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Abstract: The airborne LIDAR scanning system is a whole new surveying technique that captures extremely 

detailed and abundant terrain surface information. Terrain information is implied in airborne LIDAR data. 

Roof points are especially important in airborne LIDAR data for 3-D building reconstruction. The key point 

for automatically and reliably extracting roof points from airborne LIDAR data is how to exclude irrelevant 

non-roof points. Robust estimation is a theory about how to remove blunders from observations. If the non-

roof points are viewed as blunders, it is possible to develop an algorithm to acquire the roof points, based on 

robust estimation theory. This paper will therefore study how to develop an algorithm to acquire those roof 

LIDAR points and remove irrelevant non-roof LIDAR points, based on robust estimation theory. Problems 

relevant to the proposed algorithm will be investigated in this study through experiments in order to 

understand the feasibility of the proposed algorithm and to further develop an automatic algorithm to extract 

roof points from airborne LIDAR data. 
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I. INTRODUCTION 

     The airborne LIDAR (short for LIght Detection And Ranging) scanning system is a whole new surveying 

technique that captures extremely detailed and abundant terrain surface information (Ackermann, 1999; Wehr 

and Lohr, 1999). Therefore a lot of terrain information is implied in airborne LIDAR data. Many algorithms 
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have been developed and proposed to extract important terrain information, such as the digital elevation 

model, the 3-D building model, and trees (Axelsson, 1999; Axelsson, 2000; Haala and Brenner, 1999; Maas 

and Vosselman, 1999; Priestnall et al., 2000; Vosselman and Dijkman, 2001). For 3-D building models, roof 

points or planes in airborne LIDAR data should first be extracted. Most of the methods transform distributed 

LIDAR data into grid data through interpolation procedures and then apply image processing techniques to 

detect and extract them (Geibel and Stilla, 2000; Maas and Vosselman, 1999). Thus, some important spatial 

information, especially relating to height accuracies, may be lost (Axelsson, 2000). For this reason, some of 

these algorithms were developed using original airborne LIDAR data (Ackermann, 1999; Alharthy and Bethel, 

2002; Elberink and Mass, 2000; Haala and Brenner, 1999; Priestnall et al., 2000; Roggero, 2002; Schuster, 

2004; Woo et al., 2002; Vosselman and Dijkman, 2001). For example, Lee (2002) applies perceptual 

organization to analyze geometric structures of airborne LIDAR data in space and groups them into planes. 

Roggero (2002) proposes a region-growing-based segmentation that is feature based and is founded on 

principle component analysis of the static moments. Schuster (2004) presents an investigation on the use of 

Tensor Voting for categorizing LIDAR data into outliers, line elements (e.g. high-voltage power lines), 

surface patches (e.g. roofs), and volumetric elements (e.g. vegetation); that is, segmentation of LIDAR data 

using the tensor voting framework. Wang and Tseng (2004) present an octree-structure-based split-and-merge 

segmentation algorithm for organizing airborne LIDAR point cloud data into clusters of 3-D planes. Although 

the use of original airborne LIDAR data can keep the original accuracies, some difficulties still exist with roof 

point extraction from airborne LIDAR data. The challenging tasks are how to exclude the irrelevant points and 

how to extract roof points reliably and automatically. Additionally, no-one has yet developed an algorithm to 

extract roof points on the basis of blunder detection. In fact, the isolation of non-roof LIDAR points from 

coplanar roof LIDAR points can utilize the theory of blunder detection. In other words, non-roof LIDAR 

points can be viewed as blunders and removed during the extraction of roof points. Robust estimation is 

simply a theory about how to remove blunders from observations. Huber (1981) states that robustness 

signifies insensitivity to small deviations from the assumptions. Primarily, this is concerned with 

distributional robustness: the shape of the true underlying distribution deviates slightly from the assumed 
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model (usually the Gaussian law). The term “robust estimation” in this study means estimation techniques that 

are robust with respect to the presence of gross errors in the data. In this context, gross errors are defined as 

observations that do not fit the stochastic model of parameter estimation. Although the methods of Roggero 

(2002) and Schuster (2004) are robust, the meaning of “robust” in the methods of Roggero (2002) and 

Schuster (2004) is different from that in Huber (1981). This paper therefore presents a method of roof point 

extraction based on robust estimation and examines how to develop an algorithm for acquiring 3-D roof points 

from airborne LIDAR data from the perspective of blunder detection. For the first step, to roughly identify the 

locations and approximate area outlines of the roof(s) from pure airborne LIDAR data, aerial images with 

known orientation together with original LIDAR data are used to generate the orthoimages. Then, using a 

computer mouse device, the user depicts the approximate area outlines of the roof(s) on the orthoimages. 

Afterwards, on the assumption that roofs are composed of either horizontal or slope planes, some more 

accurate plane information, called GRID planes, is extracted from the LIDAR data that is extracted according 

to the approximate area outlines using least squares fitting, based on quadtree splitting (cf. Wang and Tseng, 

2004). These GRID planes will be further merged using quadtree merging, according to the height constraints 

for providing SEED regions for merging the adjacent points, using the forward selection robust estimation 

approach (see Section II.3) to extract all the coplanar roof points. If only one roof exists, only one GRID plane 

is extracted. In this case, the SEED region is the GRID plane. Thus, the SEED region contains all the points in 

the approximate area outline. No matter how many roofs exist, the ground elevation is calculated and used to 

exclude non-roof SEED regions before they are used to merge adjacent points. In the proposed algorithm, it is 

essential for roof points to be reliably acquired; therefore, irrelevant points are considered as outliers and 

removed through robust estimation theory (Kubik et al., 1986) to merge adjacent roof points. Section II will 

describe least squares fitting based on robust estimation theory for coplanar point extraction from airborne 

LIDAR data. The proposed algorithm will be presented in Section III. The experiments and results will be 

discussed and illustrated in Section IV. Finally, conclusions and suggestions for future research will be made 

in Section V.  
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II. COPLANAR POINT EXTRACTION THROUGH ROBUST ESTIMATION THEORY 

This section explains how to extract coplanar points by least squares fitting based on robust estimation 

theory. Section II.1 describes how to extract coplanar points from sufficient airborne LIDAR points. The 

principle and use of robust estimation will be described in more detail in Sections II.2 and II.3, respectively. 

 

1. Coplanar Point Extraction 

In this study, on the assumption that building roofs are composed of either horizontal or oblique planes, any 

plane can be described by the following mathematical equation: 

Z = aX + bY + c,                                             (1) 

where a, b, and c are planar parameters; and X, Y, and Z are coordinate components. 

 

Additionally, if the plane consists of n (>3) coplanar LIDAR points and only random errors occur in the Z 

coordinate component, the least squares adjustment of plane fitting can be expressed in matrix form as 

                          AXVL =+  ,                                                                                                (2) 
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where u is the number of unknowns, which can be used to verify the goodness of plane fitting. 

 

2. Robust Estimation Theory (Klein and Foerstner, 1984) 
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The above-mentioned least squares fitting of coplanar LIDAR points is applicable to error-free data (i.e. 

blunder-free). Logically, erroneous observations cannot be treated with the same weights as error-free data, 

and have to be handled with reduced weights. All the observations must be introduced into the adjustment 

with weights chosen to correspond to their errors. The problem of locating gross errors is therefore 

synonymous with the determination of proper weights for the observations. An adjustment procedure that uses 

weight functions for complete elimination of the influence of gross errors is called the “method of robust 

estimation” (Kubik, 1984). After convergence of the iterative process, proper weights are determined for all 

observations and erroneous data will be given weights approximately equal to zero. This erroneous data will 

thus have no influence on the result of the adjustment. Many simple weight functions can be found that meet 

the conditions of robust estimators, but most of them cover only a small range of gross errors and will fail 

with the variety of gross errors occurring in practice. The reason for the failure in these cases is the 

assumption of linearity by the robust estimators (Huber, 1981). A lot of research has therefore been carried out 

to find a weight function and to develop a procedure that covers the wide range of gross errors (Werner, 1984). 

One renowned and effective weight function was developed by Klein and Foerstner (1984) and used in the 

block adjustment program PAT-M43. This weight function consists of the following hyperbolic function: 
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  =0σ̂  estimated sigma-naught  

By using the above-mentioned weight function, the robust estimator can be realized relatively easily while 

using a least squares algorithm and modifying the weights after each iteration step. Robust iteration steps are 

repeated until sufficient convergence is reached. The convergence is quite good, but highly correlated to the 

number and size of the gross errors as well as the geometric stability of the configuration. In this study, if the 

change of 2
0σ̂  between two iteration steps becomes less than 0.001 after a corresponding iteration step, the 

final elimination of erroneous observations will be performed. All observations being used in that iteration 

step and getting ( )QvF
ivi ,,σ  < Threshold will be marked as erroneous observations and will be given an 

infinitely small weight. The Threshold will be further discussed in the experimental data section. The other 

observations receive their original a priori weight. Some least squares iteration steps complete the procedure 

to reach the final result. 

As mentioned above, robust estimation theory is embedded in an algorithm to isolate non-coplanar roof 

LIDAR points in this study. The detailed algorithm will be described in the next subsection. The following 

paragraph will explain how to calculate ri in Eq. (4). 

Based on Wolf and Ghilani (1997), the relation between the residual vector and the true error vector can be 

expressed in the following form: 

               εPQV llvv−=                                                                                                     (7) 
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If the observations are independent of each other, the matrices vvQ and llP will be diagonal matrices. 

Then 

                                    22
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3. Strategy for extracting all of the coplanar LIDAR roof points 

The method to extract coplanar roof points from airborne LIDAR data and the theory to isolate non-

coplanar roof points by robust estimation have been described in the previous two subsections. This 

subsection will further discuss the strategy for extracting all of the coplanar roof points through robust 

estimation theory. The proposed algorithm will be explained in more detail in the next section. Two 

approaches can be used for acquiring all the coplanar roof points. One is to include all coplanar roof points 

and irrelevant points in a dataset, and then robust estimation theory is implemented to remove the irrelevant 

points. The problem with this approach is how to ensure only one roof plane exists in the dataset. If many roof 

planes exist in the dataset, it is almost impossible to use robust estimation theory to completely extract the 

individual roofs. Conversely, if only part of all coplanar points on one roof is first acquired, it will be easier to 

merge relevant adjacent LIDAR points into a more complete roof by robust estimation theory. In other words, 

robust estimation theory can be implemented during the merging process to remove irrelevant LIDAR points. 

In this study, the idea of extracting the coplanar roof LIDAR points is known as forward selection strategy. 

The whole idea will be described in the next paragraph. 

As mentioned in the previous paragraph, during the merging of adjacent roof LIDAR points, the part of all 

coplanar roof points on the same plane must first be extracted. This task is done by using a quadtree split-and-

merge segmentation algorithm (cf. Wang and Tseng, 2004). First, quadtree splitting based on the least squares 

fitting principle is used to split the LIDAR data extracted according to the approximate area outlines (black 

dash outlines shown in Fig. 1 (a)) into GRID planes in which the sigma naught is less than one threshold (e.g. 

0.12m), or the point number is less than one threshold, (e.g. 6). Fig. 1(b) shows the extracted GRID planes. 

Secondly, the GRID planes are merged as SEED regions in terms of height constraints (i.e. quadtree merging). 
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 (a). Original LIDAR data  

 

(b) Extracted GRID planes 

 

(c) Extracted SEED regions 

 

(d) Extracted ROOF points of one roof 

Fig. 1 Illustration of the forward selection robust estimation approach  

(different gray values for different heights in (a); different gray values for different planes in (b)~(d)) 
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During the process of merging the GRID planes, the GRID plane with the most points is selected as the 

major GRID plane. The corresponding GRID centric heights can be calculated based on corresponding fitting 

plane parameters. Once a GRID plane adjacent to the major GRID plane is found, and if the difference 

between these two centric heights is less than one sigma naught of least squares fitting in the major GRID 

plane, this adjacent GRID plane is immediately merged into the major GRID plane. Then another adjacent 

GRID plane is searched again based on the proximity of the merged GRID plane and the major GRID plane. 

The same merging criterion is employed again. This process of merging GRID planes is continued until no 

more GRID planes can be merged. After the first SEED region is acquired, the second major GRID plane is 

selected again based on the point number. The merging process described above is carried out repeatedly to 

find the second SEED region. This process is carried on until no more SEED regions can be found. Figure 1(c) 

demonstrates the extracted SEED planes after merging the relevant GRID planes. If only one GRID plane is 

found within the area outlines, the SEED region will contains all the points in this outline. 

After the SEED regions are acquired, the forward selection strategy of robust estimation is implemented to 

merge adjacent points for each SEED region. If the merged adjacent points are located in another SEED 

region, they will be removed from the corresponding SEED region. Moreover, adjacent points that have 

already been merged are not used in the extraction of other roof points. The adjacent points are determined by 

distance and geometric constraints, including height and normal direction. The distance constraint demands 

that the distance between adjacent points and at least two points in the SEED regions should be less than twice 

the average point distance. The height constraint requires that the difference between each point height and its 

calculated height, based on fitting planar parameters of the SEED region, should be within three times the 

reachable height accuracy of the airborne LIDAR surveying technique. Additionally, the normal direction 

derived from this point and the two points that are closest to this point in the SEED region should be similar to 

the normal direction of the SEED region. In other words, the difference between both normal directions 

should be less than one threshold (e.g. 15 degrees). Once the points in the SEED region and adjacent points 

are collected into a dataset, the robust estimation approach is used to exclude non-coplanar roof points and 

merge coplanar roof points into a new SEED region. Whenever one group of adjacent points is merged into 
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this new dataset, the new group of adjacent points is identified based on the same criterion. The forward 

selection robust estimation approach is then used again to merge the adjacent points. The same procedure is 

repeated until no adjacent points can be merged. 

The three subsections above describe the relevant theory and strategy for merging adjacent coplanar roof 

LIDAR points. The following section will illustrate the proposed algorithm used in this study. 

 

III. ALGORITHM FOR ROOF POINT EXTRACTION FROM AIRBORNE LIDAR DATA 

This section will describe the proposed algorithm to extract coplanar roof points from airborne LIDAR data. 

 

Fig. 2 Flowchart for this study  
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As the flowchart in Fig. 2 shows, the orthoimages are generated from original airborne LIDAR data and 

aerial images with known exterior parameters. The approximate area outlines covering the building roof(s) 

can then be roughly identified using a mouse device on a computer screen. The operators only identify the 

outlines; they do not need to locate them accurately. Several building roofs can be covered by one outline. 

After each area outline covering the roof(s) is collected by the operator, the rectangular size covering each 

area outline is determined from the left-up and right-down outline points. As the area outlines are digitized 

roughly from orthoimages, it is necessary to extract LIDAR data from this rectangle range expanded 5 meters 

outward to ensure that all coplanar roof points are included for the forward selection robust estimation 

                  

(a) Original LIDAR data                           (b) Orthoimage                        (c) Extracted GRID planes 

                        

(d) Extracted SEED regions                           (e) Extracted roof planes 

Fig. 3 Diagram of original dataset A, orthoimage, GRID planes, SEED regions, and extracted roofs 
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approach. According to Section II.1, the 0σ  of plane least squares fitting of the LIDAR data in each area 

outline can be utilized for judgment of roof plane numbers when all the observations are viewed as having 

identical weights. If 0σ is more than one threshold (e.g. 0.12m), more roofs might exist within this area 

outline. If it is not, only one roof plane exists. If more roof planes may exist, the quadtree spitting and merging 

algorithm is implemented, as shown in Fig. 1, to find the SEED regions for merging adjacent coplanar LIDAR 

points through robust estimation theory (see Section III.3). As shown in Fig. 3, SEED regions are constructed 

from original airborne LIDAR data (Fig. 3(a)) within the red outline, which is derived from the red outlines on 

the orthoimage (Fig. 3(b)) based on a quadtree split-and-merge segmentation algorithm. Fig. 3(c) shows 

extracted GRID planes and Fig. 3(d) extracted SEED regions. 

 No matter how many roof planes exist in the area outline, ground SEED regions should be excluded before 

the forward selection robust estimation approach is implemented to merge adjacent points. Ground SEED 

regions are excluded according to ground elevation. Ground elevation is calculated by averaging the height of 

the points that are located between 2% and 12% intervals after the points are sorted, based on their ascending 

height. If the difference between the average height of the SEED region and the ground elevation is less than 

one threshold (e.g. 3 meters), this SEED region is viewed as a non-roof SEED region. If only one roof plane 

exists in the area outline, all points in the SEED region are used to merge the adjacent points by the forward 

selection robust estimation approach. If more roofs might exist in the area outline, the SEED region with the 

most points is used to merge adjacent points by the forward selection robust estimation approach. The 

adjacent points are determined by distance and geometric constraints, as stated in Section II.3.  

Whenever one group of adjacent points is merged, a new group of adjacent points is identified with a new 

dataset based on the same criterion. The forward selection robust estimation approach is used once more to 

merge adjacent points. The same procedure is repeated until no adjacent points can be merged. After all points 

on one roof are extracted, the other SEED region with the most points is found in the remaining SEED regions. 

The same procedure is continued until no SEED region and no area outline can be found for plane extraction. 

Fig. 3(e) shows all the extracted roofs according to the proposed algorithm from test dataset A. 
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Briefly, the proposed study procedure is subdivided into three steps: 1. Location of area outlines covering 

the roof(s) from orthoimages; 2. Determination of the possible roof numbers from LIDAR data in each outline 

based on the quadtree spit-and-merge algorithm; 3. Extraction of whole coplanar roof points by merging 

adjacent coplanar roof points based on the forward selection robust estimation approach. The experiments and 

the test results will be described in the next section. 

 

IV. EXPERIMENTS 

Three test datasets, as shown in Figs. 3 through 5, were extracted from airborne LIDAR data collected with 

Leica ALS50, in Hsinchu, Taiwan, in 2005. Each dataset covers buildings and other terrain objects. The 

airborne LIDAR data are purely surface data after filtering. Basic data characteristics are listed in Table 1. 

Figs. 3(a) through 5(a) illustrate the vertical views of the original LIDAR data. For ease of visualization, the 

heights are displayed in different colors and the point sizes are moderately enlarged. Figs. 3(b) through 5(b) 

illustrate the corresponding orthoimages, with 0.5m per pixel, generated from aerial images and the original 

LIDAR data using a Lecia Photogrammetry Suite. The red outlines overlaid on the orthoimages are collected 

roughly by the mouse device. The corresponding red outlines shown in Figs. 3(a) through 5(a) emphasize that 

the outlines collected from the orthoimages may not just include roofs. Some other terrain points are also 

contained in the collected outlines. The influences of the relevant thresholds on the result and problems 

concerning the proposed algorithm will first be investigated by testing dataset A in order to further develop an 

automatic algorithm to extract roof points from airborne LIDAR data. Secondly, the results for three datasets 

will be evaluated according to one set of thresholds, determined from the experimental results of dataset A, in 

order to understand the feasibility of the proposed algorithm. 
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Table 1 Description of three test datasets 

Dataset A B C 

Numbers of outlines 1 6 4 

Average point density 

(points/m2) in each outline 

(1).1.7 (1).1.7, (2).2.2, (3).1.9, 

(4).1.9, (5).1.9, (6).1.6 

(1).2.3, (2).1.7,          

(3).1.9, (4).1.7 

Description Adjacent gable 

building roofs 

Adjacent gable and flat 

building roofs with 

attached roof structures 

Adjacent gable and flat 

building roofs with 

attached roof structures 

 

      

(a) Original LIDAR data                               (b) Orthoimage                       

Fig. 4 Original data and orthoimage for test dataset B 

        

(a) Original LIDAR data                           (b) Orthoimage                       

Fig. 5 Original data and orthoimage for test dataset C 
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1. The influences of relevant thresholds on the result 

This subsection investigates relevant thresholds that may affect the extraction results by using dataset A in 

order to get a better set of thresholds for automatic extraction of roof points The first important one is the  

threshold of the 0σ  for plane least squares fitting of the LIDAR data in each area outline for judgment of roof 

plane numbers. The threshold of the 0σ   also affects the number of GRID patches. The threshold of point 

numbers for plane least squares fitting in each GRID patch is also important, but it is fixed at 6 in this study. 

The subsequent three thresholds are concerned with the judgment of the proximity when using the forward 

selection robust estimation approach to merge the adjacent points. One threshold is the distance constraint of 

adjacent points, one is the height constraint, and the other is the normal direction constraint. Finally, the most 

important threshold for the results is the weight threshold for ( )QvF
ivi ,,σ , including a priori σ. This 

threshold will be used to highlight the erroneous observations.  

(i). The weight thresholds for ( )QvF
ivi ,,σ  

Since the most important threshold for the results is the weight threshold, this subsection will begin the 

investigation with this threshold. In order to understand how this threshold affects the extracted results, some 

thresholds must be fixed during the investigation. According to Leica Geosystems (2006), the reachable 

height accuracy of airborne LIDAR surveying is 0.15m. Therefore, the a priori σ in the weight threshold for 

( )QvF
ivi ,,σ  is fixed at 0.15m. Additionally, the threshold 0σ  of plane least squares fitting for judgment of 

the number of roof planes and for extracting the GRID patches is set at 0.12m, which is better than the 

reachable height accuracy of LIDAR surveying. It is also reasonable to set the height constraint as 3 times 

0.15m, which is three times the reachable height accuracy of LIDAR surveying, for the judgment of proximity 

when merging adjacent points. In addition, the threshold for the distance constraint of adjacent points is set as 

twice the average point distance and the threshold for the normal direction constraint is not taken into account 

at this stage of the current test.  
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After fixing the above-mentioned thresholds, Table 2 shows the relationship between different weight 

thresholds for ( )QvF
ivi ,,σ  and the extracted roof numbers. This experiment shows that the extracted roof 

number of 20 does not change if a weight threshold not greater than 1E-14 is adopted. In order to choose the 

best weight threshold for future tests, the number of extracted LIDAR points and the corresponding fitting σ 

for each roof in different weight thresholds, less than 1E-14, should be investigated in more detail.  

 

Table 2: The relationship between the extracted roof numbers and different weight thresholds for 
( )QvF

ivi ,,σ  

 

Table 3 gives the results of the weight thresholds that are not greater than 1E-14. It shows that the number 

of extracted LIDAR points and fitting σ for each roof does not change as the weight threshold decreases, when 

the thresholds are not greater than 1E-18. The chosen weight threshold for future tests is therefore 1E-18. 

The a priori σ in   (see also Eqs. (3) and (6)) should also be investigated to understand its influence on the 

results. Different values (e.g. 0.15m, 0.015m, 0.0015m, 0.1m, and 0.05m) are used for the tests. It was found 

that only the computing times were different; both the extracted roof numbers and the LIDAR points in each 

roof were the same. A smaller a priori σ needs much more time to extract the roof points but it does not 

change the results. The reachable height accuracy (i.e. 0.15m) of LIDAR surveying was therefore adopted as 

the a priori σ for the future tests. 
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After the determination of the weight threshold and the a priori σ in the weight threshold, the results for 

extracted roofs for dataset A are shown in Table 3 and Figure 6(a). The influences of the remaining thresholds 

on the results and the phenomena caused will be described in the next subsection. 

Table 3: The extracted roof points with different weight thresholds and two different distance constraints 

 
2 times 

*sigma naught shown in ( ) when all observations have identical weight 
1.75 times

 
 1.E-14 1.E-16 1.E-17 1.E-18 1.E-20 1.E-22 1.E-24 1.E-26 1.E-18 

1 1580 (0.18) 1579(0.18)
2 1368(0.18) 1366(0.18)
3   961(0.13) 959(0.13) 
4  305(0.17) 305(0.17) 
5 1301(0.16) 1300(0.16)
6 1316(0.14) 1295(0.14)
7 335(0.22) 416(0.25) 417(0.25)  639(0.28) 346(0.24) 
8 870(0.13) 790(0.14) 789(0.14) 574(0.13) 863(0.13) 
9  817(0.13) 818(0.13) 
10  895(0.21) 896(0.21) 
11 1076(0.16) 1070(0.16)
12 142(0.13) 144(0.14) 144(0.14) 
13 1009(0.15) 1010(0.15)
14 764(0.15) 761(0.15) 
15 111(0.13) 105(0.12) 105(0.12) 93(0.12) 106(0.12) 
16 595(0.14) 597(0.14) 
17 824(0.17) 825(0.17) 827(0.17) 
18 357(0.17) 357(0.17) 
19 133(0.16) 132(0.16) 
20 100(0.14) 98(0.14) 98(0.14) 

 

  

 



 18

                       

(a)   2 times average point distances              (b) 1.75 times average point distances 

Fig. 6 Extraction illustrations from dataset A with different distance constraints for adjacent points 

 

(ii). Some phenomena in the tests 

Some phenomena were found during the tests. The first phenomenon was that over-extraction occurred in 

two situations. One is the points with similar plane characteristics of extracted roof planes are close to the 

edge of extracted roof planes. The other one is the points without similar plane characteristics of extracted 

roof plane are close to the edge of extracted roof plane. In this case, this phenomenon will emerge due to the 

statistical properties of least squares fitting. Some over-extraction is correct when only some points near the 

roof are merged, as shown in Figs. 6 and 7. Some over-extraction is incorrect if these extracted roofs 

obviously cover other roofs or other terrain objects, as shown in Figs. 6 and 7. Clearly, some over-extraction 

is caused by a larger distance constraint. This could therefore be avoided by reducing the distance constraint; 

that is, 1.75 times instead of 2 times the average point distance. The obvious example is the extraction of roofs 

no. 6 and no. 7, as shown in Figs. 6 and 7 and Table 3. After reducing the distance constraints, the extraction 

of roof no. 6 is correct. Although the extraction of roof no. 7 is still incorrect, the point numbers with incorrect 

extraction are also reduced. However, it was also found that if the distance constraint is too small (e.g. 1 times 

Incorrect Over-Extraction (no. 7)

Incorrect Extraction

Correct Over-Extraction

Incorrect Over-Extraction (no.6)

Incomplete but correct Extraction (no. 8)
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the average point distance), all the extracted roofs are incomplete. Conversely, over-extraction will be obvious. 

The threshold for the distance constraint of adjacent points was therefore fixed at 1.75 times the average point 

distance for subsequent tests. 

 

Fig. 7 Illustrations of over-extraction and incorrect extraction in dataset A   

 

During the tests, it was also discovered that some incorrect extraction is caused by the characteristics of the 

roof plane, especially almost flat and elongated gable roofs. This case is shown in B in Fig. 7. This 

demonstrates that if the SEED region is located on an almost flat and elongated gable roof, all the points on 

this gable roof nearly pass the test of robust estimation. This will then lead to incorrect extraction. The sigma 

naught for this kind of plane extraction will usually be bigger, for example the sigma naught 0.21m of roof no. 

10 in Table 3).  

Since the location of the SEED region will cause incorrect extraction, is it possible to acquire a better SEED 

region by using smaller sigma thresholds for plane fitting so that this kind of incorrect extraction is avoided? 

Three different kinds of fitting to sigma thresholds were therefore studied. It was found that even when the 

threshold for the plane fitting sigma is fixed at 0.10m or 0.12m, roof no.10 is always acquired incorrectly, as 

shown in Figs. 8 (a), 8(b), and 9. The extraction of roof no. 7 will be correct if the threshold is set at 0.15m. 

We find that this is caused by the order of the extraction. This means that if roof no. 8 is extracted first, the 

extraction of roof no. 7 will be correct. This is illustrated in Fig. 9(c). 

C. Correct Over-Extraction 

A. Incorrect Over-Extraction 

B. Incorrect Extraction 
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(a) 0.10m for fitting sigma threshold   (b) 0.12m for fitting sigma threshold        (c) Original data 

Fig. 8 Illustration of incorrect extraction (no.10) caused by the locations of SEED regions and plane 

properties 

Although the extraction of roof no. 7 is correct if the sigma threshold is set at 0.15m, a better result is 

acquired when the sigma threshold is 0.12m (from Table 4). Additionally, some over-extraction will be more 

obvious when the sigma threshold is 0.15m. Therefore, 0.12m will be used as the threshold of plane fitting 

sigma. 

    

(a)                                                            (b)                                                    (c)          

Fig. 9 The extracted results for different thresholds of plane fitting sigma: (a) 0.10m, (b) 0.12m, (c) 0.15m 

Incorrect Extraction

Incorrect Extraction (No.7) 

Incomplete but correct Extraction (no. 8)

SEED region SEED region 

Roof No.7

Roof No.8
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Having discussed incorrect over-extraction, let us now discuss correct over-extraction. It is the case that 

those extracted points are close to roof edges, as shown in Figs. 6 and 7. It is obvious that those are points 

with different normal directions with respect to the desirable extracted roof plane. Therefore, in the following 

test, different normal direction thresholds are respectively imposed on the proposed algorithm during the 

merging of adjacent points. Table 5 shows that the extracted roof numbers are more than 20 if the normal 

direction threshold is set too small and the roof numbers are maintained at 20 if the normal direction threshold 

is set at more than 15 degrees. Table 6 also shows that incorrect extraction in roof nos. 7 and 8 became correct 

extraction when the normal direction threshold was set at 16 degrees. Moreover, except for roof nos. 9, 10, 14, 

18, and 20, all the sigma naughts increase as the threshold increases.  

 

 

 

 

Table 4 Extracted roofs and their corresponding sigma under different fitting threshold 
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Table 5 Relationship between extracted roof numbers and normal direction thresholds 
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Table 6 Extracted points and corresponding sigma (meter)  
using different normal direction thresholds (degrees) 

 16 17.5 20 22.5 25 No limits 
1 1397(0.130) 1421(0.136) 1472(0.149) 1513(0.160) 1525(0.162) 1579(0.176)
2 1247(0.144) 1283(0.153) 1305(0.159) 1309(0.160) 1330(0.166) 1366(0.177)
3 939(0.120) 941(0.121) 943(0.122) 949(0.125) 953(0.128) 959(0.131)
4 267(0.141) 275(0.147) 279(0.150) 281(0.152) 286(0.153) 305(0.171)
5 1179(0.118) 1191(0.121) 1221(0.131) 1241(0.138) 1260(0.143) 1300(0.159)
6 1263(0.130) 1269(0.131) 1279(0.134) 1285(0.135) 1290(0.138) 1295(0.139)
7 157(0.126) 277(0.160) 285(0.171) 285(0.176) 300(0.193) 346(0.236)
8 1035(0.136) 920(0.133) 908(0.134) 910(0.134) 897(0.134) 863(0.134)
9 995(0.134) 958(0.134) 912(0.134) 882(0.133) 868(0.133) 818(0.133)

10 828(0.200) 858(0.207) 892(0.213) 902(0.214) 907(0.215) 896(0.213)
11 1071(0.157) 1077(0.158) 1077(0.160) 1075(0.160) 1071(0.160) 1070(0.161)
12 137(0.119) 137(0.119) 140(0.130) 141(0.131) 141(0.131) 144(0.144)
13 997(0.142) 1001(0.143) 1000(0.143) 1011(0.149) 1011(0.149) 1010(0.149)
14 129(0.135) 127(0.136) 125(0.135) 123(0.135) 120(0.134) 106(0.123)
15 738(0.139) 720(0.139) 694(0.140) 678(0.140) 642(0.140) 597(0.139)
16 855(0.155) 842(0.155) 815(0.156) 789(0.156) 783(0.156) 761(0.154)
17 336(0.158) 339(0.160) 349(0.169) 354(0.172) 357(0.174) 357(0.174)
18 149(0.154) 148(0.157) 147(0.156) 142(0.155) 142(0.155) 132(0.157)
19 826(0.171) 830(0.172) 835(0.173) 832(0.173) 829(0.173) 827(0.173)
20 103(0.144) 103(0.144) 101(0.143) 101(0.143) 101(0.143) 98(0.139)

 

Comparing the results in Table 6 (the second column and last columns), it can be seen that when the normal 

direction threshold is set at 16 degrees, the extracted points in some roofs (e.g. roof nos. 1-6) are less than the 

extracted points without a normal direction threshold. This demonstrates that the phenomenon of over-

extraction will be improved by the constraint of normal direction during the merging of adjacent points. 

However, this phenomenon cannot be avoided completely by the constraint of normal direction due to the 

statistical properties of least squares, unless the other data source can be fused into the proposed algorithm; for 

example, roof boundaries from building plan maps or aerial images. In any case, the imposed normal direction 

threshold can improve some over-extraction problems. In the following tests, 16 degrees will therefore be 

used as the threshold of normal direction constraints. 
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2. The completeness of extraction  

The previous subsection investigated the relevant thresholds and phenomena for the extracted results. This 

subsection will use the relevant threshold setup from the previous subsection to further discuss the extracted 

statistics for the proposed algorithm. 

The extracted results of the proposed algorithm from these datasets and collected area outlines are shown in 

Figs. 10(a), (b), and (c). Table 7 gives the statistics for the extracted results of these three test datasets. Apart 

from dataset A, there are many small attached rooftop structures on the major roofs in datasets B and C. It is 

difficult to identify whether some small structures are roof structures from the aerial images or orthoimages. 

However, the statistics for datasets B and C are presented as completely as possible in Table 7. 

Most complex and small attached rooftop structures on the roofs in datasets C and D lead to incorrect or 

incomplete roof extraction. Some of the attached roof points cannot be extracted because they are too small 

and have fewer LIDAR points on them. Some of them cannot be extracted because they are not planar roofs. 

In addition, the threshold of 3m is set to exclude ground SEED regions for plane growing in this study. Non-

roof points are therefore completely excluded in these three datasets. In dataset C, lots of small or thin strips 

belonging to the attached rooftop structures were extracted because the point numbers for roof SEED regions 

should be more than 6 points. Overall, from Table 7 and Figs. 10(a), (b), and (c), the average correct extracted 

rate is about 86% and the average percentage of completeness is also about 86%. Most of the points on the 

major roof structures are extracted; incorrect and incomplete roof extraction belong to the complicated and 

small attached building structures. 
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(a) Result for dataset A              (b) Result for dataset B         (c) Result for dataset C 

Fig. 10  Extracted results for the three test datasets 

Table 7 Extracted statistics for the three test datasets 

Dataset  A B C 

(A). Total roof planes 21 60 83 

(B). Total extracted roof planes 20 49 111 

(C). Correct roof extraction 19 45 78 

(D). Correct but incomplete roof 

extraction 

0 1 27 

(E). Incorrect roof extraction 1 3 6 

(F). Omission roof extraction 0 10 4 

Correct extraction rates (C/B*100%) 95% 92% 70% 

Completeness (C/A*100%) 90% 75% 94% 

 

V. CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH 

The airborne LIDAR scanning system is a whole new surveying technique that captures extremely detailed 

and abundant terrain surface information. Terrain information is implied in airborne LIDAR data. The roof 

points in airborne LIDAR data are especially important for 3-D building reconstruction. The extraction of 
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building roof points from airborne LIDAR data is therefore an important task for 3-D building reconstruction. 

The most difficult part of roof point extraction from airborne LIDAR data lies in how to exclude the irrelevant 

data and how to extract the required data both reliably and completely. This paper proposed an algorithm to 

acquire roof LIDAR points and remove irrelevant non-roof LIDAR points based on robust estimation theory. 

From the experiments, the relevant problems concerning the proposed algorithm have been investigated and 

one set of thresholds has been used to extract roof points from airborne LIDAR data automatically. Both the 

average correct extracted rate and the average percentage of completeness are about 86% in the proposed 

algorithm. In addition, almost all of the major roof structures were extracted by the proposed algorithm in the 

three test datasets. The experiments have proved the feasibility of the proposed algorithm, and the possibility 

of automatically extracting roof points from airborne LIDAR data has also been raised. The proposed 

methodology does remove the relevant data from desirable roof planes from the experiments. However, the 

approximate outlines covering roofs were collected manually in this study. Future work could therefore 

acquire these area outlines automatically from another data source or from LIDAR data itself using image 

processing techniques. These experimental results also show that other data should be integrated for a more 

accurate extraction of roof points. Subsequent studies should therefore be conducted by integrating different 

data sources (e.g. aerial images), based on current results, for a much more complete reconstruction of 

building models. 
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NONMENCLATURE 

A  the coefficient matrix  
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( )QvF
ivi ,,σ   the correct factor for the weight of observation i 

L  the observation matrix 

n  the number of observations 

P  the weight function of the observations 

iP  a priori weight of the observation i 

llP  the weight matrix of the observations 

llQ  the co-factor matrix of observations 

ll ˆˆQ  the co-factor matrix of observations after adjustment 

vvQ  the co-factor matrix of residuals 

ir   the local redundancy of observation i   

X  the estimated parameters vector 

u  the number of unknowns 

V  the residual vector 

iv   the residual of observation i , meter in SI unit. 

Z = aX + bY + c  planar equation, where a, b, and c are planar parameters; and X, Y, and Z are coordinate 

components, meter in SI unit. 

0σ  the priori sigma-naught, meters in SI unit. 

0σ̂   the estimated sigma-naught, meter in SI unit. 

prioriaσ  the priori sigma-naught, meter in SI unit. 

ivσ̂   the estimated sigma of the residual iv , meter in SI unit. 
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