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1. INTRODUCTION

There is a rich literature in estimating an unknown regression function

and its derivatives using local linear method with kernel weight, see Fan

(1992, 1993), Fan and Gijbels (1995), Ruppert and Wand (1994), among

others. Local linear estimator has many attractive properties including its

minimax eÆciencies (e.g., Fan (1992)).

For most regression smoothers the rate of convergence at the boundary

points is slower than at the points in the interior because there are less

observations in the boundary region. In the literature this is referred to

the boundary e�ects. Earlier methods of correcting the boundary e�ects

are mainly focused on using various kinds of boundary correction kernels.

However, there are many problems with the use of boundary kernels. For

example, one needs to know the exact boundary in order to use a bound-

ary correction kernel. Also it is diÆcult to construct boundary correction

kernels for multivariate regression case.

The local linear regression estimator adjusts for the boundary automat-

ically and it is nearly the best boundary correction method. It has nearly

100% asymptotic minimax eÆcient among the class of linear smoothers,

both in the interior and at the boundary (Fan and Gijbels (1995,p.91)). In

contrast a local constant kernel estimator has zero minimax eÆciency com-

pared to a local linear kernel estimator, this is because the local constant

estimator has a large bias especially near the boundary region. Although

asymptotically the length of the boundary region shrinks to zero, in �nite

sample applications, say with a sample size of a few hundreds, the bound-

ary region can be quite large. As Fan and Gijbels (1995, p.69) put it: `If

the bandwidth h is chosen to be 25% of the data range, then the boundary

region contains for about 50% of the whole data. In higher dimensions

these �gures are even more striking.'

We share the enthusiasm of Fan and Gijbels (1995) on local linear method

and advocate the use of local linear methods in estimating semiparamet-

ric models. In order to derive the asymptotic distributions of local linear

estimators for various semiparametric models, we �rst consider the case of

a nonparametric regression model and provide a simple way of establish-

ing the asymptotic normality of a local linear estimator. We then show

that our results can be easily generalized to some semiparametric models.

Speci�cally we will consider a semiparametric partially linear model and a

semiparametric smooth coeÆcient model. We use a semiparametric par-

tially linear speci�cation to study cross country growth rates, our empirical

study shows that, in the boundary region (which is about 40% of the data

range), the local linear method give quite di�erent estimation result com-

pared with that obtained from a local constant estimator. This suggest
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that the local constant estimator su�ers from substantial �nite sample bias

in this application.

The paper is organized as follows. In section 2.1 we provided a simple

proof of establishing the asymptotic normality of the local linear estimator.

Section 2.2 discusses the problem of estimating the unknown function in

a partially linear model by the local linear method. Section 2.3 proposes

to estimate a semiparametric smooth coeÆcient model by a local linear

method. Section 3 uses a partially linear speci�cation to examine a cross

country growth data.

2. LOCAL LINEAR ESTIMATOR AND ITS ASYMPTOTIC

DISTRIBUTION

In section 2.1 we �rst consider the case of a nonparametric regression

model and derive the asymptotic distribution of a local linear estimator.

We then show that the result can be easily generalized to a semiparametric

partially linear model in section 2.2.

2.1. A Nonparametric Regression Model

Consider a nonparametric regression model:

yi = g(xi) + �i; (i = 1; :::; n) (1)

where xi is of dimension d. We are interested in estimating the unknown

function g(x) as well as the derivative of g(x): g(1)(x)
def
= @g(x)=@x (g(1)(:)

is a d � 1 vector). De�ne Æ(x) = (g(x); (g(1)(x))0)0. Æ(x) is a (d + 1) � 1

vector function, its �rst component is g(x) and the remaining d components

are the �rst derivatives of g(x). It is well established that the local linear

method can be used to estimate the unknown function g(x) as well as its

derivative g(1)(x).

Below we discuss the point-wise estimation of Æ(x) = (g(x); g(1)(x)0)0 for

some x 2 Rd with f(x) > 0 (f(:) is the density function xi).

Take a Taylor series expansion of g(xi) at x, we get g(xi) = g(x)+ (xi�
x)g(1)(x)+(xi�x)0g(2)(x)(xi�x)=2+Rm(xi; x), where g

(2)(x) is the d�d

matrix of second order derivatives of g(x) and Rm(xi; x) is the remainder

term in the Taylor expansion. We rewrite (1) as

yi = g(x) + (xi � x)0g(1)(x) + (xi � x)0g(2)(x)(xi � x)=2 +Rm(xi; x) + �i

= (1; (xi � x)0)Æ(x) + (xi � x)0g(2)(x)(xi � x)=2 +Rm(xi; x) + �i: (2)
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A local linear kernel estimator of Æ(x) is obtained by a (kernel) weighted

regression of Yi on (1; (xi � x)0).1

Æ̂(x) =

�
ĝ(x)

ĝ(1)(x)

�
=

"X
i

Ki;x

�
1; (xi � x)0

xi � x; (xi � x)(xi � x)0

�#�1

�
X
i

Ki;x

�
1

xi � x

�
yi; (3)

where Ki;x = K((xi � x)=h) is the kernel function and h = hn is a

smoothing parameter.

Under some regularity conditions including h ! 0 and nhd ! 1 as

n ! 1, one can show that Æ̂(x) is a consistent estimator of Æ(x). To

establish the asymptoic normality result of Æ̂(x) given in (3), the following

stronger assumptions will be used.

(A1): (xi; yi) are i.i.d. as (x1; y1). Both x1 and y1 have �nite 4th

moments. g(x) and f(x) are both di�erentiable up to third order. For

� = g or � = f , denote by �(1)(x) and �(2)(x) the gradient (�rst derivative)

vector and the Hessian (second derivatives) matrix of �(:), respecitvely.

Then �(x), �(1)(x) and �(2)(x) are all bounded by some functions that have

�nite second moment. �2(x) = E(�21jx1 = x) is continuous in x.

(A2): K(:) : Rd ! R is a bounded symmetric non-negative function,R
K(u)uu0du = ckId,

R
K2(u)du = dk and

R
K2(u)uu0du = �kId, where Id

is an identity matrix of dimension d, ck, dk and �k are all �nite positive

constants.

(A3): As n!1, nhd+2 !1 and nhd+6 ! 0.

The following Theorem establishes asymptotic normality of Æ̂(x).

Theorem 2.1. De�ne D(n) =

�
(nhd)1=2; 0

0; (nhd+2)1=2Id

�
, �k(x) =

(1=2)ck trfg(2)(x)g. Then under A1 - A3 and assume that f(x) > 0, we

have

D(n)(Æ̂(x)� Æ(x)�
�
h2�k(x)

0

�
)!N(0;�x) in distribution;

where �x =

�
dk�

2(x)=f(x); 0

0; �k�
2(x)Id=(c

2
kf(x))

�
.

1A similar idea is also used in Robinson (1989), who considered the problem of esti-
mating a time varying parameter model: yt = x

0
t
�t + �t, where �t = �(t) is a smooth

but unknown function of t. Robinson (1989) proposed estimating �(�) by (for � 2 [0; 1])

�̂(�) = (
P

t
kt;�xtx

0
t
)�1
P

t
kt;�xtyt, where kt;� = k(T��t

Th
) is the kernel function and

h is the smoothing parameter.
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The proof of Theorem 2.1 is given in the Appendix A. The asymptotic

normality of ĝ(x) (the �rst component of Æ̂(x)) was derived in Fan, Heck-

man and Wand (1995). Here we give the joint asymptotic distribution of

ĝ(x) and ĝ(1)(x). Also our proof di�ers from that of Fan, et al (1995). In

particular we use a simple trick to handle the numerator and the denomi-

nator of Æ̂(x) separately which greatly simpli�es the proofs. This method

of proof enables us to generalize the result of Theorem 2.1 to some semi-

parametric models in a straightforward way.

The asymptotic distribution of ĝ(x) is obtained as a corollary to Theorem

2.1.

Corollary 2.1. Under the same conditions as in Theorem 2.1, we have

(nhd)1=2(ĝ(x)� g(x)� h2�k(x))!N(0; dk�
2(x)=f(x)) in distribution:

Remark 2.1. Corollary 2.1 shows that the leading terms of bias and

variance of ĝ(x) are h2�k(x) and dk�
2(x)=[f(x)nhd], respectively. It is well

known that the local linear kernel estimator has the same variance as above

but with a larger bias term of: h2f�k(x) + ck[2(g
(1)(x))0f (1)(x)]=f(x)g.

Therefore, a local linear estimator has zero minimax eÆciency compared

with a local linear estimator. In the remaining part of this paper we will

show similar results hold true for several semiparametric regression models.

2.2. A Partially Linear Model

A semiparametric partially linear model is given by (e.g., Engle, et al

(1986), Robinson (1988) and Stock (1989))

yi = z0i
 + g(xi) + �i (i = 1; :::; n) (4)

where zi is of dimension q � 1, 
 is a q � 1 unknown parameter and xi is

d�1. It is well established that 
 can bepn-consistently estimated by some
nonparametric method. In this subsection we will use the kernel estimation

method and show that the results of section 2.1 can be easily generalized

to deliver the asymptotic distributions of g(x) and g(1)(x) based on (4) by

the local linear method.

Following Robinson (1998), we estimate 
̂ by


̂ = S�1
z�ẑSz�ẑ;y�ŷ; (5)

where for scalar or column-vector sequences Ai andBi, SA;B = n�1
P

iAiB
0

iIi

and SA = SA;A. Ii = I(f̂i > b), b = bn is a trimming parameter and I(:)
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is the usual indicator function, i.e., Ii = 1 if f̂i > b and Ii = 0 if f̂i � b.

ẑi and ŷi are the leave-one-out kernel estimators of E(zijxi) and E(yijxi),
respectively, and f̂i = f̂(zi) is the kernel estimator of the density function

f(zi).

ẑi = Ê(zijxi) =
1

nhd

X
j

zjKij=f̂i; (6)

ŷi = Ê(yijxi) =
1

nhd

X
j

yjKij=f̂i; (7)

and

f̂i =
1

nhd

X
j

Kij : (8)

Lemma 2.1. Under the same conditions as in Robinson (1988), and

allow the error to be conditional heteroskedastic, �2(xi; zi) = E(u2i jxi; zi).
Then we have

p
n(
̂ � 
)!N(0;�) in distribution, where � = ��1	��1,

� = E(viv
0

i), 	 = E[�2(xi; zi)viv
0

i] and vi = zi � E(zijxi).

After obtaining 
̂, we subtract z0i
̂ from both sides of (4) which gives

yi � z0i
̂ = g(xi) + z0i(
 � 
̂) + �i

� g(xi) + ui; (9)

where ui = z0i(
 � 
̂) + �i acting as an error term in (9). Now one can

estimate the unknown function g(x) and its derivative g(1)(x) by the local

linear method as given in equation (3) with the new dependent variable

yi � z0i
̂ replacing yi.

Æ̂(x) =

"X
i

K(
xi � x

h
)

�
1

xi � x

�
(1; (xi � x)0)

#
�1

�
X
i

K(
xi � x

h
)

�
1

xi � x

�
(yi � z0i
̂): (10)

By the results of Theorem 2.1, we immediately have the following results.

Corollary 2.2. Under the conditions of Theorem 2.1 and lemma 2.1,

we have

D(n)(Æ̂(x)� Æ(x)�
�
h2�k(x)

0

�
)!N(0;�x) in distribution;
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where Æ̂(x) is de�ned in (10), D(n), �k(x) and �x are the same as de�ned

in Theorem 2.1.

Proof. It is easy to show that the contribution of the extra term z0i(
�
̂)
is asymptotically negligible since 
̂�
 = Op(n

�1=2) and D(n)n�1=2 = o(1).

The proof of corollary 2.2 follows from the results of Theorem 2.1. Note that

corollary 2.2 implies that (nhd)1=2(ĝ(x)�g(x)�h2�k(x))!N(0; dk�
2(x)=f(x))

in distribution, where ĝ(x) is the �rst component of Æ̂(x) in (10).

2.3. A Semiparametric Smooth CoeÆcient Model

In this ssubection we show that the earlier results can be used to eas-

ily derive the asymptotic distributions of local linear estimators for other

semiparametric models. We will consider the semiparametric smooth coef-

�cient model as discussed in Li, Huang and Fu (1997). A semiparametric

smooth coeÆcient model has the following form:

yi = z0i�(xi) + �i; (11)

where zi is of dimension q � 1 and xi is of dimension d � 1, �(x) is an

unspeci�ed (unknown) smooth function. Li, et al (1997) motivated model

(11) via a production frontier model, where yi is �rm i's output, zi is an

input vector and xi is some other variables that may a�ect �rm's production

eÆciency. To give a speci�c example, let us assume that xi is �rm's ratio

of R&D to output and z0i = (1; z1i; z2i), where z1i is labor input and z2i is

capital input. Then model (11) says that not only labor and capital, but

also R&D expenditure will a�ect �rm's output.

Model (11) contains a linear regression model as a special case. To see

this, let �(x) = (�0(x); �1; �2)
0 � (
0 + 
1x; �1; �2)

0, then model (11)

becomes:

yi = 
0 + 
1xi + �1z1i + �2z2i + �i: (12)

However, (12) is restrictive because it assumes that �rm's R&D (x)

only a�ects the intercept: �0(x) = 
0 + 
1x, but not the slope coeÆcient

�1 and �2. In practice di�erent levels of R&D ratio is likely to cause

di�erent marginal productivities of labor and capital. The semiparametric

model (11) allows this possibility with 
exible functional forms for the

marginal productivities because the smooth coeÆcient function �(x) =

(�0(x); �1(x); �2(x))
0 is not speci�ed to have a known functional form.

For notational simplicity, we will only consider the case that xi is a

scalar (d = 1) in this subsection. Li, et al (1997) suggested to estimate the

unknown smooth coeÆcient function �(x) by a local least squares method
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on regression yi on zi:

~�(x) =

"X
i

K(
xi � x

h
)z0i zi

#
�1X

i

K(
xi � x

h
)z0i yi: (13)

The above estimator ~�(x) may look like a local linear estimator, but

in fact it is a local constant estimator because ~�(x) is the solution of the

following minimization problem:

~�(x) = argmina
X
i

[yi � z0ia]
2K(

xi � x

h
): (14)

From (14) it is clear that the unknown function �(xi) is treated locally

as a constant �(xi) � a. The kernel weight function K((xi�x)=h) ensures

that only local observations (xi close to x) are used.

One can also use a local linear method to estimate �(x) and its derivative

�(1)(x). The idea is similar to that of section 2.1, we replace the local

constant a in (14) by a local linear approximation: a+ b(xi�x). Then the

local linear estimators of �(x) and �(1)(x) are the solutions of a and b in

the following minimization problem.

min
a;b

X
i

fyi � z0i[a+ b(xi � x)]g2K(
xi � x

h
): (15)

De�ne a (2q)�1 vector variable Zi = (z0i; z
0

i(xi�x))0 and denotes �(x) =
(�(x)0; (�(1)(x))0)0. Then from (15) we get the local linear estimator of �̂(x)

given by

�̂(x) =

�
�̂(x)

�̂(1)(x)

�
= f

X
i

K(
xi � x

h
)ZiZ 0

ig�1
X
i

K(
xi � x

h
)Ziyi: (16)

The next Theorem establishes the asymptotic distribution of �̂(x) as

de�ned in (16).

Theorem 2.2. Let �(x) satisfy the same conditions as Æ(x) given Theo-

rem 2.1. The joint distribution of (xi; zi) satis�es the same conditions as in

Li et al (1997). De�ne D(n) =
�
(nh)1=2Iq; 0;

0; (nh3)1=2Iq

�
. Also assume

that fx(x) > 0 (fx(:) is the marginal density of xi). Then we have

D(n)(�̂(x)� �(x)�
�
h2�k(x)

0

�
)!N(0;
x) in distribution, where
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x =

�
dkm

�1(x)�(x)m�1(x)=fx(x); 0

0; �km
�1(x)�(x)m�1(x)=(c2kfx(x))

�
,

�k(x) = (1=2)ckE(zijxi = x)f(x)g(2)(x), m(x) = E[ziz
0

ijxi = x], �(x) =

E[ziz
0

i�
2(xi; zi)jxi = x], ck, dk and �k are the same as de�ned in assump-

tion (A2).

The proof of Theorem 2.2 is given in the Appendix B. The asymptotic

distribution of the local linear estimator for the smooth coeÆcient �(x) is

obtained as a corollary of Theorem 2.2.

Corollary 2.3. Under the same conditions as in Theorem 2.2, we have

(nh)1=2(�̂(x)� �(x)� h2�k(x))!N(0; dkm
�1(x)�(x)m�1(x)=fx(x))

in distribution, where �̂(x) is the �rst p elements of �(x) given in (16),

�k(x), m(x) and �(x) are the same as de�ned in Theorem 2.2.

Remark 2.2. Note that the leading terms of bias and variance of �̂(x)

are �k(x)h
2 and ckm

�1(x)�(x)m�1(x)=fx(x), respectively. It can be shown

that while the local constant estimator ~�(x) (see (13)) has the same vari-

ance as that of �̂(x), the bias of ~�(x) is

h2f�k(x) + E(zijxi = x)[2(g(1)(x))0f (1)x (x)]=fx(x)g:

Hence, ~�(x) has a larger bias than that of �̂(x). The local constant estima-

tor ~�(x) of (13) has zero minimax eÆciency compared with the local linear

estimator �̂(x). This is similar to the case of a standard nonparametric

regression model as discussed in Remark 2.1.

3. SEMIPARAMETRIC ANALYSIS OF CROSS COUNTRY

GROWTH

In this section we use a semiparametric partially linear speci�cation to

study the e�ects of initial output level on cross country growth rates. We

are interested in whether a semiparametric speci�cation supports the so

called `convergence' hypothesis. `Convergence' means that the speeds of

the logarithm of per-capita output of di�erent countries (rich or poor)

tend to some steady-state value from di�erent initial conditions.

The traditional approach of cross country growth analysis usually based

on a Solow type growth model and assuming a Cobb-Douglas production

function that imposes a common technology which leads to a log-linear
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relationship between changes in per-capita output and a set of variables

that includes physical and human capital, initial conditions and population

changes, see for example Durlauf and Johnson (1995), Lee, Pesaran and

Smith (1997) for an exposition.

A linear regression model imposes strong functional form restrictions.

Recently a number of researchers attempts to introduce certain nonlinear-

ities in the multivariate regression framework in hoping to obtain more

reliable estimation results, see Durlauf and Johnson (1995), Hansen (1996)

and Liu and Stengos (1998).

We use the following partially linear speci�cation.

yi = z0i� + g(xi) + ui; (17)

where zi is of dimension 7� 1 containing growth of population (POP), the

ratio of investment to GDP (INV), human capital which is measured as

the enrollment rate in secondary school (SEC), all the three variables are

in logarithms, and the four 0-1 dummy are: 1960's dummy, 1970's dummy,

Latin American country dummy (LAAM) and Africa country dummy. xi
is the logarithm of initial value of GDP (1960 value). Our data is obtained

from King and Levine (1993), which is a pooled cross-country data and av-

eraged over the 1960's, 1970's and 1980's, the total observation is n = 313.

We are mainly interested in �nding whether the initial conditions a�ect

DGP linearly or not. Therefore, we choose GDP60 as the nonparametric

component in (17).

Our formulation is similar in spirit to that of Durlauf and Johnson (1995),

Hansen (1996), and Liu and Stengos (1998) which allows possible nonlin-

earities and hence may lead to di�erent equilibria growth paths for di�erent

groups of countries. Liu and Stengos (1998) used a similar but smaller data

set (with 258 observations) and they also chose to use the schooling vari-

able as a nonparametric component and estimated an additive partially

model. While a formal test of testing a partially linear model versus an

additive partially linear is not available in the literature, Liu and Stengos'

estimation result shows that the straight line of the least squares estimate

of schooling lies inside the 95% con�dence bands of a semiparametric es-

timate of schooling e�ects, this suggests that the schooling variable enters

the model linearly.

For comparison we also estimated a bench-mark linear regression model:

yi = z0i� + xi
 + ui; (18)

The estimation results for the parametric components (�0s and 
) are

given in Table 1. For the parametric components we observe that semi-

parametric and OLS methods give similar estimation results. For the OLS
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regression, the coeÆcient of ln(GDP60) is negative, but it is not statisti-

cally signi�cant. This result can be viewed as weak evidence in supporting

the convergence hypothesis based on a parametric linear model.

Table 1: Cross Country Growth Regression

OLS (t-ratio) Semi. (t-ratio)

Constant 0.0329 ( 1.40 )

ln(POP) -0.0137 (-1.25) -0.0089 (-0.94)

ln(INV) 0.0227 ( 5.50 ) 0.0216 ( 5.90 )

ln(SEC) -.0004 (-0.20) -0.0012 (-0.65)

Dummy 60 0.0249 ( 7.61 ) 0.0243 ( 7.25 )

Dummy 70 0.0182 ( 6.30 ) 0.0196 ( 6.71 )

LAAM -0.0168 (-5.46) -0.0206 (-6.16)

Africa -0.0193 (-4.06) -0.0171 (-4.19)

ln(GDP60) -0.0022 (-0.91)

The estimated function of g(x) based on the local linear method (denoted

it ĝL(x)) and the local constant method (denoted it ĝC(x)) are given in

�gure 1. We used a standard normal kernel and the smoothing parameter

is chosen via the method of cross validation. From �gure 1 one can clearly

see that both the local linear and local constant estimators of g(x) suggest

that the initial GDP a�ects the output nonlinearly. This is in agreement

with the �ndings of Durlauf and Johnson (1995), Lee, et al (1997), Bianchi

(1997), Hansen (1996), and Liu and Stengos (1998). The result of �gure

1 appears to support the view of clustering and strati�cation of growth

patterns over time, which in sharp contrast to the convergence hypothesis.

Figure 1 also shows that ĝL(x) di�ers from ĝC(x) in the boundary region

which is about 40% of the total region. As we mention in the introduction

section, in �nite sample applications, the boundary region can easily be

as large as half of the total region. We observe that the nonlinearity of

the local linear estimator ĝL(x) is more pronounced than that of the local

constant estimator ĝC(x). We know that a local constant estimator has

large bias than that of a local linear estimator especially in the boundary

region. Thus our result suggests that the local constant estimator ĝC(x)

does not give a reliable estimation result in the boundary region due to its

substantial bias.

Figure1:

In a convincing Monte Carlo study, Racine (1997) also demonstrates that

local constant estimators have substantial bias in the boundary region in

�nite samples. Thus our empirical result is consistent the earlier theoretical

results (e.g., Fan (1992, 1993)) and simulation evidence (Racine (1997)).
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Our estimation result on cross country grow is in agreement with those of

Durlauf and Johnson (1995), Hansen (1996), and Liu and Stengos (1998).

By allowing possible nonlinearities in the regression model we observe dif-

ferent equilibria growth paths for countries with di�erent initial wealth.

4. CONCLUSION

In this paper we provide a simple proof of establishing the asymptotic

normality of a local linear kernel estimator. We show that our method of

proof can be used to easily derive the asymptotic distributions of local linear

estimators for semiparametric econometric models. An empirical example

of cross country growth analysis also demonstrates that a local constant

estimator can lead to severe bias in the boundary region which can be easily

as large as half of the total region in �nite sample applications. Therefore

we advocate the use of local linear methods for estimating semiparametric

econometric models.

APPENDIX A

Proof of Theorem 2.1

To simplify the proof, we �rst re-write (3) in an equivalent form. Insert

the identity matrix Id+1 = G�1
n Gn in the middle of (3), where Gn =�

h2; 0

0; Id

�
. We get

Æ̂(x) = [
X
i

K(
xi � x

h
)Gn

�
1

xi � x

�
(1; (xi � x)0)]�1

�
X
i

K(
xi � x

h
)Gn

�
1

xi � x

�
yi

= [
X
i

K(
xi � x

h
)

�
h2

xi � x

�
(1; (xi � x)0)]�1

�
X
i

K(
xi � x

h
)

�
h2

xi � x

�
yi: (A.1)

The advantage of using (A.1) in the proof is that

1

nhd+2

X
i

K(
xi � x

h
)

�
h2

xi � x

�
(h2; (xi � x)0)

converges in probability to a non-singular matrix. Hence, we can analyze

the denominator and numerator of (A.1) separately and thus greatly sim-
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plify the derivations. On the other hand, it is easy to show that for any

choices of non-stochastic sequences of c(n),

c(n)
X
i

K(
xi � x

h
)

�
1

xi � x

�
(1; (xi � x)0)

will not converge to a non-singular matrix.

Substituting the Taylor expansion (2) into (A.1) and also multiply both

the numerator and denominator of (A:1) by 1=(nhd+2), we have

Æ̂(x) = [
1

nhd+2

X
i

Ki;x

�
h2

xi � x

�
(1; (xi � x)0)]�1

�f 1

nhd+2

X
i

Ki;x

�
h2

xi � x

�
[g(xi) + �i]g

= Æ(x) + [
1

nhd+2

X
i

Ki;x

�
h2; h2(xi � x)0

(xi � x); (xi � x)(xi � x)0

�
]�1

�f 1

nhd+2

X
i

Ki;x

�
h2

xi � x

�
[(xi � x)0g(2)(x)(xi � x)=2

+�i +Rm(x; xi)]g
� Æ(x) + [A1;x ]�1fA2;x +A3;xg+ (s:o:); (A.2)

where

A1;x =
1

nhd+2

X
i

Ki;x

�
h2; h2(xi � x)0

(xi � x); (xi � x)(xi � x)0

�
(A.3)

A2;x =
1

nhd+2

X
i

Ki;x

�
h2

xi � x

�
(xi � x)0g(2)(x)(xi � x)=2; (A.4)

A3;x =
1

nhd+2

X
i

Ki;x

�
h2

xi � x

�
�i; (A.5)

and the smaller order (s:o:) term comes from [A1;x]�1 1
nhd+2

P
iKi;xRm(x; xi),

which has an order smaller than [A1;x]�1A2;x.

Lemma C.1 of Appendix C shows that A1;x = M + op(1), where M =�
f(x); 0

ckf
(1)(x); ckf(x)Id

�
. M is obviously non-singular because det(M) =

ck(f(x))
d+1 > 0.

Rewrite (A.2) as

D(n)(Æ̂(x)� Æ(x)) = D(n)[A1;x]�1[A2;x + A3;x] + (s:o:)
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De�ne a diagonal matrix R = diag(M�1) =

�
1=f(x); 0

0; Id=(ckf(x))

�

and V =

�
dk�

2(x)f(x); 0

0; �k�
2(x)f(x)Id

�
. Then Theorem 2.1 will be

proved if we can show the showings:

(i) D(n)[A1;x]�1[A2;x + A3;x] = D(n)M�1[A2;x +A3;x] + op(1),

(ii) D(n)M�1[A2;x + A3;x] = RD(n)[A2;x + A3;x] + op(1),

(iii) D(n)A2;x =

�
(nhd+4)1=2�k(x)f(x)

0

�
+ op(1),

(iv) D(n)A3;x!N(0; V ) in distribution.

These are proved in lemmas A.1 - A.4 below.

Lemma A.1. D(n)[A1;x]�1[A2;x+A3;x] = D(n)M�1[A2;x+A3;x]+op(1)

Proof. Writing D(n)[A1;x]�1[A2;x + A3;x] = D(n)M�1[A2;x + A3;x] +

D(n)[(A1;x)�1 �M�1][A2;x +A3;x]. Therefore, it suÆces to show that

D(n)[(A1;x)�1 �M�1][A2;x + A3;x] = op(1): (A.6)

Using the partitioned inverse, we get

M�1 =

�
1=f(x); 0

�f (1)(x)=f2(x); Id=(ckf(x))

�
. From A1;x = M + op(1) (see

lemma C.1 (v)) we know that

(A1;x)�1 =M�1 + op(1): (A.7)

Let J
def
= (A

1;x
11 )

�1 �M�1 �
�
J11 J12
J21 J22Id

�
. (A.7) implies that Jij =

op(1) for i; j = 1; 2. In order to prove (A.6), we need a sharp rate for J12.

Below we show that J12 = Op(h
2).

De�ne F = (A
1;x
22 � A

1;x
21 (A

1;x
11 )

�1A
1;x
12 )

�1. Using the partitioned inverse

and the results of lemma C.1, we obtain

(A1;x)�1 =

�
(A

1;x
11 )

�1(Id + A
1;x
12 FA

1;x
21 (A

1;x
11 )

�1) �A1;x
11 A12F

�FA1;x
21 (A

1;x
11 )

�1 F

�

=

�
(1=f(x))Id + op(1) Op(h

2)

�f (1)(x)=(ckf(x)) + op(1) Id=(ckf(x)) + op(1)

�
(A.8)

because A
1;x
12 = Op(h

2) by lemma C.1 (iii). (A.8) leads to

J = (A
1;x
11 )

�1 �M�1 =

�
op(1) Op(h

2)

op(1) op(1)Id

�
; (A.9)
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which proves that J12 = Op(h
2). Using (A.9) we immediately have

D(n)[(A1;x)�1 �M�1][A2;x +A3;x] =

�
(nhd)1=2 0

0 (nhd+2)1=2Id

�
��

op(1) Op(h
2)

op(1) op(1)Id

�
[

�
A
2;x
1

A
2;x
2

�
+

�
A
3;x
1

A
3;x
2

�
] = op(1), because

(nhd)1=2Op(h
2)A

2;x
2 = Op((nh

d)1=2h4) = op(1) and (nhd)1=2Op(h
2)A

3;x
2 =

(nhd)1=2h2Op((nh
d+2)�1=2) = Op(h) by lemmas C.2 (ii) and C.3 (ii). This

proves (A.6).

Lemma A.2. D(n)M�1[A2;x +A3;x] = RD(n)[A2;x +A3;x] + op(1).

Proof. Note that R is a diagonal matrix with R = diag(M�1), we

have D(n)M�1[A2;x + A3;x] = RD(n)[A2;x + A3;x] + op(1) because the

terms associated with the o�-diagonal element of M�1 are all op(1), i.e.,

(nhd+2)1=2A
2;x
1 =

p
nhd+2Op(h

2) = Op((nh
d+6)�1=2) = op(1) and

(nhd+2)1=2A
3;x
1 =

p
nhd+2Op((nh

d)�1=2) = Op(h) = op(1).

Lemma A.3. D(n)A2;x =

�
(nhd+4)1=2�k(x)f(x)

0

�
+ op(1).

Proof. By lemma C.2, we have (nhd)1=2A
2;x
1 =

p
nhd+4[�k(x)f(x) +

op(1)] and (nhd+2)1=2A
2;x
2 =

p
nhd+2Op(h

2) = Op((nh
d+6)1=2) = op(1).

HenceD(n)A2;x =

�
(nhd)1=2A

2;x
1

(nhd+2)1=2A
2;x
2

�
=

�
(nhd+4)1=2�k(x)f(x)

0

�
+op(1).

Lemma A.4. D(n)A3;x!N(0; V ) in distribution, where

V =

�
dkf(x)�

2(x); 0

0; �kf(x)�
2(x)Id

�
:

Proof. By lemma C.3, var((nhd)1=2A
3;x
1 ) = dkf(x)�

2(x) + o(1),

var((nhd+2)1=2A
3;x
2 ) = �kf(x)�

2(x)Id + o(1) and

cov((nhd)1=2A
3;x
1 ; (nhd+2)1=2A

3;x
2 ) = o(1):

Hence, var(D(n)A3;x) = V + o(1). Also note that A3;x has mean zero.

Thus D(n)A3;x ! N(0; V ) in distribution by a triangular-array (see Ser-


ing (1980) page 32) central limit theorem.

Proof of Theorem 2.1
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Lemmas A.1 - A.4 imply that

D(n)(Æ̂(x)� Æ(x)�
�
h2�k(x)

0

�
)

= RD(n)[A2;x + A3;x]�
�
(nhd+4)1=2�k(x)

0

�
+ op(1)

= RD(n)A3;x + op(1)!RN(0; V ) + op(1)! N(0;�)

in distribution, where � = RV R is the same � as given in Theorem 2.1.

APPENDIX B

Proof of Theorem 2.2

Similar to the proof of Theorem 2.1, we �rst re-write (16) in an equiv-

alently form by inserting an identity matrix I2p = GnG�1
n , where Gn =�

h2Iq; 0

0; Iq

�
. Using (11) and replacing �(xi) by the Taylor expansion:

�(x) + �(1)(x)(xi � x) + �(2)(x)(xi � x)2=2 +Rm(x; xi), we get

�̂(x) = [
1

nh3

X
i

Ki;x

�
h2zi

zi(xi � x)

�
(z0i; z

0

i(xi � x))]�1

� f 1

nh3

X
i

Ki;x

�
h2zi

zi(xi � x)

�
yig

= �(x) + [
1

nh3

X
i

Ki;x

�
h2ziz

0

i; h2ziz
0

i(xi � x)2

ziz
0

i(xi � x); ziz
0

i(xi � x)2

�
]�1

� f 1

nh3

X
i

Ki;x

�
h2zi

zi(xi � x)

�
[�(2)(x)(xi � x)2=2 + �i +Rm(x; xi)]g

� �(x) + [B1;x ]�1fB2;x +B3;xg+ (s:o:); (B.1)

where

B1;x =
1

nh3

X
i

Ki;x

�
h2z0izi; h2z0izi(xi � x)

z0izi(xi � x); ziz
0

i(xi � x)2

�

�
�
B

1;x
11 B

1;x
12

B
1;x
21 B

1;x
22

�
; (B.2)

B
1;x
ij are all of dimension q � q (i; j = 1; 2),

B2;x =
1

nh3

X
i

Ki;x

�
h2zi

zi(xi � x)

�
�(2)(x)(xi � x)2=2
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�
�
B

2;x
1

B
2;x
2

�
; (B.3)

B
2;x
i are all of dimension q � 1 (i = 1; 2), and

B3;x =
1

nhd+2

X
i

Ki;x

�
h2zi

zi(xi � x)

�
�i �

�
B

3;x
1

B
3;x
2

�
; (B.4)

B
3;x
i are all of dimension q � 1 (i = 1; 2). The smaller order term (s:o:) on

the right hand of (B.1) comes from [B1;x]�1 1
nh3

P
iKi;xRm(x; xi), which

has an order smaller than [B1;x]�1B2;x.

Lemmas B.1 to B.3 below give the probability orders of Bj;x for j =

1; 2; 3. The proof of Theorem 2.5 follows exactly the same arguments as in

the proof of Theorem 2.1 except that one needs to cite lemmas B.1 to B.3

(rather than citing lemmas C.1 to C.3) in the proof.

Lemma B.1. De�ne M =

�
fx(x)m(x); 0

ckm(x)f
(1)
x (x); ckfx(x)m(x)

�
, where

m(x) = E(ziz
0

ijxi = x) (m(x) is q � q positive de�nite matrix). Then

B1;x =M+ op(1):

Proof. It suÆces to prove the followings:

(i) B
1;x
11 = fx(x)m(x) + op(1),

(ii) B
1;x
21 = ckm(x)f

(1)
x (x) + op(1),

(iii) B
1;x
12 = Op(h

2) = op(1) and

(iv) B
1;x
22 = ckfx(x)m(x) + op(1).

Since the proofs are almost identical to the proof of lemma C.2, we will

only provide a proof for (i) here. (ii)-(iv) can be proved similarly. Let f(:; :)

and f(:j:) denote the joint density of (xi; zi) and the conditional density of

zi conditional on xi, respectively. Then we have

E(B
1;x
11 ) = h�1E[z01z1K1x] = h�1

R R
f(x1; z1)z

0

1z1K((x1 � x)=h)dx1dz1
= h�1

R R
fx(x1)f(z1jx1)z01z1K((x1 � x)=h)dx1dz1

=
R R

fx(x+ au)f(z1jx1 = x+ au)z01z1K(u)dudz1
= fx(x)

R
f(z1jx1 = x)z01z1dz1 +O(h)

= fx(x)E[z
0

1z1jx1 = x] + o(1) � fx(x)m(x) + o(1):

Similarly one can easily show that E[jjB1;x
11 � E(B1;x)jj2] = o(1). Hence

B
1;x
11 = fx(x)m(x) + op(1).
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Lemma B.2. (i) B
2;x
1 = h2ckE(zijxi = x)f(x) g(2)(x)=2 + op(1)] �

h2[�k(x) + op(1)],

(ii) B
2;x
2 = Op(h

2).

Proof. Mimic the proof of lemma C.2.

Lemma B.3. De�ne �(x) = E[ziz
0

i�
2(xi; zi)jxi = x], and

V =

�
dkfx(x)�(x); 0

0; �kfx(x)�(x)

�
:

Then D(n)B3;x!N(0;V) in distribution.

Proof. Similar to the proof of lemma C.3, one can show the followings:

(i) var((nh)1=2B
3;x
1 ) = dkf(x)�(x) + o(1),

(ii) var((nh3)1=2B
3;x
2 ) = �kf(x)�(x) + o(1) and

(iii) cov((nh)1=2B
3;x
1 ; (nh3)1=2B

3;x
2 ) = O(h) = o(1).

Then lemma B.3 follows by a triangular-array central limit theorem. Since

the detailed proof is almost identical to the proof of lemma C.3, we only

outline a proof for (i) below.

var((nh)1=2B
3;x
1 )

= (nh)�1
P

iE[ziz
0

i�
2
iK

2
ix]

= h�1E[z1z
0

1�
2(x1; z1)K

2((x1 � x)=h)]

= h�1
R R

f(x1; z1)z1z
0

1�
2(x1; z1)K

2((x1 � x)=h)dx1dz1
=
R R

fx(x+ au)f(z1jx1 = x+ au)z1z
0

1�
2(x+ au; z1)K

2(u)dudz1
= fx(x)[

R
K2(u)du][

R
f(z1jx1 = x)z1z

0

1�
2(x; z1)dz1] +O(h)

= dkfx(x)E[z1z
0

1�
2(x1; z1)jx1 = x] + o(1)

= dkfx(x)�(x) + o(1):

Proof of Theorem 2.2

De�ne a diagonal matrix R = diag(M�1) =�
(fx(x)m(x))�1; 0

0; (ckfx(x)m(x))�1

�
. Using the results of Lemmas B.1

to B.3 and by the same arguments as in the proof of Theorem 2.1, one can

show that

D(n)(�̂(x)� �(x)�
�
h2�k(x)

0

�
)

= RD(n)[B2;x +B3;x]�
�
(nh5)1=2�k(x)

0

�
+ op(1)

= RD(n)B3;x + op(1)

= RN(0;V) + op(1)! N(0;
x)
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in distribution, where 
x = RVR is the same 
x as given in Theorem 2.2

(V is de�ned in lemma B.3).

APPENDIX C

Some Useful Lemmas

In this Appendix we provide some useful lemmas. Let A1;x, A2;x and A3;x

be the same as de�ned in the Appendix A, i.e., A1;x =

�
A
1;x
11 ; A

1;x
12

A
1;x
21 ; A

1;x
22

�
,

where

A
1;x
11 = h2

nhd

P
iK(xi�x

h
);

A
1;x
21 = 1

nhd+2

P
iK(xi�x

h
)(xi � x);

A
1;x
12 = h2(A

1;x
21 )

0

A
1;x
22 = 1

nhd+2

P
iK(xi�x

h
)(xi � x)(xi � x)0:

A2;x =

�
A
2;x
1

A
2;x
2

�
, where

A
2;x
1 = h2

nhd+2

P
iK(xi�x

h
)(xi � x)0g(2)(x)(xi � x)=2

A
2;x
2 = 1

nhd+2

P
iK(xi�x

h
)(xi � x)(xi � x)0g(2)(x)(xi � x)=2:

A3;x =

�
A
3;x
1

A
3;x
2

�
, where

A
3;x
1 = 1

nhd

P
iK(xi�x

h
)�i

A
3;x
2 = 1

nhd+2

P
iK(xi�x

h
)(xi � x)�i:

Lemma C.1. Under the same conditions as in Theorem 2.1, we have

(i) A
1;x
11 = f(x) + op(1),

(ii) A
1;x
21 = ckf

(1)(x) + op(1),

(iii) A
1;x
12 = Op(h

2),

(iv) A
1;x
22 = ckf(x)Id + op(1),

(v) A1;x =M + op(1), where M =

�
f(x); 0

ckf
(1)(x); ckf(x)Id

�
.

Proof. (i) A
1;x
11 is a kernel estimator of f(x), A

1;x
11 = f(x) + op(1) is a

well established result.

(ii)

E[A
1;x
21 ] = h�(d+2)E[K(x1�x

h
)(xi � x)] = h�2[

R
f(x+ hv)K(v)hvdv]

= [0 + (
R
K(v)vv0dv)f (1)(x) +O(h)] = ckf

(1)(x) + o(1):



356 QI LI AND JEFF WOOLDRIDGE

It is straightforward to show that var(A
1;x
21 ) = O((nhd+2)�1) = o(1). Hence

A
1;x
21 = ckf

(1)(x) + op(1).

(iii) A
1;x
12 = h2(A

1;x
21 )

0 = Op(h
2) because A

1;x
21 = Op(1) by (ii) above.

(iv) Similarly one can easily show that A
1;x
22 = f(x)

R
K(v)vv0dv +

op(1) = ckf(x)Id + op(1).

(v) follows directly from (i)-(iv).

Lemma C.2. Under the same conditions as in Theorem 2.1, we have

(i) A
2;x
1 = h2[(1=2)ckf(x)trfg(2)(x)g+ op(1)] � h2[�k(x)f(x) + op(1)],

(ii) A
2;x
2 = Op(h

2).

Proof. (i) It is straightforward to show that

E(A
2;x
1 =h2) = (1=2)h�(d+2)E[K(x1�x

h
)(x1 � x)0g(2)(x)(x1 � x)]

= (1=2)ckf(x)tr[g
(2)(x)] + o(1)

and var(A
2;x
1 =h2) = O((nhp)�1). Hence, A

2;x
1 =h2 = (1=2)ckf(x)tr[g

(2)(x)]+

op(1), which proves (i).

(ii)

E[A
2;x
2 ] = 1

hd+2
E[K(x1�x

h
)(x1 � x)0(x1 � x)0g(2)(x)(x1 � x)]

= h[
R
f(x+ hv)K(v)v0(v0g(2)(x)v)dv] = h[0 +O(h)] = O(h2)

and var(A
2;x
2 ) = O(h2(nhd)�1). Therefore, A

2;x
2 = Op(h

2 + h(nhd)�1=2) =

Op(h
2 + h2(nhd+2)�1=2) = Op(h

2).

Lemma C.3. Under the same conditions as in Theorem 2.1, we have

(i) V ar((nhd)1=2A
3;x
1 ) = dkf(x)�

2(x) + o(1),

(ii) V ar((nhd+2)1=2A
3;x
2 ) = �kf(x)�

2(x)Id + o(1),

(iii) cov((nhd)1=2A
3;x
1 ; (nhd+2)1=2A

3;x
2 ) = O(h) = o(1).

Proof. (i) (nhd)1=2A
3;x
1 has mean zero and its variance is

E[nhd(A
3;x
1 )2] = ff(x)�2(x)

Z
K2(v)dv + o(1)g = dkf(x)�

2(x) + o(1):

(ii) (nhd+2)1=2A
3;x
2 has mean zero and its variance is

E[K2(x1�x
h

)�2(x1)(xi � x)(xi � x)0]

=
R
f(x+ hv)�2(x+ hv)K2(v)vv0dv

= [f(x)�2(x)
R
K2(v)vv0dv + o(1)]

= �kf(x)�
2(x)Id + o(1):
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(iii)

cov((nhd)1=2A
3;x
1 ; (nhd+2)1=2A

3;x
2 )

= nhd+1E[A
3;x
1 A

3;x
2 ]

= h[
R
K2(v)vv0dv]@(f(x)�2(x))=@x+ o(h) = O(h) = o(1):
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