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This paper presents and formalizes the Market Fraction Hypothesis (MFH), and also tests it under empirical
datasets. The MFH states that the fraction of the different types of trading strategies that exist in a financial
market changes (swings) over time. However, while such swinging has been observed in several agent-based
financial models, a common assumption of these models is that the trading strategy types are static and pre-
specified. In addition, although the above swinging observation has been made in the past, it has never been
formalized into a concrete hypothesis. In this paper, we formalize the MFH by presenting its main
constituents. Formalizing theMFH is very important, since it has not happened before and because it allows us
to formulate tests that examine the plausibility of this hypothesis. Testing the hypothesis is also important,
because it can give us valuable information about the dynamics of the market's microstructure. Our testing
methodology follows a novel approach, where the trading strategies are neither static, nor pre-specified, as in
the case in the traditional agent-based financial model literature. In order to do this, we use a new agent-
based financial model which employs genetic programming as a rule-inference engine, and self-organizing
maps as a clustering machine. We then run tests under 10 international markets and find that some parts of
the hypothesis are not well-supported by the data. In fact, we find that while the swinging feature can be
observed, it only happens among a few strategy types. Thus, even if many strategy types exist in amarket, only
a few of them can attract a high number of traders for long periods of time.

Crown Copyright © 2011 Published by Elsevier Inc. All rights reserved.
1. Introduction

In the agent-based financial literature, the proportion of different
types of trading strategies in a market can be referred to as the Market
Fraction. A common observation in many agent-based financial models
is that the market fraction of the trading strategy types that exist in a
market keeps swinging (i.e., changing). Inotherwords, if for instancewe
have two types of agents in the market (e.g., fundamentalists and
chartists), it has been found that the fraction of these two types of
strategies keeps changing over time. If, for example at time t 90% of the
market participants adopt the fundamental strategy and 10% of them
adopt the chartist strategy, these fractions change continuously over
time; therefore, in a future time period, we could observe that the
fundamentalists occupy only 10% of the agents, and the chartists the
other 90%. This swinging feature has been observed in many agent-
based financial models (Amilon, 2008; Boswijk, Hommes, & Manzan,
2007; Brock & Hommes, 1998; Gilli & Winker, 2003; Kirman, 1991,
1993; Lux, 1995, 1997, 1998; Winker & Gilli, 2001).

Based on these observations about the swinging of the market
fraction, Chen (2008) and Chen, Chang, and Du (2012) suggested a new
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hypothesis, called the Market Fraction Hypothesis (MFH). The MFH
states that there is a constant swinging among the fractions of the types
of trading strategies that exist in a market. However, although the term
‘Market Fraction Hypothesis’ was introduced and used by Chen, it has
never been formalized as a hypothesis. This thus motivates us to
formalize theMFH, by presenting its main constituents. Formalizing the
hypothesis is very important, because it allows us to suggest and
formulate tests that will examine its plausibility.

Furthermore, as we mentioned, the swinging feature that the MFH
describes has been observed in several agent-based models. However,
all of the abovemodels assume that the trading strategy types are static
and pre-specified. By this we mean that these models endow their
agents with a specific number of trading strategy typeswhich they have
to choose from. To the best of our knowledge, the MFH has not been
empirically examined under a more dynamic environment in which
strategies are not static and are not exogenously given. Therefore, in this
paper we will present a new agent-based financial model which
incorporates this more general setting and test it.

In addition, motivated by the fact that the observations about the
swinging of the market fraction have so far only taken place under
artificial frameworks (Chen et al., 2012), we test the MFH under
empirical datasets. We run tests for 10 international markets and
hence provide a general examination of the plausibility of the MFH.
One goal of our empirical study is to use the MFH as a benchmark and
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2 Popularity is equivalent to dominance, which means that a strategy type occupies
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examine howwell it describes the empirical results which we observe
from variousmarkets. In particular, we are interested in knowing how
this benchmark performs when we tune the key parameter, i.e., the
number of types in the market. More details regarding tuning the
number of trading strategies can be found in Section 7.

Therefore, the objectives of this paper can be summarized in the
following way: (i) formalizing the MFH, (ii) suggesting a new agent-
based financial model which does not assume pre-fixed types of
trading strategies, (iii) suggesting a testing methodology for the MFH,
and (iv) testing the hypothesis under empirical datasets.

The remainder of this paper is organized as follows. Section 2
formalizes the MFH by presenting its main constituents. Section 3 then
presents a brief overview of the different types of agent-based financial
models that exist in the literature, and also discusses their limitations. In
order to address these limitations, we have created a new agent-based
financial model, which is presented in Section 4. In addition, Section 4
presents the two techniques that our agent-based model uses, namely,
Genetic Programming (GP) (Koza, 1992; Poli, Langdon, & McPhee,
2008) and Self-OrganizingMaps (SOM) (Kohonen, 1982). Furthermore,
Section 5 presents the experimental designs. Section 6 addresses the
methodology employed to test the MFH and explains the technical
approaches needed to be taken to facilitate the testing of the MFH.
Section 7 presents the test results. It first starts by presenting the results
over a single run for a single dataset. Then it continues by presenting the
summary results over 10 runs for this dataset and it finally presents
summary results for all datasets. Section 8 concludes this paper and
briefly discusses possible directions for further research.

2. The Market Fraction Hypothesis

Within a market there exist different types of trading strategies.
The Market Fraction Hypothesis (MFH) says that the fraction among
these types of strategies keeps changing (swinging) over time. The
following two statements are the basic constituents of the MFH, and
are based on a summary of the empirical development of the agent-
based financial models, presented in Chen et al. (2012).

1. In the short run, the fraction of different clusters of strategies keeps
swinging over time, which implies a short dominance duration for
any cluster. (Statement 1)

2. In the long run, however, different clusters are equally attractive
and thus their market fractions are equal. (Statement 2)

The first statement means that it is not possible for a single
strategy to dominate the market by attracting an overwhelming
fraction of market participants for many consecutive periods. In other
words, according to the MFH there is no such thing as a ‘winner type’.
Thus, an ex ante characterization of winners simply does not exist. The
term ‘dominance’ will become technical for testing the MFH, and we
shall make it precise in Section 7.

The second statement means that if for instance the market has
two trading strategies (like the traditional fundamentalists–chartists
model), their fraction should keep on swinging. Let us revisit the
example we gave at the beginning of this paper. If at time t the
fundamental strategy occupies 90% of the market participants and the
chartist strategy occupies 10%, later on in another time period, these
proportions could switch to 10% and 90%, respectively. So eventually
in the long run both types of traders will have enjoyed about the same
market share, i.e., about one half.1

As we can see, the implications of the MFH are very important.
First of all, if the MFH holds, this means that all types of trading
1 This idea is first made rigorous by Kirman (1993), who attempted to solve a
puzzling entomological problem, i.e., ants swinging among themselves within two
identical sources of food.
strategies that exist in a financial market will, at some point, become
popular.2 In other words, any type of trading strategy has an equal
chance of attracting a significant amount of traders. Nevertheless, this
seems unrealistic, because it means that even a bad strategy can
become popular. It is thus interesting to investigate if this can happen
under real data. In addition, another implication of the MFH is that no
strategy can remain popular over a long period of time, as it will soon
be succeeded by another popular strategy. It is therefore also
interesting to examine if this is true, because it would give us a
good picture of the microstructure dynamics of financial markets.

Hence, what we shall do in this paper is test the above MFH
properties against our empirical dataset. More details about this will
follow in the following sections. But before we talk about the tests, we
first need to give a brief overviewof the different designs of agent-based
financial models, and explain how the limitations that exist in these
models have led us to create a new agent-based model, which will be
presented later, in Section 4. Section 3 thus presents this overview.
3. Agent-based financial models

Agent-basedfinancialmodels aremodels offinancialmarkets,where
artificial agents can trade with each other. According to Chen et al.
(2012), these models can be divided into two basic designs: the N-type
design, and the autonomous agent design. The rest of this section
presents these two designs.
3.1. Categories of agent-based financial models

In the N-type design, agents have beliefs regarding the price of a
stock in the next time period. For instance, in the two-type design, there
are two types of agent beliefs. Consequently, there are two types of fixed
and pre-specified trading strategies. Each agent can only choose between
these two types. These two types are usually the fundamentalists and the
technical traders.3 Many extensions of the N-type design exist. For
example, a typical way to do this is by adding a memory factor to these
rules. Other extensions can be to add an adaptive behavior, where the
agents can learn from their previous experiences. Such examples can be
found in (Brock&Hommes, 1998),where Brock andHommes use 2-, 3-,
and 4-typemodels. Other adaptive behavior examples include Kirman's
ANT Model (Kirman, 1991, 1993) and Lux's Interactive Agent
Hypothesis Model (Lux, 1995, 1997, 1998).

The second design of agent-based financial models is the autono-
mous agent design. In this type of model, we can have artificial agents
who are autonomous and thus have the ability to discover new
strategies, which have never been used before. An example of this is the
well-known Santa Fe Institute (SFI) model (Arthur, Holland, LeBaron,
Palmer, & Tayler, 1997; Palmer, Arthur, Holland, LeBaron, & Tayler,
1994),where aGenetic Algorithm (GA) (Holland, 1975)wasused. Thus,
a fixed number of strategies does not exist; on the contrary, each
artificial agent can have a different trading strategy which is
“customized” by a GA. SFI is of course not the only application of GA
in artificial stock markets. Another example is AGEDASI TOF4 (Izumi &
Okatsu, 1996; Izumi & Ueda, 1999). If the reader is interested in these
topics, a very good literature review can be found in (Chen, Huang, &
Wang, 2009).5
many market participants (strategies).
3 Other equivalent names for technical traders are chartists, trend-followers and

noisy traders.
4 It stands for A GEnetic-algorithmic Double Auction SImulation in the TOkyo

Foreign exchange market.
5 It should also be said that apart from GA, other population-based learning models

have been used, such as GP.
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3.2. Limitations of the agent-based financial models

In the previous section, we described the two main agent-based
financial designs: the N-type design and the autonomous agent design.
The former design consists of N pre-specified strategy types, and the
agents have to choose among theseN types. An advantage of this design
is that it allows us to observe the changes in the market fraction
dynamics of the above strategy types. However, as we saw, a
disadvantage of this type of model is that the agents are restricted in
choosing from the givenN strategy types. In addition, another limitation
of this type of model is the lack of heterogeneity. Agents that belong in
the same trading strategy type must follow exactly the same behavioral
rule. Nevertheless, in the real world, the behavior of each trader is
expected to be heterogeneous; even if some traders are following a
certain trading strategy type, it does not mean that they behave in
exactly the same way.

As we saw, the issue of heterogeneity is addressed by the
autonomous agent models. This type of model allows the creation of
autonomous and heterogeneous agents. Nevertheless, even under the
autonomous agent models, agents have to choose among a pre-
specified number N of trading strategy types. To the best of our
knowledge, there is no model that uses autonomous agents that are
not restricted to predefined, fixed strategy types.

This thusmotivated us to create such amodel. In order to do this, we
used Genetic Programming as a rule inference engine, and Self-
Organizing Maps as a clustering tool. The next section presents our
model in detail.
4. Model

In this section, we present our agent-based financial model. This
modelfirst allows the creationof novel, autonomous andheterogeneous
agents by the use of GP. The reason for using GP is because themarket is
regarded as an evolutionary process; this is inspired by Andrew Lo's
Adaptive Market Hypothesis (AMH) (Lo, 2004, 2005), where Lo argued
that the principles of evolution (i.e., competition, adaptation, and
natural selection) can be applied to financial interactions. Thus, agents
can be considered to be organisms that learn and try to survive.
Fig. 1. Process followed in our agent-based financial model. First, novel agents are created t
trading strategies by the use of Self-Organizing Maps.
After creating and evolving novel agents, we cluster them into
types of trading strategies via SOM. These types are thus not pre-
specified, but depend on the strategies of the agents.

The advantages of this approach are thus twofold: first of all,
agents can create autonomous and heterogeneous trading strategies.
Thus, even if two trading strategies belong to the same type of trading
strategy (e.g., fundamental), it does not mean that these two
strategies have to follow exactly the same trading rule, as it happens
in the traditional agent-based model literature. In addition, when
these trading strategies are categorized into types of trading
strategies, they are not clustered into pre-specified, fixed types; on
the contrary, the types depend on the existing trading strategies. This
thus makes our model more realistic.

The process we presented above is depicted in Fig. 1. Next, we
present the two techniques of our model, GP and SOM. We first start
by giving a brief introduction to each technique, then explain how
these techniques were employed in our model, and finally provide
some information on the algorithm of each technique.

4.1. Genetic Programming (GP)

Genetic Programming (GP) (Koza, 1992; Poli et al., 2008) is an
evolutionary technique inspired by natural evolution, where com-
puter programs act as the individuals of a population. The GP process
has several steps. To begin with, a random population is created, by
using terminals and functions appropriate to the problem domain,
where the former are variables and constants of the programs, and the
latter are responsible for processing the values of the system (either
terminals or other functions' output).

In the next step, each individual is measured in terms of a pre-
specified fitness function. The purpose of assigning a fitness to each
individual is tomeasure howwell it solves the problem. In the following
step, individuals are chosen to produce new offspring programs. A
typical way of doing this is by using the fitness-proportionate selection,
where an individual's probability of being selected is equal to its
normalized fitness value (Koza, 1992). The individuals chosen from the
population are manipulated by genetic operators such as crossover and
mutation, in order to produce offspring. The new offspring constitute
the new population. Finally, each individual in the new population is
hrough a Genetic Programming process. Then, these agents are clustered into types of
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Fig. 2. Sample GDT generated by the GP.
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again assigned a fitness and the whole process is repeated again, until a
termination criterion is met (usually a number of generations). At the
end of this procedure (last generation), the program with the highest
fitness is regarded as the result of that run.

Next, we explain how GP was employed in our model.
8 Duffy and Engle-Warnick (2002) provide the first illustration of using genetic
programming to infer the behavioral rules of human agents in the context of
ultimatum game experiments.

9 ‘Market timing’ refers to the strategy of making buy or sell decisions regarding
stocks, by attempting to predict future price movements.
10 We use these indicators because they have been proved to be quite useful in
4.1.1. GP as a rule-inference engine
First of all, we assume that traders' behavior, including price

expectations and trading strategies, is either not observable or not
available. Instead, their behavioral rules have to be estimated by the
observablemarket price. Usingmacro data to estimatemicro behavior
is not new, as many empirical agent-based models have already
performed such estimations (Chen et al., 2012). However, such
estimations are based on very strict assumptions, as we saw earlier
(e.g., having pre-specified trading strategy types is considered to be a
strict and unrealistic assumption). Since we no longer keep these
assumptions, an alternative must be developed, and in this paper we
recommend Genetic Programming (GP).

As we have already mentioned, the use of GP is motivated by
considering the market as an evolutionary and selective process.6 In
this process, traders with different behavioral rules participate in the
markets. Those behavioral rules which help traders gain lucrative
profits will attract more traders to imitate, and rules which result in
losses will attract fewer traders. An advantage of GP is that it does not
rest upon any pre-specified class of behavioral rules, like many other
models in the agent-based finance literature (for instance, Brock &
Hommes, 1998; Kirman, 1991, 1993). Instead, in GP, a population of
behavioral rules is randomly initiated, and the survival-of-the-fittest
principle drives the entire population to become fitter and fitter in
relation to the environment. In other words, given the non-trivial
financial incentive from trading, traders are aggressively searching for
the most profitable trading rules. Therefore, the rules that are
outperformed will be replaced, and only those very competitive
rules will be sustained in this highly competitive search process.7

Hence, even though we are not informed of the behavioral rules
followed by traders at any specific time horizon, GP can help us infer
what rules the traders follow, by simulating the evolution of the
microstructure of the market. Traders can then be clustered based on
6 See Lo (2004, 2005) for his eloquent presentation of the Adaptive Market
Hypothesis.

7 This does not mean that all types of traders surviving must be smart and
sophisticated. They can be dumb, naive, randomly behaved or zero-intelligent.
Obviously, the notion of rationality or bounded rationality applying here is ecological
(Gigerenzer & Todd, 1999; Simon, 1956).
realistic, and possibly complex behavioral rules.8 The GP algorithm
used to infer the rules is presented in the next section.
4.1.2. GP algorithm
OurGP is inspired by afinancial forecasting tool, EDDIE (Kampouridis

& Tsang, 2010), which applies genetic programming to evolve a
population of market-timing9 strategies, which guide investors on
when to buy or hold. These market timing strategies are formulated as
decision trees, which, when combinedwith the use of GP, are referred to
as Genetic Decision Trees (GDTs). Our GP uses indicators commonly used
in technical analysis: 12 and 50 days Moving Average (MA), 12 and
50 days Trader Break Out (TBR), 12 and 50 days Filter (FLR), 12 and
50 days Volatility (Vol), 12 and 50 days Momentum (Mom), and 12
and 50 days Momentum Moving Average (MomMA).10 Each indicator
has two different periods, a short- and a long-term one (12 and50 days).
Fig. 2 presents a sampleGDTgenerated by theGP. Aswe canobserve, this
tree suggests that the trader should buy if the 12 daysMovingAverage is
less than 6.4. If, however, this is not the case, the tree examines the
50 daysMomentum; if it is greater than 5.57, the then GDT recommends
not-to-buy. If,finally, the50 daysMomentumis less thanor equal to5.57,
then the GDT recommends to buy.

Therefore, what the GP basically does is to generate similar trees to
the one in Fig. 2. All these trees start with an If–Then–Else statement,
and then the first branch will take a “comparison statement”, which
checks whether a technical indicator (12 days MA in the Fig. 2
example) is greater than/less than/equal to a threshold. This threshold
is a real number, which has been randomly created by the GP and is
optimized through a hill-climbing process.11 Then, depending on
whether the comparison statement (e.g., 12 days MAb6.4) is true or
false, the second or third branch of the tree is visited, respectively.
Both of these branches can be either a suggestion (buy or not-buy,
previous works like Garcia Almanza (2008); Kampouridis and Tsang (2010);
Martinez-Jaramillo and Tsang (2009). However, the purpose of this work is not to
provide a list of the ultimate technical indicators. A brief presentation of these
indicators, along with their formulas, is provided in Appendix A.1.
11 Hill climbing is an optimization technique. It is an iterative algorithm that starts
with an arbitrary solution to a problem. After evaluating this solution (in our case the
threshold number), it then attempts to find a better solution by incrementally
changing the solution (e.g., increasing the threshold by a certain value). If the change
produces a better solution, an incremental change is made to the new solution,
repeating until no further improvements can be found.

image of Fig.�2


Table 1
Confusion matrix.

Actual positive Actual negative

Positive suggestion True Positive (TP) False Positive (FP)
Negative suggestion False Negative (FN) True Negative (TN)

13 Other similarity criteria could apply, too, such as risk averseness. However, in this
paper we wanted to focus on the behavioral aspects of the rules.
14 One might question the above similarity criterion, since very different rules might
be able to produce the same signals. This does not pose a problem in this work, since
we are interested in the behavior of the market (and thus the rules' behavior). We are
not interested in the semantics aspect of the rules.
15 http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/self_or4.html.
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denoted by 1 and 0, respectively), as is the case in the second branch,
or even another tree, as is the case in the third branch.

After creating a GDT, we need to evaluate its performance. In order
to do this, we first evaluate whether the GDT's suggestions were
successful, e.g., where in reality the prices went up and thus the GDT
correctly identified this as a buy opportunity. Depending on the
classification of the GDT's suggestions, there are four cases: True
Positive (TP), for a successfully identified buy opportunity, False
Positive (FP), for a not-buy opportunity falsely identified as buy, True
Negative (TN), for a successfully identified not-buy opportunity, and
False Negative (FN), for a buy opportunity falsely identified as not-
buy. These four together give the familiar confusion matrix (Provost &
Kohavi, 1998), which is also presented in Table 1.

We then use the following 3 metrics, presented below:

Rate of Correctness

RC =
TP + TN

TP + TN + FP + FN
ð1Þ

Rate of Missing Chances

RMC =
FN

FN + TP
ð2Þ

Rate of Failure

RF =
FP

FP + TP
: ð3Þ

The above metrics combined give the following fitness function:

f f = w1⁎RC−w2⁎RMC−w3⁎RF ð4Þ

wherew1,w2 andw3 are the weights for RC, RMC and RF, respectively,
and are given in order to reflect the preferences of investors. For
instance, a conservative investor would want to avoid failure; thus a
higher weight for RF should be used. For our experiments, we chose to
include GDTs that mainly focus on correctness and reduced failure.

Thus these weights have been set to 1,
1
6
and

1
2
, respectively.

Given a set of historical data and the fitness function, GP is then
applied to evolve the market-timing strategies in a standard way.
After evolving a number of generations, what survives at the last
generation is, presumably, a population of financial agents whose
market-timing strategies are financially rather successful. We then
use SOM to cluster these strategies into types of trading strategies.

4.2. Self Organizing Maps (SOM)

Self-Organizing Maps (SOM) (Kohonen, 1982) represent a type of
artificial neural network which takes in input data with high
dimensionality,12 and returns a low-dimensional representation of
these data, along with their topological representation. This repre-
sentation is called a map. A self-organizing map consists of
components called neurons. Associated with each neuron is a weight
vector, which has the same dimensions as the input data. During the
SOM procedure, the weight vector of each neuron is dynamically
12 In this work the input data consist of the market-timing vectors of the GDTs.
adjusted via a competitive learning process. Eventually, each weight
vector becomes the center (a.k.a. centroid) of a cluster of input
vectors. Thus, at the end of the SOM procedure, all input vectors have
been assigned to different clusters of a map.

The next section presents how SOM was applied to our model.

4.2.1. SOM as a clustering machine
Once a population of rules is inferred from GP, it is desirable to

cluster them based on a chosen similarity criterion. As we have
already discussed at the beginning of Section 4, this allows us to
cluster heterogeneous agents into different types of trading strategies,
which are neither fixed, nor pre-specified.

The similarity criterion which we choose is based on the observed
trading behavior.13 Based on this criterion, two rules are similar if they
are observationally equivalent or similar, or, alternatively put, they are
similar if they generate the same or similar market timing behavior.14

Given the criterion above, the behavior of each trading rule can be
represented by its series of market timing decisions over the entire
trading horizon, for example, 6 months. Therefore, when we denote
the decision “buy” by “1” and “not-buy” by “0”, then the behavior of
each rule (GDT) is a binary vector. The dimensionality of these vectors
is then determined by the length of the trading horizon. For example,
if the trading horizon is 125 days long, then the dimension of the
market timing vector is 125. Thus, each GDT can be represented by a
vector which contains a series of 1 s and 0 s, denoting the tree's
recommendations to buy or not-buy on each day. Once each trading
rule is concretized into its market timing vector, we can then easily
cluster these rules by applying Kohonen's Self-Organizing Maps to the
associated clusters.

The main advantage of SOMs over other clustering techniques
such as K-means (MacQueen, 1967) is that the former can present the
result in a visualizable manner, so that we can not only identify these
types of traders, but also locate their 2-dimensional position on amap,
i.e., a distribution of traders over a map. This provides us with a rather
convenient grasp of the dynamics of the microstructure directly as if
we were watching the population density on a map over time.

4.2.2. SOM algorithm
For our experiments, we use MathWorks' Neural Network

toolbox,15 which is built in the MATLAB environment. This algorithm
follows the standard SOM procedure presented earlier at the
beginning of Section 4.2.

Fig. 3 presents the results after running 3×3 SOM for a population
of 500 individuals for the daily TAIEX16 index for the first and second
half of 2007, respectively. Here, 500 artificial traders are grouped into
nine clusters (types of trading strategies). In a sense, this could be
perceived as a snapshot of a nine-type agent-based financial market
dynamics. Traders of the same type indicate that their market timing
behavior is very similar. The market fraction or the size of each cluster
can be seen from the number of traders belonging to that cluster. As
we can see, there are usually a few strategies that are occupying the
majority of the population, whereas the rest of the strategies have
significantly fewer members. For instance, we can see that in the left
map, 193 trading strategies have been clustered into the bottom-right
cluster, 152 strategies have been clustered into the top-left cluster, 92
into the bottom-left cluster, and so on. Similar observations can be
made for the second map, on the right of Fig. 3. Having different maps
16 Taiwan Stock Exchange Capitalization Weighted Stock Index. Available from
http://finance.yahoo.com.

http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/self_or4.html
http://finance.yahoo.com


Fig. 4. Daily Closing Price for the TAIEX:1991–2007.

Fig. 3. 3×3 Self-Organizing Feature Maps. Two self-organized maps constructed from the rules inferred using the daily data of the TAIEXmarket, the first half (the left panel) and the
second half (the right panel) of 2007, separately.
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for different periods in time allows us to observe how the market
fraction dynamics change from period to period, e.g., whether a cluster
which occupies a high number of trading strategies will continue doing
this in the future periods, and for how long.

This concludes the presentation of our agent-based financial
model. Next, we present the experimental designs.

5. Experimental designs

The experiments were conducted for a period of 17 years (1991–
2007) and the data were taken from the daily closing prices of 10
international market indices. These 10 indices are the CAC 40 (France),
DJIA (USA), FTSE 100 (UK), HSI (HongKong), NASDAQ (USA), NIKEI 225
(Japan), NYSE (USA), S&P 500 (USA), STI (Singapore) and the TAIEX
(Taiwan). For eachof these indices,we runeach experiment10 times. To
make it easier for the reader, we will first present the testing
methodology and results for a single run of the TAIEX index. Fig. 4
presents the daily closing price of the TAIEX. We then proceed by
presenting summary results over the 10 runs for all indices.

Each year was split into 2 halves (January–June, July–December),
so in total, out of the 17 years, we have 34 periods.17 The GP was
therefore implemented 34 times. Table 2 presents the GP parameters
for our experiments.

After generating and evolving GDTs for each one of the 34 periods,
we used 3×3 SOM18; therefore, we obtained a total of 34 SOMs (one
per period), with 9 clusters each. In other words, in every period the
17 At this point the length of the period was chosen arbitrarily as 6 months. We are
aware that dividing the data in fixed semesters might “hide” some bias in the results,
such as a seasonality effect. We leave the investigation of this to future research. For
instance, one potential approach of this investigation could be the use of sliding-
windows.
18 The number of clusters (types of strategies) at this point was set arbitrarily. Later
in this work we examine the sensitivity of the results if we tune this number.
500 GDTs were placed in one of the nine clusters (i.e., the categories of
the trading strategies) of that SOM. Thus, we ended up with 34
different SOMs, one per semester, which represent the market in
different time periods over the 17-year horizon. From this point on,
whenever we use the term ‘trading strategy type’we will be referring
to one of the nine clusters and each GDT will be a member of one of
these nine clusters.

Finally, it is important to say that the GP was only used for creating
and evolving the trading strategies. No validation or testing took
place, as is the case in the traditional GP approach. The reason for this
is because wewere not using the GP for forecasting purposes; instead,
what wewere interested in was to use the GP as a rule inference engine
so that it could help us to see what the strongest species were during a
certain period. To be more specific, the GP was used for each of the 34
periods and each time created and evolved trading strategies. After
the evolution of the strategies under a specific period, these strategies
(GDTs) were not tested against another set. This approach is
consistent with Lo's AMH, as it states that the heuristics of an old
environment are not necessarily suited to the new ones.19 Further-
more, our no-testing approach is also consistent with the well-tested
overreaction hypothesis (De Bondt & Thaler, 1985, 1987), which
essentially states that top-ranked portfolios are outperformed by
bottom-ranked portfolios during the next period.

6. Testing methodology

After having presented the necessary tools and the experimental
designs, we can now proceed to present the testing methodology. Our
19 Lo refers to this possible situation as “maladaptive”. He also uses the example of
the flopping of a fish for a better understanding of behaviors under different
environments: on dry land the flopping might seem meaningless, but under water, it is
the flopping that protects the fish from its enemies.
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Table 2
GP Parameters. The GP parameters for our experiments are the ones
used by Koza (1992). Only the tournament size has been changed
(lowered), and the reason for that was because we were observing
premature convergence. Other than that, the results seem to be
insensitive to these parameters.

GP Parameters

Max initial depth 6
Max depth 17
Generations 50
Population size 500
Tournament size 2
Reproduction probability 0.1
Crossover probability 0.9
Mutation probability 0.01

{w1, w2, w3} 1;
1
6
;
1
2

� �
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methodology consists of three parts: GP, SOM and the time-invariant
SOM.

Let us start with GP. As we have already seen, we have used GP in
order to generate and evolve trading strategies. However, there is a
problem with comparing trading strategies from different periods.
This happens because we cannot compare the fitness function of a
trading strategy (GDT) from one period with the fitness function of a
strategy (GDT) for another period, since they were presented with
different datasets (environments).

This also applies to the clusters' comparison among different SOM
maps. Maps are not directly comparable. In order to better understand
this, consider Fig. 3. The way SOM works is that it creates the clusters
after it is given a specific population of, in our cases, GDTs. When we
have different periods with different populations, the nine clusters
from different periods will generally be different, because they
represent different populations of investment behaviors generated
by different data environments. For example, if we name the bottom-
left cluster of each SOM (Fig. 3) as ‘Cluster 1’, then we are saying that
‘Cluster 1’ of the SOM derived using the data for 2007a will in general
not be the same as ‘Cluster 1’ of the SOM derived from the data using
2007b. It is quite likely that they will have different centroids
(weighting vectors), representing different investment behaviors.
This, therefore, makes the strategy types incomparable crossing
different periods.

In order to tackle this problem, we introduce a time-invariant SOM
based on the idea of emigrating and reclustering, which is the third and
last part of our testing methodology. The following section thus
presents these “translations” needed in order to make SOMs from
different periods comparable so as to facilitate our tests for the MFH.
6.1. Translations

6.1.1. Emigrating
As we just mentioned, after obtaining the trading strategies from

GP, we cannot directly compare them among different periods,
because the dataset for each period is different.What, therefore, needs
to be done is to apply the same dataset as a base to all periods. In other
words, all GDTs that are derived from each period need to be applied
to the dataset of the base period. For convenience, we call these
emigrant GDTs. Therefore, after applying these emigrant GDTs to the
base period, new signals are created. In this way, the market timing
vectors of all GDTs originally derived from different periods are re-
built based on the same grounds and hence become comparable. In
this paper, we choose the second half of 2007 (2007b) as the base
period.20
20 The base period was chosen arbitrarily; however, we found that the results are
insensitive to the choice of the base period.
6.1.2. Reclustering
Reclustering or time-invariant SOM is the second part of the

translation, which allows the SOM clusters to be compared through-
out different periods. We again use 2007b as the common base period.
This time, we keep the centroids of the clusters originally derived
from the common base period fixed and assign the market timing
vectors from other periods (derived through emigrated GDTs) to one
of the fixed centroids. This reclustering is conducted in the following
way: the market timing vector of each emigrated GDT is compared
with each centroid of the nine clusters and it will then be assigned to
the one with the minimum Euclidean distance. We do this period by
period from 1991a to 2007a. 33 SOMs are constructed in this way,21

and now these SOMs can be directly compared with each other, given
that they all share the same centroids. Fig. 5 presents 4 out of these 34
SOMs, where we can examine how the fraction of the clusters changes
over time. These SOMs are now directly comparable over time. For
instance, we can observe that although the bottom-right cluster of the
top-left map (2006a) occupied a high number of trading strategies
(390), this did not continue to take place in the future periods. Only 1,
6 and 50 trading strategies were clustered in this cluster in periods
2006b, 2007a, and 2007b, respectively. This figure thus gives a clear
picture of what we mean by market fraction dynamics. As we can
observe, the distribution over the clusters is uneven over time. In each
period of time, some clusters obviously dominate others, but that
dominance changes over time. This can be seen from the constant
renewing of the major blocks.

We will thus use all 34 SOMs that have been generated for the
years 1991–2007 to test Statements 1 and 2, and thus examine how
themarket fraction dynamics changes in the short and in the long run.

7. Results

This section presents the results of our tests. We ran two tests, one
per each Statement of the MFH (see Section 2). Therefore, Test 1
investigates the plausibility of Statement 1, and Test 2 investigates the
plausibility of Statement 2. In the following sections, we present the
results of these tests first for a single run of a single dataset, TAIEX,
then for 10 runs of TAIEX, and finally, for 10 runs of all 10 indices.

7.1. Results of a single run of a single dataset

7.1.1. Test 1: the short-run test
The first test regards the short-run behavior of market fractions. In

the short run, the fraction of different clusters of strategies is expected
to keep swinging over time, which implies a short dominance duration
for any cluster. To be operational, a type of strategy is said to be
dominant if its fraction is greater that the threshold,

TH =
1 + p
N + p

; ð5Þ

where TH denotes a threshold, N is the number of clusters and p is a
free parameter to manipulate the degree of dominance. For example,
as N=9, the threshold of being a dominant type changes with p as
follows. It is 11.11% when p=0, 20% when p=1, and 27.27% when
p=2. Clearly, the higher the value of p, the higher the threshold. If all
clusters were having the same number of members, then each cluster
would be occupying 11% (1/9) of the population. Hence, the case
where p=0 corresponds to a threshold that just breaks the tie.
However, to be dominant, we may expect a value of p to be higher
than just breaking the tie. Hence, in this paper, p is set to be 2.

Furthermore, we need to be precise as to what we mean by short
duration for a dominant type. Here, any specific number may be
arbitrary; after all, short is only a matter of degree. We, therefore, first
21 2007b does not need reclustering, since we use it as the base period.



Fig. 5. The four SOMs above are constructed using the daily data of the TAIEX from 2006 to 2007. From the top-left panel to the bottom-right panel, they correspond to the first half
and second half of the year 2006 (2006a, b) and the first half and second half of the year 2007 (2007a, b). Except for the last one, 2007b, the other three are reconstructed by using
2007b as the base period.
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present the statistics of duration observed for each type. Fig. 6
summarizes the dominance results over the 34 periods. It presents the
minimum, average and maximum of the duration times of each type.
What we can observe from Fig. 6 is that the longest duration observed
is nine periods (four and a half years) for type 6. For other types, the
longest duration is barely over two periods. Hence, if we look at the
average duration, with the exception of type 6, no type remains
dominant for more than 2 consecutive periods, i.e., a year. Neverthe-
less, because of the long dominance duration of Cluster 6, we can
argue that evidence for the support of Test 1 is quite weak.
7.1.2. Test 2: the long-run test
The second statement concerns the long-run behavior of market

fractions. It says that, in the long run, different clusters are equally
attractive and thus their market fractions are equal. As we said earlier,
Fig. 6. Min, average and max number of consecutive times that a strategy remains
dominant over the 34 periods for p=2 (Daily Closing Price for the TAIEX:1991–2007).
weexpect to see that the fraction of strategies keeps changing. In the left
SOMof Fig. 3, for instance,we can see that three strategies are occupying
a quite large fraction of the population (around 39%–193 members out
of a total of 500, 30%–152 out of 500, and 18%–92 out of 500). The rest of
the strategies have lower percentages. According to the MFH, these
percentages should keep changing from period to period so that, in the
long run, these percentages should be close to each other. In other
words, if we have N types of traders, their long-term frequency of

appearance should be close to
1
N
. Let Cardit be the number (cardinality)

of traders in Cluster i in time period t.

∑
N

i=1
Cardit = M;∀t ð6Þ

In our current setting, M, the total number of traders is 500. The
long-term histogram can be derived by simply summing up the
number of traders over all periods and dividing it by a total ofM×T (#
of periods),

wi =
∑T

t = 1Cardit
M × T

ð7Þ

Fig. 7 gives the long-term histogram of these clusters, {wi}.
Obviously, they are not equal and thus we present them in descending
order from the left to the right. Cluster 6 has the largest market
fraction of up to almost 60%, whereas Cluster 4 has the smallest
market fraction, which is not even up to 1%.

Of course, it is obvious that this distribution is very different from
the uniform one. In order to provide a measure of how far it is away
from the uniform distribution, we use the familiar entropy as a metric.
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Fig. 7. Market Fractions of the nine clusters: TAIEX, 1991–2007.

Table 3
Summary results over 10 runs, for all datasets, for a 3×3 SOM.

Summary statistics

Test 1 Test 2

Average Max Entropy ratio

CAC 40 1.81 5.5 0.68
DJIA 1.93 5.78 0.66
FTSE 100 1.77 6 0.64
HSI 1.71 4.6 0.7
NASDAQ 1.59 4.11 0.69
NIKEI 225 1.51 3.4 0.79
NYSE 1.93 6.56 0.6
S&P 500 2.16 6.89 0.64
STI 1.67 3.7 0.75
TAIEX 2.02 8.25 0.55

The first two numeric columns are related to Test 1 and present the averages over the
10 runs for the average and maximum dominance durations of the 9 clusters,
respectively. The last column presents the ratio of the average realized entropy (over
the 10 runs) over the base entropy under the null of the uniform distribution. This ratio
is maximized when it is equal to 1.
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Let us denote the empirical distribution presented in Fig. 7 as fX, and
the uniform distribution as fY. By definition, fY = 1

N, where N is the
number of clusters, which in this case is 9. In order to measure how
close fX is to the uniform distribution fY, we calculate the entropy of
both distributions. For the discrete random variable, entropy is
defined as

H = − ∑
N

i=1
pi ln pi; ð8Þ

where pi is the fraction of each cluster. It is well known that for the
uniform distribution H(Y)= lnN. When N=9, it is ln 9≈2.2. The
closer H(X) is to 2.2, the closer X is to the uniform distribution. After
calculating X's entropy, we find it equal to 1.3, which is only 59% of the
entropy of the uniform distribution. This thus allows us to argue that
fX is far away from the uniform distribution, and hence Test 2 is not
supported by the TAIEX.

Now that we have seen the test results of a single run for one
dataset, it is interesting to see if these results can be generalized for
more runs and more datasets. The next part of this section presents
and discusses these summary results.

7.2. Summary results for all datasets under 9 clusters (3×3 SOM)

As we saw in the previous section, the experimental results of the
two tests seem to deviate fromwhat theMFH predicts to some extent.
Test 1 has one cluster that dominates the market for 9 consecutive
periods, which appears to be too long. In addition, Test 2 shows an
even larger deviation since the long-term market fraction is very
different from the uniform distribution. Altogether, the evidence for
the MFH is weak. However, so far we have only presented a single run
for a single dataset. Table 3 thus presents the results over 10 runs for
all the datasets tested. The first two numeric columns are related to
Test 1. They present the averages over the 10 runs for the average and
maximum dominance duration of the 9 clusters. Furthermore, the last
column is related to Test 2 and shows the ratio of the average realized
entropy (over the 10 runs) over the base entropy (equal to 2.2).

The first observation we can draw from Table 3 is that homo-
geneity exists across the majority of the results. Let us first start with
Test 1. We can see that on average there is no cluster that remains
dominant for 2 consecutive periods. This is in line with Test 1.
However, the second column tells us that even though on average no
cluster dominates for more than 1 period, there is always an outlier
that can remain dominant for longer, e.g., 8 consecutive periods for
the TAIEX. Regarding Test 2, the entropy ratios for all datasets are
somewhat distant from their maximum values. All entropy ratios are
in the range 0.55–0.75, which is basically a 25–45% difference from
the entropy of the uniform distribution. This essentially means that
the distributions are on average different from the uniform distribu-
tion and therefore the clusters, in the long run, are not equally
attractive, as Test 2 requires. Overall, the MFH seems to be relatively
weak for all 10 indices tested under the 3×3 SOM.

7.3. Changing the number of clusters

So far, all of our tests have been performed for 3×3 SOMs. It is,
however, interesting to investigate how sensitive the results are if we
tune the number of clusters. Therefore, we repeat the whole
procedure mentioned above for different SOM dimensions: 2×1,
3×1, 2×2, 5×1, 3×2, 7×1 and 4×2, i.e., from 2 clusters to 8 clusters.

7.3.1. Test 1
Fig. 8 presents the averages, over 10 runs, for the average (left

panel) and maximum (right panel) dominance duration for numbers
of clusters 2–9. The x-axis presents the number of types of trading
strategies (clusters), and the y-axis the dominance duration. What we
observe in these graphs, especially in Fig. 8(a), is that the dominance
duration decreases as the number of clusters increases. Nevertheless,
we can again see from Fig. 8(b) that there are always clusters with
strong dominance, even under the 3×3 SOM. Test 1 thus is not
supported under any number of clusters.
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Fig. 8. Summary results for Test 1-Averages and Maximums, Financial Data.
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To see how significant or how interesting this pattern is, we run a
Monte Carlo simulation as follows. Starting with two clusters, we
randomly assign a winner (dominant cluster) to either Cluster 1 or
Cluster 2. We then conduct this binomial experiment 34 times.
Considering this to be one run, we do it for ten runs. Hence, we have
10 artificial series of dominant clusters, with each series lasting for 34
runs. We then conduct the same analysis as above by figuring out the
average duration and maximum duration of each series, and the
average of the whole. We then apply this Monte Carlo experiment
with an additional number of clusters, from three to nine incremen-
tally. A comparable result is then drawn in Fig. 9.

By comparing Fig. 8 with Fig. 9, we can see that the behavior of the
real markets is very different from that of the multinomial experiment.
For the latter, the average of the maximum duration decays from above
6 to below3, but for the former this decaying tendency is shown in none
of the ten indices. Instead, they all fluctuate slightly around a horizontal
line, and, depending on the market, the line is situated at an interval
from four to eight. For the average duration,while both figures feature a
decaying tendency, the one with financial data decays much more
slowly than the one based on the artificial data. Therefore, our result
cannot be treated as an incident froma randomdrawof themultinomial
experiments, and in this sense this pattern is not spurious.

One last thing that we would like to point out is the low average
dominance duration that can be observed in Fig. 8(a) for the high
number of clusters. One might wonder what the reason for this
‘phenomenon’ is, especially since the average dominance duration
started at quite high levels (for the low number of clusters). We believe
that this can be better explained if we also take in to account Fig. 8(b).
What seems to happen for all datasets is that there are always a few
clusters that have strong (long) dominance over the 34 periods,
whereas the rest have very lowdominance. The low average dominance
durationwe see in Fig. 8(a) for the highnumber of clusters can therefore
be explained by the extremely low dominance duration of the majority
of clusters.22

7.3.2. Test 2
As we said earlier, we are interested in obtaining the distance of the

entropy of the empirical distribution fX (fractions of clusters) from the
uniform distribution (benchmark).We have also said that the closer the
entropy of distribution fX is to the entropy of the uniform distribution,
the closer distribution fX is to the uniform one. After obtaining the
entropies over 10 runs for eachdataset,wefirst calculated theaverage of
22 For instance, if 8 out of the 9 clusters have a dominance duration of 2 periods, and
only 1 cluster has a dominance duration of 9 periods, then the average dominance

duration is driven down to
8⁎2ð Þ + 9

9
≈2:7 periods.
these runs. We then divided each one of these averages by the
benchmark entropy and thus obtained 10 different ratios (one per
dataset). Of course, this ratio is maximized when the two entropies are
equal, and therefore their ratio is equal to 1. Hence, the higher the ratio,
the closer to the uniform distribution the empirical distribution will be.
Fig. 10 presents these ratios for all datasets.

Whatwe observe from this figure is that the ratios tend to decrease
as the number of clusters increases, and hence the support for Test 2
gets weaker. Such a divergence of the two distributions indicates again
that the strong dominance of a few clusters continues to exist, even in
the long run. Therefore, after combining Tests 1 and 2, we can have a
quite clear picture. Clusters tend to dominate for long periods and this
dominance is usually interchanged among a few clusters.

To make this argument even clearer, we also present Fig. 11, which
shows the cumulative fractions for the TAIEX for different number of
clusters. A graph named ‘Number of Clusters: 2’ means that the
strategies are allocated to 2 clusters.When ‘Number of Clusters: 3’, the
strategies are allocated 3 clusters, and so on. The clusters have been
sorted by their size (fraction) in descending order. Therefore, Cluster 1
on the x-axis denotes the cluster with the highest fraction, Cluster 2
the cluster with the second highest fraction, etc. The y-axis presents
the cumulative fraction of the clusters.

An observationwe canmake from Fig. 11 is that the contribution of
each ranked cluster decreases when the number of clusters increases,
which causes the entire cumulative curve to shift down.23 For
instance, when the number of clusters is 2, the largest cluster has a
size of about 70%. However, while we move to a higher number of
clusters, we can see that this size gradually decreases and finally falls
below 60%, when the number of clusters is 9. The same happens for
the contribution of the rest of the clusters. Hence, each graph moves a
bit below, when the number of clusters increases. Nevertheless, what
is important is that even when the number of clusters is 9, the clusters
with the highest two or three ranks occupy a very large fraction
(approximately 90%) of market participants.

The above observation leads us to consider that maybe there is a
minimum number of clusters that covers a certain fraction of the
market. Table 4 gives the result of the minimum number of clusters
required to cover a targeted fraction of market participants. The three
targeted values given in the table are 90%, 95% and 99%. Since the
purpose was to see whether only a small number of clusters is
required, we started with a larger number of clusters, namely, nine,
and saw how large a reduction we could make. If the target is to cover
90% of the market participants, then most indices need four to five
types, and if the target rises even higher to 95%, then most indices
23 The graphs for the other indices can be found in Appendix A.2.
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Fig. 9. Summary results for Test 1-Averages and Test 1-Maximums under Monte Carlo simulation.

Fig. 10. Test 2: difference of the empirical distribution x (fractions of clusters) from the
uniform distribution.
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need five to six types. The percentage 95% is also the parameter used
in Aoki (2002).24 Hence, our finding regarding the minimum number
required is also larger than Aoki's suggested two or three. Two or
three types can be sufficient if we have a target somewhat lower than
90%.
Table 4
Minimum number of clusters whose cumulative fraction is above the required
threshold of 90%, 95% and 99%, respectively.

Minimum number of clusters

Threshold

90% 95% 99%

Fig. 11. Cumulative Fraction for TAIEX.
8. Conclusion

To summarize, this paper has presented the Market Fraction
Hypothesis (MFH), which states that the market fraction of the types
of trading strategies that exist in a financial market changes over time.
However, this hypothesis had never been formalized in the past. Our
first contribution was thus to formalize the hypothesis. This then
allowed us to suggest a testing methodology and test the statements
of the hypothesis under 10 financial markets. The latter was very
important, because until now the observations of the MFH had only
beenmade under artificial market frameworks. In addition, in order to
test the hypothesis we proposed a new agent-based financial model.
The novelty of this model was that it did not assume pre-fixed types of
trading strategies, as is typically the case in the agent-based financial
literature (Chen et al., 2012). Finally, another contribution of this
paper was the introduction of time-invariant SOM, a novel tool that
allowed the comparison of SOMs among different time periods.
24 Aoki (2002) is probably the only paper known to us that deals with a number of
types of agents in the multi-agents system. Using the Ewens–Pitman–Zabell induction
method, Aoki applied the result from the evolution of biological species and
population genetics to determine the minimum number of types of behavior required
to capture multi-agent economic systems. He showed that it would be enough to
characterize the market behavior by a few types, say, two to three. Others were rather
marginal.
The experimental results showed that the MFH seems to be weak
for the majority of the datasets we tested. More specifically, we found
that, even in the long run, the market tends to favor few types of agents,
hence the property of the long-term uniform distribution (Test 2) does
not hold. We also found that while the results above are qualitatively
insensitive to the number of types, a parameter set in the test, we only
need four to five (five to six) types, to account for the behavior of 90%
(95%) of market participants. Finally, while most types of agents
cannot be dominant consecutively for more than 2 years, few
exceptions can sustain up to 4 years. Therefore, the property of
short-term dominance duration (Test 1) also does not hold.

The above observations lead us to valuable conclusions about
market fraction dynamics. From our experimental results we can
argue that popular (i.e., dominant) types of trading strategies can
remain popular over long time periods. In addition, there can indeed
be a swinging among the fractions of the different types of trading
strategies; however, this swinging exists only among the few popular
CAC 40 4 5 7
DJIA 5 6 8
FTSE 100 4 5 8
HSI 5 6 8
NASDAQ 4 6 8
NIKEI 225 5 6 8
NYSE 7 8 9
S&P 500 7 8 9
STI 5 6 8
TAIEX 4 6 7
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types. Thus, even if many strategy types exist in a market, only a few
of them become and remain popular over time. It is therefore enough
to characterize the market behavior by using a few types of trading
strategies, even if many more types exist in this market.

Future research can include some changes in our model. Can the
results be affected by the periods' window? In this work, the 17-year
dataset was divided into semesters and thus each window was
6 months. It would be interesting to see whether a shorter or longer
window can affect our results. Finally, we are interested in examining
the sensitivity of our results to the tools used to process the data. Can
any features which we obtained using GP or SOM be valid if different
rule-inference machines, clustering techniques, or simply just
different settings of GP or SOM are employed? For example, the use
of standard hierarchical clustering (Xu & Wunsch, 2008) or the
growing hierarchical self-organizing map (Dittenbach, Rauber, &
Merkl, 2001) can provide us with much finer details of the
hierarchical structure of the market participants, which has not yet
been well exploited in the literature.
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Appendix A. Appendix

Appendix A.1. Technical indicators

The following section presents the technical indicators that the GP
is using, along with their formulas. We performed a sort of
standardization in order to avoid having a very large range of
numbers generated by GP, because this would increase the size of the
search space even more.

Moving Average indicator (MA)

MA L; tð Þ =
P tð Þ−1

L
∑
L

i=1
P t−ið Þ

1
L
∑
L

i=1
P t−ið Þ

:

By using the MA, traders are able to observe any changes in the
trend of the prices of a stock. Typically, when a short-term MA (e.g.,
12 days) goes above a long-term MA (e.g., 60 days), this indicates an
upward momentum. On the other hand, when a short-term MA goes
below a long-term one, this indicates a downward momentum.

Trade Break Out indicator (TBR)

TBR L; tð Þ = P tð Þ−max P t−1ð Þ;…; P t−Lð Þf g
max P t−1ð Þ;…; P t−Lð Þf g :

In order to understand this indicator better, we first need to
explain two terms: support and resistance. Support is the point where
the price stops going any further down, whereas resistance is the
point where the price does not go up any further. Technical analysts
suggest that price downward trends tend to reverse at support points,
whereas upward trends tend to reverse at resistance points. However,
when these points are breached (break out), perhaps because of some
new information regarding the market, it is likely that the price will
continue in the same direction. Hence, traders tend to observe these
breakouts and when a stock goes above its point of resistance, they
buy; when on the other hand the stock price goes below its point of
support, traders sell.

Filter indicator (FLR)

FLR L; tð Þ = P tð Þ−min P t−1ð Þ;…; P t−Lð Þf g
min P t−1ð Þ;…; P t−Lð Þf g :

This indicator is used to indicate buy or sell actions, depending on
whether the price movement goes in the opposite direction by a
predefined percentage. For instance, if the price reverses from a
downward trend and rises by a specific percentage from the low price
that it was previously, then the trader will perform a ‘buy’ action.

Volatility indicator (Vol)

Vol L; tð Þ = σ P tð Þ;…; P t−L + 1ð Þð Þ
1
L
∑
L

i=1
P t−ið Þ

:

A period of increasing volatility could indicate a reverse in the
trend or strong downward trends. This would thus give an indication
to a trader that he should be cautious. On the contrary, when there is a
period of decreasing volatility, this indicates upward trends and
traders should buy.

Momentum indicator (Mom)

Mom L; tð Þ = P tð Þ−P t−Lð Þ:

The Momentum indicator measures the acceleration or speed at
which a stock's price is changing. Traders use this indicator because
they believe that a strong trend will likely persist for a period of time.

Momentum Moving Average indicator (MomMA)

MomMA L; tð Þ = 1
L
∑
L

i=1
Mom L; t−ið Þ:

This is basically a calculation of the moving average of the
momentum, which was presented above.

Appendix A.2. Figures of cumulative fractions

In this section we present the figures of cumulative fractions for
the remaining 9 market indices (apart from the TAIEX which was
presented earlier in Section 7.3.2). We can again see here that most of
the markets tend to have a few gigantic clusters. The only exceptions
are the NYSE and S&P500.



Fig. A.12. Cumulative fractions for the 9 datasets.
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