proposed by Frank Rosenblatt in 1957. 

Nowadays, the most popular model of ANNs is feed-forward back-propagation 

neural network (BPNN). It adopts the Widrow-Hoff learning rule (i.e. least mean 

squared (LMS) rule) (Hagan et al., 1996) and different algorithms such as the steepest 

descent method, Newton‘s method and Levenberg-Marquardt (LM) algorithm to train 

the network. ANNs are designed to imitate the biological neural system. Typically, 

ANNs contain three sections: neurons, connection weights and transfer functions.  

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Simple structure chart of three-layers neural network 
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The connection weights present the strength between neurons. A larger weight 

means the connection is stronger while a smaller weight presents a weaker link. The 

neurons process input signals overlap at the neuron and are sent to the transfer 

function for generating output value. The transfer functions are created to restrict the 

output value of ANNs. Because different kinds of ANNs are used in different ways, 

they need different transfer functions to generate different results.  

The feed-forward BPNN, which is the most popular model of ANNs for 

time-series data prediction, uses three kinds of transfer functions: log-sigmoid 

function, hyperbolic function and linear function. Log-sigmoid function and 

hyperbolic function are often used in the hidden layer. The log-sigmoid function takes 

an output value between 0 and 1 while the hyperbolic function takes an output value 

between 1 and -1. These two transfer functions are both differentiable so that the 

training algorithms may work for the network, otherwise the linear function is usually 

put in the output layer. It can produce values of any number.  

                                   

                                  
 

    
 

                                   
      

      
 

In this thesis, we used the feed-forward BPNN for modeling the decomposed IMFs 

and the residual component. In the BPNN, there is an important parameter called the 

―mean square error function‖, which is a function of weights. Since our goal was to 

minimize the mean square error function, we had to adjust the connection weights 

iteratively by training the network. The mean square error function could be presented 

as: 
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where ai is the final output value, a function of weight. ti is the target value, and ei is 

the error between the values ai and ti. On the other hand, the input value of the mth 

layer‘s ith neuron is the nonlinear function of the output value of the (m-1)th layer‘s 

neurons: 

  
        

 

 

   

  
      

       
   

  
      

 

 

   

  
      

  

The function     
   is the transfer function previously discussed. wij

m
 is the weight 

between the mth layer‘s ith neuron and (m-1)th layer‘s jth neuron, bi
m

 is the bias of 

mth layer‘s ith neuron, aj
m-1

 is the output value of (m-1)th layer, and ai
m

 is the output 

value of mth layer. 

In the history of BPNN, there have been several algorithms used to train the 

network for adjusting the weight. Here we adopted the Levenberg-Marquardt (LM) 

algorithm, which combines the advantages of the steepest descent method and 

Newton‘s method: 
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where W
m

(k) is the matrix of weights in the mth layer after the kth adjustment. H(k) is 

called the ―Hessian matrix‖, which is the second derivative of the mean square error 

functions, and g(k) is the first derivative of F(w).   is the identity matrix, and  k is 

the control parameter.  

The control parameter  k changes iteratively, set with a big value in the beginning. 

Meanwhile, the LM algorithm will equal to the steepest descent method. The steepest 

descent method converges quickly when our result is still far from the optimal point, 

but as the result gets closer to the optimal point, the convergence speed gets slower, 

so the method costs much more times to find the optimal result. 

The  k becomes a very small value in the later period of training, meanwhile the 

LM algorithm will become equal to Newton‘s method, which converges quickly when 

the result is approaching to the optimal result. 

The significant reason why we chose BPNN as our prediction tool was that the 

BPNN is usually regarded as a ―universal approximator‖ (Hornik et al., 1989). Hornik 

et al. found that a three-layer BPNN can approximate any continuous function 

arbitrarily well with an identity transfer function (i.e. linear transfer function) in the 

output layer and logistic functions (i.e. log-sigmoid function and hyperbolic function) 

in the hidden layer.  

In practice, the neural networks with one and occasionally two hidden layers are 

widely used and perform well. In this thesis, we utilized the four-layer feed-forward 

BPNN. Moreover, the number of neurons in the hidden layers were set to the same 

value as the IMFs or this value plus two, respectively, since the number of neurons in 

the hidden layer can range from one-half to two times (Mendelsohn, 1993) the sum of 

input and output numbers. 
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The applied complete four-layer BPNN is shown as follows: 

 

 

 

 

 

 

 

Figure 2.4 The structure chart of complete four-layer BPNN 
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Below is a flowchart of the BPNN learning progress which can help us to 

understand it more clearly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 The flowchart of training progress of BPNN 
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2.4. Cubic spline interpolation and extrapolation 

Sometimes time-series data may be missing values. In the mathematical field 

of numerical analysis, interpolation is a method which is applied to fill the gaps of 

missing values. For generating those intermediate values, there are several 

interpolation methods, such as piecewise constant interpolation, linear interpolation, 

polynomial interpolation and cubic spline interpolation. In contrast with linear 

interpolation, cubic spline interpolation uses low-degree polynomials in each of the 

intervals, and makes the intervals of data points smooth.  

Extrapolation is a method which is used for forecasting outside of the known 

values for a given range, but the results are often less meaningful. If applied to a 

limited range of time-series data sets, extrapolation can extend data points, and find 

the variation tendency of the future of the time-series. Extrapolation uses the same 

methods as interpolation. Linear extrapolation uses the last two data values to create a 

tangent line at the end of known data, extending it beyond the limit. However, it only 

provides accurate results when used to extend the graph of an approximately linear 

function or not too far beyond the known data. Otherwise, cubic spline extrapolation, 

which needs more than the two values of the end of data, can create a low-degree 

polynomial curve which is extended beyond the known data. It is suitable for data 

which has curve properties, or data which we have already applied the cubic spline 

interpolation to.  

In the use of the electricity load data of this study, the cubic spline interpolation 

method was applied to smooth the data points. Cubic spline extrapolation was   

employed to generate extra points to be included in our forecasting data before using 

the EEMD-based ANNs. 

 

 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Numerical_analysis
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2.5. EEMD-based neural network learning paradigm 

Artificial neural networks, which have already been applied in many practical 

forecasting cases, still have a lot of room for improvement. A crucial challenge 

nowadays is to improve the performance of the forecasting of artificial neural 

networks. Some researchers advocate the cross-validation technique, but it may be 

inadequate when the problem is complex, due to the method being based on a single 

series representation for entire a training process. Consequently, many scholars have 

done a lot of extensive research, such as Wavelet-based ANN (Ajay Shekhar Pandey 

et al., 2010), Fuzzy BP (Hari Seetha and R. Saravanan, 2007), PCA-based ANN (Wei 

Sun, 2010) and EEMD-based ANN (Lean Yu et al., 2008). In this study, the 

EEMD-based ANN was employed to decompose time-series into several IMFs.  

Each IMF had its own physical meaning so that we could regard these IMFs as the 

input variables of ANN. Figure 2.6 illustrates the basic structure of EEMD-based 

neural network. 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Simple illustration of EEMD to form the inputs of neural network 
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The EEMD-based neural network learning paradigm contains following steps: 

(1) Decompose the original data into IMFs and residual components using 

EEMD. 

(2) Put IMFs as the input variables into the four-layer BPNN. 

(3) The input data set and target data set are extracted from the decomposed 

IMFs and original data. 

(4) In the program, the input values and target time-series data will be first  

manipulated to a range between 1 and -1, and then divided into training , 

testing and validation sets. When parameters are all fixed, the four-layer 

BPNN structure will be created and start to train the network.  

(5) In the network, the input data and target data will be compared and the 

optimal weights are found. 

(6) The other input data will input to the trained network, and the forecasting 

data is generated.  Then compare the forecasted data with real data. 

 

To summarize, in this study we used EEMD to decompose the NCCU electricity 

load data into several meaningful IMFs, and then combined extrapolation with BPNN 

to forecast the electricity load of every hour. However the data used first underwent   

cubic spline interpolation. The forecasting results are shown in the next section. 
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3. Forecasting experiments 

3.1. Data description  

3.1.1. Electricity load data from NCCU 

The used electricity load data in this study was obtained from Office of General 

Affairs of National Chengchi University (NCCU). In NCCU, the consumption of 

electricity mainly comes from ten regions, labeled as GCB1 to GCB10. Among these 

ten regions, only three are independent buildings while the remainders contain 

numerous different sources. The three important buildings which contribute a 

majority of the electricity consumption of NCCU are the Information Building 

(GCB2), College of Commerce Building (GCB5) and General Building (GCB10). In 

this thesis, we focused on these three buildings because the electricity is controlled 

more easily. Generally, the electricity consumption of NCCU gradually increases after 

the anniversary celebrations, May 20, of every year. This is mainly due to the 

approach of summer and increasing temperatures prompting more use of 

air-conditioners and thus more consumption of electricity.  

The electricity load data possesses some important properties. To illustrate these 

properties, we took the hourly data from May 5, 2008 to June 6, 2008 of GCB10 for 

an example. In Figure 3.1, we can easily observe that the data regularly changes from 

high to low, with peaks and valleys. Every five higher peaks follow two smaller peaks. 

This is illustrates the change from day to night (or peak hours to off-peak hours) and 

weekdays to weekends. These two important patterns are crucial factors influencing 

the forecasting performance. 

In this study we used June 6, 2008 of GCB10 as a forecasting example. The 

pre-one-week data of June 6, 2008 was used as the input for historical data. We also 

used an ensemble average method to improve the forecasting performance, the load 
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data of May 22, 2008 of GCB10 will be the testing sample. The results are presented 

in the section 4. 

 

 

 

Figure 3.1 Hourly electricity load curve of GCB10 from 2008.5.5 to 2008.6.6 

 

 

3.1.2. Gold price daily data 

The gold price daily data used in this study was downloaded from website 

―Wikiposit‖ (http://wikiposit.org/w?filter=Finance/Commodities/). The data ranges 

from 1968 to the present (2011.9.1) using a unit of US dollar per oz ($/ounce). The 

historical gold price data was analyzed to see properties using EEMD by Yen-Rue 

Chang (2011). In her study the historical monthly gold price data (date from year 

1968 to 2011) was decomposed into several IMFs, and the most important one was 

the trend. It is obviously most important because we know that gold prices were cheap 

in the earlier years, but in recent years, the price of gold has sky-rocketed, the reason 

being inflation. On the other hand, gold prices have always had a strong correlation 

with historical and international events. These significant events which had disturbed 

world gold prices, include the crude oil crisis in 1974, The Gulf War in 1980, the New 

York Stock market crash in 1987, the economic growth in the U.S. from 1996 to 2006, 

the financial crisis in 2007 and recently, the European and U.S. debt crisis of 2011; all 

http://wikiposit.org/w?filter=Finance/Commodities/
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have been important factors. In the study by Yen-Rue Chang (2011), these significant 

events behave in the low-frequency term (Figure 3.2). 

In this study, we used the historical gold price data to forecast gold prices in 2011, 

and also improved the results by applying the ensemble average. These performance 

results are also presented in the section 4. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Monthly gold price and significant world events from Jan. 1968 to 

Nov.2010 [Yen-Rue Chang, 2011, NCCU] 

 

 

 

 

 

 

 

 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

29 
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1 2 ...... 21

.......

3341...... 41 ....... 3321 ......

3.2. Experiment design  

In this study, the forecasting strategies are presented as the following steps: 

Step1: extract data 

Based on the benchmark study (Section 4.1), we extracted data series with an 

interval of one week (168 points from the electricity load hourly data), and 1005 

points from daily gold price data as moving window length for training. In this section 

we took the hourly electricity load data as a testing subject. 

Step2: interpolation 

The reason we used interpolation is that we found ANN could perform very well 

when the difference of value between one point and the next point was low while 

using moving window. 

In this step, we applied cubic spline interpolation to the extracted data. The 

extracted 168 points increased to 3341 points (i.e. with interpolation of 20 points) 

while time scale transformed from one hour a point to 3 minutes per point. Figure 3.3 

illustrates this procedure. 

 

 

 

 

 

 

 

 

Figure 3.3 The interpolation method 
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1 2 ...... 12

3341...... 21 ....... 3321 ......13 + 1 2 ...... 12

Since the original data was based on hourly intervals, the interpolated points in 

step 2 are non-existent and unrealistic for forecasting purposes. If we wanted to 

forecast the value of the next hour accurately, we needed to forecast the fictitious 

points. We found that extrapolation could provide accurate forecasting results, but 

only to a certain extent. Therefore, our strategy was based on performing the 

extrapolation to an extent, and then forecasting residual virtual points. When a new 

virtual point was forecasted, we took this point and used it as real forecasted data to 

do the moving window forecasting procedure. 

After step 2, cubic spline extrapolation was applied to the new interpolated data. 

The number of extrapolation was decided empirically (e.g. in this study we found that 

interpolation with twenty points combine extrapolation with twelve points performs 

very well and has good efficiency for program‘s working). 

Step4: create a new data series for decomposition 

In step 4 we combined the interpolated data produced in step 2, with the 

extrapolated points discarding the same amount as the extrapolated points in front of 

the interpolated data (i.e. maintain the length of data with one week, see Fig.3.4). 

 

 

 

 

 

 

 

Figure 3.4 Create a new data series by interpolation and extrapolation  
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New data 
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Step5: EEMD and BPNN training 

The new data was created to decompose into IMFs through EEMD. After EEMD, 

the one week data was decomposed into meaningful IMFs which could be regarded as 

factors that influence the consumption of electricity. In this step, the IMFs which 

discarded last points were regarded as input data. The new data discarded the first 

point which was regarded as target data. For BPNN training, we put input and target 

data into a BPNN network, and the discarded the last IMFs‘ points which were used 

as input for the trained network to generate forecasting point (Fig.3.5). 

Step6: Moving window and forecasting 

We combined the forecast point to the new data, discarded another point in front of 

the new data, and update it again. After the newer data was updated, we repeated step 

5 (i.e. the method is called moving window, see Fig.3.5) until the original hourly 

point was forecasted. Once we got the forecasted hourly data, we then compared it 

with the real hourly data. In order to forecast the data of next hour, we took the real 

data of next hour, added it into our data, and repeated step 3 to step 6. 
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Figure 3.5 Training Network by Moving Window Process 
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3.3. Statistical measures  

In this section we shall introduce various statistical measures that are used to 

analyze the IMF properties, and forecasting result performance. The measures used to 

analyze IMFs are mean periods, Pearson correlation coefficient, and power percentage.  

The measures used to see performance of forecasting results are RMSE, MAE and the 

standard deviation of error. These measures are presented as follows: 

Mean period 

The mean period which is used to see the cycle of an IMF is calculated by the 

inverse of mean frequency. The mean frequency is the average of ―instantaneous 

frequency‖. To calculate the instantaneous frequency, we apply HHT to the extracted 

IMFs. In the following paragraph we will briefly introduce the HHT, proposed by 

Huang et al. (1998). 

For any arbitrary time-series data set X(t), we can always have its 

Hilbert-transform Y(t) as 

      
 

 
     

     

    
   

 

  

 

  Where p.v. indicates the Cauchy principal value.  

Then we use X(t) and Y(t) to form the complex conjugate pair, and get an analytic 

signal Z(t) as 

                            

Where                         

and                      
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Which a(t) indicates the amplitude varied with time, and  (t) represents the phase 

also a function of time. The above is the best local fit of amplitude and phase-varying 

trigonometric function to the original time series data X(t). Now we can define the 

instantaneous frequency of Hilbert transform through the phase: 

     
    

  
 
 

  

     

  
 

Therefore, the mean frequency F of an IMF can be presented as: 

  
 

 
     

 

   

 

and the mean period T will be 

  
 

 
 

Notice: We didn‘t calculate the mean period of residue because it is a monotonic 

function, so in this study we ignored the mean period of residue. 

Pearson correlation coefficient 

The Pearson correlation coefficient, which‘s value always ranges from -1 to +1, is 

the most familiar measure used to detect the dependence between two quantities. The 

Pearson correlation +1 means a perfect positive linear relationship while -1 means a 

perfect negative linear relationship. As the value approaches zero, it means there is 

correlation and becoming almost uncorrelated. As it approaches -1 or +1, the 

correlation is stronger between two variables. Here the Pearson correlation coefficient 

ρ XY between two variables X and Y with expected values μ X and μ Y and standard 

deviations σ X andσ Y is shown as follows: 
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Where E is the expected value operator and cov(X,Y) means covariance between X 

and Y. 

Power percentage 

Power percentage is a measure based on variance for detecting the weight of an 

IMF on the original data. A higher value of power percentage indicates a stronger 

weight an IMF is. The power percentage is defined as follows: 

                    
        

                  
     

Root mean square error and mean absolute error 

Root mean square error (RMSE) and mean absolute error (MAE) are both useful 

quantities to measure how closely predicted or forecasted values are to the actual data, 

and are good measure of accuracy. The RMSE and MAE are given by: 

       
 

 
             
 

   

 

     
 

 
            

 

   

 

Where R(t) indicates the real data at time t and P(t) means predicted data value at 

time t. 
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Standard deviation of error 

The standard deviation of error in this study is the standard deviation calculated 

from the error between the predicted and real values of every hour. Using this 

measure, we can find the fluctuation of errors. A lower standard deviation indicates 

that the errors tend to be very close to the mean, whereas higher standard deviation 

indicates that the errors are spread out over a large range of values.  
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4. Results and discussion 

4.1. Benchmark study 

Before forecasting, we first did a benchmark study in order to choose the input data 

length. Table 4.1 shows some measures of the forecasting results of the 2011 gold 

price daily data which used four different data lengths as input. From this table we can 

see that the input data length with 1005 points and 754 points perform little better 

than 1255 points and 2759 points, and saved more time during training process. In 

addition, the data length with 1005 points was better than the 754 points because it 

may have contained more information. Therefore, we chose and fixed data length with 

1005 points (i.e. time interval from 2007 to 2010) as our input data in this study.  

 

 

 

 

 

Table 4.1 Comparison between different input data length for forecasting of 2011 gold price  

 

2000-2010 

(2759points) 

2006-2010 

(1255 points) 

2007-2010 

(1005 points) 

2008-2010 

(754 points) 

RMSE 27.7 34.2 26.0 26.1 

MAE 19.0 21.1 19.5 19.0 

Correlation coefficient 0.978 0.966  0.981 0.980 

Standard deviation 

of error 
20.2 26.9 17.2 18.0 
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Similarly, for judging the suitable input length of electricity load data, we tested 

four different data lengths. The forecasting measure results of June 6, 2008, GCB10 

are displayed in Table 4.2. The table shows that the data length with one-week 

performed the best depending on the measures. Although the length with two-weeks 

and three-weeks also had good performance, the time spent training doubled and 

tripled.  However, the measures of length which took only one-day perform so 

poorly due to big error, occurring from 5:00 to 6:00. The case revealed that the time 

interval was too short for training, and from this short training, data may have caused 

the occurrence probability of big error, resulting possibly from a lack of information. 

Based on the above reasons, the one-week data length is the most suitable choice for a 

training set which was used in this research. 
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  Table 4.2 Comparison between different input data length for forecasting of 

 June 6, 2008 of GCB10 

  One day One week Two weeks Three weeks 

Hour error error% error error% error error% error error% 

0~1 4.3  0.81  17.6  3.88  19.4  4.28  3.2  0.71  

1~2 2.8  0.53  13.8  3.11  16.7  3.76  2.5  0.56  

2~3 4.6  0.87  3.9  0.89  7.5  1.71  16.4  3.74  

3~4 2.6  0.48  5.4  1.24  15.7  3.63  8.1  1.88  

4~5 9.8  1.86  3.3  0.76  9.8  2.24  16.9  3.86  

5~6 334.1  63.63  13.4  3.12  17.1  3.97  8.2  1.89  

6~7 10.0  1.86  1.8  0.40  5.8  1.29  12.6  2.82  

7~8 15.2  2.48  31.0  6.34  35.7  7.32  31.9  6.54  

8~9 18.7  2.52  12.5  1.85  2.4  0.36  19.9  2.94  

9~10 29.4  3.73  24.6  3.06  41.2  5.13  32.3  4.02  

10~11 0.7  0.08  5.3  0.62  5.8  0.68  2.8  0.33  

11~12 52.4  6.51  6.3  0.72  7.9  0.90  8.3  0.94  

12~13 20.5  2.49  13.7  1.59  6.0  0.69  4.2  0.48  

13~14 21.8  2.61  8.6  1.00  9.4  1.09  3.3  0.39  

14~15 40.7  5.01  16.4  1.83  10.8  1.21  1.9  0.21  

15~16 7.6  0.95  16.4  1.80  17.0  1.86  13.6  1.49  

16~17 6.5  0.82  12.3  1.40  27.9  3.17  2.9  0.33  

17~18 39.0  5.12  7.6  0.92  4.3  0.52  17.6  2.13  

18~19 5.5  0.78  21.0  2.80  3.6  0.48  14.0  1.87  

19~20 3.9  0.57  3.3  0.48  15.9  2.27  3.6  0.52  

20~21 8.3  1.22  3.6  0.54  0.1  0.02  10.9  1.64  

21~22 4.4  0.69  18.5  2.86  23.9  3.69  26.6  4.10  

22~23 1.2  0.20  13.3  2.43  15.2  2.78  30.8  5.63  

23~24 3.3  0.58  23.8  4.89  0.0  0.00  0.9  0.19  

RMSE 70.8  14.6  16.9  15.7  

MAE 27.0  12.4  13.3  12.2  

Standard deviation  

of error 
66.9  7.8  10.6  10.1  
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4.2. The meaning of IMFs 

Electricity load data from NCCU 

The most important work in building an ANN forecasting model is the selection of 

input variables. In the past some researchers had collected different types of data as 

variables to input into ANNs for forecasting future data. For example, industrial 

production index, exchange rate, commodity price and interest rate are the variables 

used for financial stock market time series forecasting. Temperature, wind velocity, 

hourly and daily historical data are used for electricity load forecasting. However, as 

mentioned before, the EEMD method proposed by Huang et al. can decompose 

time-series data into several IMFs which have its own physical meaning. 

Consequently, we can regard IMFs as factors which influence the data for 

constructing an ANN model. The EEMD-Based neural network learning paradigm 

has been used by Yu et al. (2008) to forecast world crude oil spot price data. For the 

above reasons, in this study we applied the EEMD-Based neural network learning 

paradigm to forecast electricity load data. 

Here we took an input data series for testing. The input data which length was one 

week from May 30 to June 5, 2008 of General Building of NCCU was used to train 

the network for forecasting data of June 6, 2008, Friday. The decomposed IMFs and 

residue are shown in Figure 4.1. The measures of these IMFs are presented in Table 

4.3. In the figure and table, we can see that the IMF7, IMF8 and the residue are the 

most important. The IMF7 period is close to one day (24 hour means the variability of 

one day). As we already know, the electricity load always has a regular pattern of 

high consumption during the day and low consumption at night. The phenomenon is 

also known as peak hour and off-peak hour. We can find that the consumption always 

noticeably increases at 8:00, and decreases after 22:00.We can also conjecture that 
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these fluctuations are determined by the activities and usage of the General Building 

by faculty and students. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 The IMFs for General Building of NCCU from May 30 to June 5, 2008 
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 Table 4.3 Measures of IMFs for General Building of NCCU from May 30 to June 5, 2008 

 

The IMF8, which is the second most important IMF, presents behavior of a 

half-week pattern. The half-week pattern presents the highest consumption trend of 

the original data. The IMF9, which period is close to 7 days, presents the one-week 

pattern and the property of difference between week-days and weekends. The residue, 

also known as trend of data, presents the mean consumption trend of the week. 

Compared IMF8 and residue, we can find that the highest consumption of Monday 

and Tuesday is higher than Wednesday and Thursday but the mean consumption of 

Wednesday and Thursday is more than Monday and Tuesday. The reason is that the 

arrangement of courses are centralized in certain sessions in Monday and Tuesday 

while the courses in Wednesday and Thursday are more but allocated to various 

sessions. Upon the IMFs‘ properties, the forecasting results are revealed in section 

4.3. 

 

  
Mean  

period(Hour) 

Mean  

period(Day) 

Power  

percentage(%) 

Pearson  

correlation 

IMF1 0.158  0.007  0.054  0.017  

IMF2 0.289  0.012  0.020  0.020  

IMF3 0.568  0.024  0.010  0.014  

IMF4 1.414  0.059  0.052  0.107  

IMF5 3.117  0.130  1.431  0.152  

IMF6 6.431  0.268  1.824  0.050  

IMF7 23.513  0.980  74.750  0.857  

IMF8 86.408  3.600  17.913  0.445  

IMF9 160.699  6.696  0.204  0.230  

Residue 
  

2.829  0.191  
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 Gold price daily data  

Unlike the electricity load data, the daily gold price data didn‘t reveal any 

regularities. Gold price data is very similar to stock market series, meaning when the 

moving window shifts, the property of IMFs will change. But if we could take a long 

enough length of gold price data, we found that the trend was always the important 

one due to the obvious increase of gold price in past years. Moreover, a major reason 

for increase was inflation as well as the global financial crisis of the recent years. We 

took the daily price data from Jan, 2007 to Dec, 2010 as a testing subject.  The data 

length (1005 points) was also the length of the moving window we used. The data was 

decomposed into seven IMFs as well as one residue by EEMD (Figure4.2). 

Furthermore, from Table 4.4, we can see that the most dominant component was the 

residue, and the second most dominant, the IMF7. The Pearson correlation coefficient 

of residue was 0.942 with the power percentage reaching up to 98%. Through this 

case, we validated that the trend was the most important influencing factor for gold 

prices. With the fixed window length of 1005 points, the daily gold price was 

predicted. The performance is displayed in section 4.4. 
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Figure 4.2 The IMFs of historical gold price daily data from 2007 to 2010 

 

Table 4.4 Measures of IMFs for gold price daily data from 2007 to 2010 

  Mean period(Day) Power percentage(%) Pearson correlation 

IMF1 3.090  0.119  0.049  

IMF2 6.592  0.080  0.032  

IMF3 14.199  0.137  0.063  

IMF4 26.959  0.233  0.119  

IMF5 55.593  0.444  0.174  

IMF6 121.516  0.857  0.158  

IMF7 404.139  7.630  0.111  

Residue   98.105  0.942  
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4.3. Forecasting performance 

This section shows our forecasting results. Below is a sample of forecasting 

performance for June 6, 2008 of GCB10 is shown in Table 4.5: 

 

Table 4.5 Forecasted hourly load compared with actual load for June 6, 2008 of GCB10 

Hour Actual load (KWH) Forecasted load(KWH) Error Error% 

0~1 453  470.6  17.6  3.88  

1~2 444  457.8  13.8  3.11  

2~3 439  442.9  3.9  0.89  

3~4 432  426.6  5.4  1.24  

4~5 437  433.7  3.3  0.76  

5~6 431  417.6  13.4  3.12  

6~7 446  444.2  1.8  0.40  

7~8 488  457.0  31.0  6.34  

8~9 676  688.5  12.5  1.85  

9~10 803  827.6  24.6  3.06  

10~11 861  866.3  5.3  0.62  

11~12 876  882.3  6.3  0.72  

12~13 862  848.3  13.7  1.59  

13~14 859  850.4  8.6  1.00  

14~15 894  877.6  16.4  1.83  

15~16 911  927.4  16.4  1.80  

16~17 879  891.3  12.3  1.40  

17~18 825  832.6  7.6  0.92  

18~19 751  772.0  21.0  2.80  

19~20 699  695.7  3.3  0.48  

20~21 667  663.4  3.6  0.54  

21~22 648  666.5  18.5  2.86  

22~23 546  559.3  13.3  2.43  

23~24 487  463.2  23.8  4.89  

RMSE 14.6  

MAE 12.4  

Standard deviation of error 7.8  
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In the above table, the error is the difference between forecasted value and actual 

value The error(%) is defined as below: 

         
                             

           
     

As we can see, the biggest error is 31 KWH. The error(%) is about 6.3% from 7:00 

to 8:00, whereas the smallest error is only 2 KWH, and the error(%) is about 0.4% 

from 6:00 to 7:00. The RMSE, MAE and standard deviation of error are also 

presented in Table 4.5. The results illustrated in Figure 4.3 and Figure 4.4, and Figure 

4.5 show the correlation between forecasted hourly data and actual hourly data. 

 

 

Figure 4.3 Forecasting performance for June 6, 2008 of GCB10 
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Figure 4.4 Forecasting performance of every hour for June 6, 2008 of GCB10 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 The performance of correlation between forecasted and actual hourly data 
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4.4. Performance of ensemble average 

4.4.1. Electricity load data from NCCU 

Since the BPNN aims to find the minimum mean square error function, the 

forecasting results try to approach the optimal result (i.e. global minimum). However, 

the program doesn‘t find minimum mean square error function every time; the results 

always deviate from the best or find the local minimum. Figure 4.6 shows the sketch 

of the error function surface. We can see that if the program finds a local minimum on 

the right of the global minimum, the error may be positive. In contrast, the local 

minimum on the left side may be a negative error. Therefore, we can apply the 

ensemble average method on to the prediction result to cancel out the error. We can 

see that the performance by using ensemble average was better in this section. 

                                                                  

 

 

 

 

 

 

 

 

Figure 4.6 A diagrammatic sketch of the BPNN error function surface 

 

Here we used the load data of May 22, 2008 of GCB10 for an analysis testing. We 

chose this data because its variation was not so regular compared with June 6, 2008 of 

GCB10, which had been analyzed in the proceeding text. In the Figure 4.7, we can see 

that the electricity load suddenly jumps over 1000KWH at the point 300 and 320 (i.e. 

Global minimum 

Local minimum 

Configuration 

Error function 
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14:00~16:00). It decreased gradually until about 820KWH at the point 380 (i.e. 

18:00~19:00). Nevertheless, it suddenly jumped to 900KWH again the next hour. 

Although we could find the precise future trend, we couldn‘t get an accurate value in 

the suddenly changing points. On the other hand, the smooth, stable changed points 

could be predicted accurately. Based on these results, we took the data to see whether 

or not the forecasting performance would be better after the ensemble average. 

The forecasting results of the different ensemble levels are illustrated in Figure 4.7, 

Figure 4.8 and Figure 4.9. Figure 4.7 present forecasting results without the ensemble 

average. We can see that in the abruptly changed points such as 320 and 400, the large 

error occurs, however, in Figures 4.8 and 4.9, which apply three and five times the 

ensemble average respectively, we can clearly see that the forecasting results become 

better. In addition, Table 4.6 shows the comparison of quantity between these three 

different ensemble average levels. The results without ensemble average have four 

points at which error percentage was over 5%. The RMSE, MAE and standard 

deviation of error are 34.8, 21.0 and 28.4 respectively. When we apply the three times 

ensemble average to improve the results, the points which error percentages over 5% 

were three, and the RMSE, MAE and standard deviation of error become 22.8, 17.2 

and 15.4 respectively, all of which are better than the results without ensemble 

average. Even more, from the results using five times ensemble average, the points 

which error percentage was over 5% were only one. The RMSE, MAE and standard 

deviation of error were 18.5, 13.8 and 12.5 respectively, obviously better than the 

other two. 

In the comparison, we concluded that the forecasting error could be improved by 

applying the ensemble average method. However, a crucial drawback of this method 

is the large amount of time spent completing the process. For this reason, we aim to 
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reduce the program processing time in the future. The outlook will be discussed in the 

conclusion. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Forecasting performance for May 22, 2008 of GCB10, 

without ensemble average 
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Figure 4.8 Forecasting performance for May 22, 2008 of GCB10,  

with three times ensemble average   

 

 

 

 

 

 

 

 

Figure 4.9 Forecasting performance for May 22, 2008 of GCB10,  

with five times ensemble average  
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Table 4.6 The performance comparison between different ensemble average levels 

  no ensemble ensemble(3) ensemble(5) 

Hour error error% error error% error error% 

0~1 3.2  0.60  7.6  1.43  4.8  0.89  

1~2 0.6  0.12  4.1  0.78  3.4  0.64  

2~3 2.7  0.52  5.7  1.08  5.0  0.96  

3~4 0.6  0.11  0.5  0.09  1.8  0.34  

4~5 5.4  1.04  1.9  0.36  7.7  1.48  

5~6 4.4  0.84  5.6  1.07  1.6  0.31  

6~7 7.4  1.38  2.3  0.42  1.8  0.33  

7~8 41.6  7.20  38.0  6.57  30.9  5.35  

8~9 11.4  1.51  10.2  1.34  4.5  0.60  

9~10 12.7  1.45  24.5  2.80  5.7  0.65  

10~11 22.2  2.37  21.1  2.26  14.9  1.59  

11~12 18.6  1.95  4.1  0.43  13.8  1.45  

12~13 15.8  1.62  21.9  2.25  10.7  1.11  

13~14 18.5  1.86  45.2  4.55  18.7  1.88  

14~15 3.7  0.34  17.8  1.65  34.0  3.15  

15~16 119.8  10.82  0.1  0.01  12.7  1.15  

16~17 14.9  1.50  0.4  0.04  9.2  0.93  

17~18 33.0  3.68  11.6  1.30  17.0  1.89  

18~19 9.9  1.20  38.4  4.68  39.1  4.75  

19~20 81.3  8.96  51.3  5.65  45.1  4.96  

20~21 52.2  6.96  18.2  2.42  1.2  0.16  

21~22 19.0  2.89  34.4  5.25  4.6  0.70  

22~23 2.6  0.42  29.0  4.74  19.9  3.26  

23~24 1.4  0.24  17.7  3.02  22.9  3.89  

RMSE 34.8  22.8  18.5  

MAE 21.0  17.2  13.8  

Standard deviation  

of error 
28.4  15.4  12.6  
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4.4.2. Gold price daily data  

In this section the forecasting results of gold price daily data without the ensemble 

average and five times ensemble average are both discussed. The two cases are 

illustrated in Figure 4.9 and Figure 4.10, with four mark influential events on the 

graph. For comparing, the RMSE of result without the ensemble average is 25.95, the 

MAE is 19.46, the standard deviation of error is 17.2 and the correlation coefficient 

between predicted data and actual data is 0.9813. The RMSE of result with five times 

ensemble average is 19.18 and the MAE is 14.28, both better than the performance of 

cases without ensemble average. The standard deviation of error is 12.84, meaning 

that the error is more stable, and no large errors had occurred. Finally, the correlation 

coefficient was 0.9902, presenting a stronger correlation than the one without the 

ensemble average. The correlation between predicted price and real price of these two 

cases are presented in Figure 4.11 and 4.13. 

The gold price has abruptly sky-rocketed in this past year, the main reason being 

the European debt crisis. The euro against the U.S. dollar came to the lowest level on 

30 Jan 2011 meanwhile the price of gold also came to a local minimum. This data 

shows a strong correlation between currency and gold price. However, in April 23, 

2011, Greece applied for assistance to EU and IMF, and the gold price suddenly 

increased. It could be interpreted as people were looking for a hedge by buying large 

amounts of gold. Similarly, due to S&P reducing Greece‘s credit rating to CC on July 

4 and the U.S.‘s later on August 5, as well as the world‘s stock market crashing as a 

result of worries about the U.S. second recession, the gold price experienced a 

dramatic rise.  

Our results present fine performance for prediction. However, after several times 

ensemble average, the results became even better. Upon these accurate results, maybe 

we can design a trading strategy in the future to see whether we can make a profit. 
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Figure 4.10 Forecasting performance for 2011 gold price daily data,  

without ensemble average  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 The performance of correlation between forecasted and actual daily data for 

gold price daily data without ensemble average 
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Figure 4.12 Forecasting performance for 2011 gold price daily data,  

with five times ensemble average  

 

 

 

 

 

 

 

 

 

 

Figure 4.13 The performance of correlation between forecasted and actual daily data for 

gold price daily data with five times ensemble average 
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5. Conclusion and outlook 

An Ensemble Empirical Mode Decomposition based Back-propagation Neural 

Network learning paradigm has been presented for electricity load forecasting and 

gold price forecasting. In this research, the moving window method is applied to the 

prediction process. Moreover, cubic spline interpolation and extrapolation were used 

as our strategy for electricity load forecasting. The measures RMSE, MAE, standard 

deviation of error were used to judge the performance. By using the meaningful IMFs 

as training data, we can predict the electricity load for the next hour and the gold 

prices for next day, all with accurate results. However, for further improvement of the 

results, the ensemble average method was employed. The outcome shows that the 

performance was better when using the ensemble average method than if it were not 

in use.  

For future research, there are several feasible improvements discussed as follows: 

First, since we used MATLAB which only can be used on normal PC to process our 

ANN program, in the future we can try to write an ANN program in FORTRAN 

which can be used on computer cluster to promote the computing speed. Second, try 

other combinations between the length of moving window, the numbers of 

interpolation and extrapolation and different parameters of network. Third, and most 

important, try different algorithms or architectures of neural network. For the gold 

price prediction, we can design some trading strategies based on our forecasting 

results in the future, and try to make a profit from trading gold. En Tzu Li (2011) has 

used this algorithm to forecast TAIEX options, and designed a moving FK indicator 

for algorithm trading and resulting in efficient performance. Therefore, in the future 

maybe we can take another financial product time-series for forecasting and with 

good trading strategy; we can earn lot of money. 
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APPENDIX 

In this appendix we collated the predicted results of GCB10 from May 12 to June 6, 

2008 except for weekends. We selected points, error percentage are over 5%, and 

sketched the statistical results in Figure A.1. The 20 days‘ mean error and number of 

error-percentage points over 5% are quantized in Table A.1. We found that there are 

15 points over 5% of the total 20 points from 7:00 to 8:00. Since the air-condition 

units are often turned on during this time, the load value jumps suddenly and the 

performance of prediction are usually not satisfactory. The performance of peak hour 

is better than off-peak hour, but in Table A.1 we can find that the mean errors 

between these two time periods are not too different. Due to the baseline of off-peak 

hour is about 400-600KWH while peak hour is about 800-1000 KWH.  

 
 
 
 
 
 
 
 
 
 

 
 

Figure A.1 Statistics of points over 5% of GCB10 from  

May 12 to June 6, 2008 except for weekends 

 

0  

2  

4  

6  

8  

10  

12  

14  

16  

0
~1

 

1
~2

 

2
~3

 

3
~4

 

4
~5

 

5
~6

 

6
~7

 

7
~8

 

8
~9

 

9
~1

0
 

1
0

~1
1

 

1
1

~1
2

 

1
2

~1
3

 

1
3

~1
4

 

1
4

~1
5

 

1
5

~1
6

 

1
6

~1
7

 

1
7

~1
8

 

1
8

~1
9

 

1
9

~2
0

 

2
0

~2
1

 

2
1

~2
2

 

2
2

~2
3

 

2
3

~2
4

 

個

數

 

Hour 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

58 
 

Table A.1 The mean error and collation of points over 5% of GCB10 from  

May 12 to June 6, 2008 except for weekends 

 

GCB10 (2008.5.12-6.6 , weekdays) 

Hour Mean error over 5% 

0~1 13.4 3 

1~2 14.5 5 

2~3 11.4 1 

3~4 13.1 4 

4~5 15.2 4 

5~6 13.9 4 

6~7 15.4 6 

7~8 36.0 15 

8~9 18.2 2 

9~10 23.7 2 

10~11 21.8 3 

11~12 12.6 2 

12~13 11.6 0 

13~14 13.0 1 

14~15 10.7 0 

15~16 17.7 1 

16~17 11.9 1 

17~18 12.6 0 

18~19 11.5 0 

19~20 14.4 1 

20~21 13.4 1 

21~22 22.6 3 

22~23 11.0 2 

23~24 14.2 2 

RMSE 22.5 

MAE 15.6 

Standard deviation  

of error 
16.2 
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