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This paper investigates the causal relations between stock return and volume based on quantile regres-
sions. We first define Granger non-causality in all quantiles and propose testing non-causality by a sup-
Wald test. Such a test is consistent against any deviation from non-causality in distribution, as opposed to
the existing tests that check only non-causality in certain moment. This test is readily extended to test
non-causality in different quantile ranges. In the empirical studies of three major stock market indices,
we find that the causal effects of volume on return are usually heterogeneous across quantiles and those
of return on volume are more stable. In particular, the quantile causal effects of volume on return exhibit
a spectrum of (symmetric) V-shape relations so that the dispersion of return distribution increases with
lagged volume. This is an alternative evidence that volume has a positive effect on return volatility. More-
over, the inclusion of the squares of lagged returns in the model may weaken the quantile causal effects
of volume on return but does not affect the causality per se.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The relationship between financial asset return and trading vol-
ume, henceforth the return–volume relation, is important for
understanding operational efficiency and information dynamics
in asset markets. Models related to this topic include, e.g., the
sequential information arrival model (Copeland, 1976; Jennings
et al., 1981; Jennings and Barry, 1983) and mixture of distributions
model (Clark, 1973; Epps and Epps, 1976; Tauchen and Pitts, 1983).
There are also equilibrium models that emphasize the information
content of volume, e.g., Harris and Raviv (1993); Blume et al.
(1994), Wang (1994) and Suominen (2001). For instance, Blume
et al., 1994) stress that volume carries information that is not con-
tained in price statistics and hence is useful for interpreting the
price (return) behavior. On the empirical side, there have been
numerous studies on contemporaneous return–volume relation
since Granger and Morgenstern (1963) and Ying (1966); see Gal-
lant et al. (1992) and also Karpoff (1987) for a review. Yet, as far
as prediction and risk management are concerned, the dynamic
(causal) relation between return and volume is more informative.

Causal relations between variables are typically examined by
testing Granger non-causality. While Granger non-causality is
ll rights reserved.
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defined in terms of conditional distribution, it is more common
to test non-causality in conditional mean based on a linear model
(Granger, 1969, 1980). Granger et al. (1986) and Cheung and Ng
(1996) consider testing non-causality in conditional variance,
whereas Hiemstra and Jones (1994) derive a test for nonlinear cau-
sal relations. These tests have been widely used in the literature
(e.g., Fujihara and Mougoué, 1997; Silvapulle and Choi, 1999; Chen
et al., 2001; Ciner, 2002; Lee and Rui, 2002). A serious limitation of
this approach is that non-causality in mean (or in variance) need
not carry over to other distribution characteristics or different
parts of the distribution. Diks and Panchenko (2005) also give
examples that the test of Hiemstra and Jones (1994) may not test
Granger non-causality. These motivate us to consider characteriz-
ing and testing causality differently.

This paper investigates causal relations from the perspective of
conditional quantiles. We first define Granger non-causality in a gi-
ven quantile range and non-causality in all quantiles. The quantile
causal effects are then estimated by means of quantile regressions
(Koenker and Bassett, 1978; Koenker, 2005). The hypothesis of
non-causality in all quantiles is tested by the sup-Wald test of
Koenker and Machado (1999). This test checks significance of the
entire parameter process in quantile regression models and hence
is consistent against any deviation from non-causality in distribu-
tion, as opposed to the conventional tests of non-causality in a mo-
ment and the tests of Lee and Yang (2006) and Hong et al.
(forthcoming). The test of Koenker and Machado (1999) is easily
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extended to evaluate non-causality in different quantile ranges and
enables us to identify the quantile range for which causality is rel-
evant. Our approach thus provides a detailed description of the
causal relations between return and volume.

In the empirical study we examine the causal relations between
return and (log) volume in three stock market indices: New York
Stock Exchange (NYSE), Standard & Poor 500 (S&P 500), and Finan-
cial Times-Stock Exchange 100 (FTSE 100). Despite that the con-
ventional test may suggest no causality in mean, there are strong
evidences of causality in quantiles in these indices. For NYSE and
S&P 500, we find two-way Granger causality in quantiles between
return and volumes; for FTSE 100, only volume Granger causes re-
turn in quantiles. In particular, the causal effects of volume on re-
turn are heterogeneous across quantiles, in the sense that they
possess opposite signs at lower and upper quantiles and are stron-
ger at more extreme quantiles. On the other hand, the causal ef-
fects of return on volume, if exist, are mainly negative and
remain stable across quantiles.

With log volume on the vertical axis and return on the horizon-
tal axis, the quantile causal effects of volume on return exhibit a
spectrum of symmetric V-shape relations for NYSE and S&P
500.While many existing results (e.g., Karpoff, 1987) find a simple
V-shape relation based on a least-squares regression of absolute re-
turn on volume, our V-shape results are very different. First, what
we find are dynamic rather than contemporaneous relations. Sec-
ond, these relations hold across quantiles rather than at the mean
only. Moreover, the identified V spectrum suggests that distribu-
tion dispersion increases with lagged volume. This constitutes an
alternative evidence that volume has a positive effect on return
volatility and is compatible with the empirical finding based on
conditional variance models (e.g., Lamoureux and Lastrapes,
1990; Gallant et al., 1992).

It is interesting to note that the quantile causal relations we find
are quite robust to different sample periods and different model
specifications. Indeed, the inclusion of the squares of lagged re-
turns in the model may weaken the quantile causal effects of vol-
ume on return but does not affect the causality per se. Thus, lagged
volumes carry information that is not contained in lagged returns
and their squares, as argued by Blume et al. (1994). Our results also
confirm that non-causality in mean bears no implication on non-
causality in distribution (quantiles). A conventional test may find
no causality in mean because the positive and negative quantile
causal effects cancel out each other in least-squares estimation,
as demonstrated in our study. It is therefore vulnerable to draw a
conclusion on causality solely based on a test of non-causality in
mean.

This paper is organized as follows. We introduce the notion of
Granger (non-)causality in quantiles in Section 2 and discuss the
sup-Wald test of non-causality in quantiles in Section 3. The
empirical results of different causal models are presented in Sec-
tion 4. Section 5 concludes the paper.
1 Clearly, this approach would be valid provided that the postulated linear model is
correctly specified for the conditional mean function.
2. Causality in mean and quantiles

Following Granger (1969, 1980), we say that the random vari-
able x does not Granger cause the random variable y if

Fyt
ðgjðY;XÞt�1Þ ¼ Fyt

ðgjYt�1Þ; 8g 2 R; ð1Þ

holds almost surely (a.s.), where Fyt
ð�jFÞ is the conditional distribu-

tion of yt , and ðY;XÞt�1 is the information set generated by yi and xi

up to time t � 1. That is, Granger non-causality requires that the
past information of x does not alter the conditional distribution of
yt . The variable x is said to Granger cause y when (1) fails to hold.
In what follows, Granger non-causality defined by (1) will be re-
ferred to as Granger non-causality in distribution.
As estimating and testing conditional distributions are practi-
cally cumbersome, it is more common to test a necessary condition
of (1), namely,

E½yt jðY;XÞt�1� ¼ Eðyt jYt�1Þ; a:s: ð2Þ

where Eðyt jFÞ is the mean of Fyt
ð�jFÞ. We say that x does not Gran-

ger cause y in mean if (2) holds; otherwise, x Granger causes y in
mean. Similarly, we may define non-causality in variance (Granger
et al., 1986; Cheung and Ng, 1996) and non-causality in other mo-
ments. Hong et al. (forthcoming) consider ‘‘non-causality in risk,” a
special case of (1) in which g is the negative of a VaR (Value at Risk).
Note that these notions of non-causality are necessary for, but not
equivalent to, Granger non-causality in distribution.

The hypothesis (2) is usually tested by evaluating a linear model
of E½yt jðY;XÞt�1�:

a0 þ
Xp

i¼1

aiyt�i þ
Xq

j¼1

bjxt�j;

which depends on the past information of yt�1; . . . ; yt�p and
xt�1; . . . ; xt�q. Testing (2) now amounts to testing the null hypothesis
that bj ¼ 0; j ¼ 1; . . . ; q, in the postulated model; that is, whether
any lagged x has a significant impact on the conditional mean of
yt .

1 Rejecting this null hypothesis suggests that x Granger causes
y. Yet, failing to reject the null is compatible with non-causality in
mean but says nothing about causality in other moments or other
distribution characteristics.

Given that a distribution is completely determined by its quan-
tiles, Granger non-causality in distribution can also be expressed in
terms of conditional quantiles. Letting Qyt

ðsjFÞ denote the sth
quantile of Fyt

ð�jFÞ, (1) is equivalent to

Qyt
ðsjðY;XÞt�1Þ ¼ Q yt

ðsjYt�1Þ; 8s 2 ð0;1Þ; a:s: ð3Þ

We say that x does not Granger cause y in all quantiles if (3)
holds. We may also define Granger non-causality in the quantile
range ½a; b� � ð0;1Þ as

Qyt
ðsjðY;XÞt�1Þ ¼ Q yt

ðsjYt�1Þ; 8s 2 ½a; b�; a:s: ð4Þ

Note that Lee and Yang (2006) considered only non-causality in
a particular quantile, i.e., the equality in (3) holds for a given s.
3. Testing non-causality in quantiles

This paper proposes to verify causal relations by testing (3),
rather than testing non-causality in a moment (mean or variance)
or non-causality in a given quantile. To this end, we postulate a
model for Qyt

ðsjðY;XÞt�1Þ and estimate this model by the quantile
regression method of Koenker and Bassett (1978); see Koenker
(2005) for a comprehensive study of quantile regression.

Letting yt�1;p ¼ ½yt�1; . . . ; yt�p�
0
;xt�1;q ¼ ½xt�1; . . . ; xt�q�0, and

zt�1 ¼ ½1; y0t�1;p;x
0
t�1;q�

0, we assume that the following model is cor-
rectly specified for the sth conditional quantile function:

Qyt
ðsjzt�1Þ ¼ aðsÞ þ y0t�1;paðsÞ þ x0t�1;qbðsÞ ¼ z0t�1hðsÞ;

where hðsÞ ¼ ½aðsÞ; aðsÞ0; bðsÞ0�0 is the k-dimensional parameter vec-
tor with k ¼ 1þ pþ q. Note that the sth conditional quantile of the
error ets ¼ yt � z0t�1hðsÞ is zero, a consequence of correct model
specification. For a given s, the parameter vector hðsÞ is estimated
by minimizing asymmetrically weighted absolute deviations:

minh

XT

t¼1

ðs� 1fyt<z0
t�1hgÞ jyt � z0t�1hj;



Table 1
The critical values of the sup-Wald test on [0.05, 0.95].

q ¼ 1 q ¼ 2 q ¼ 3

1% 13.01 16.30 19.21
5% 9.84 12.77 15.28
10% 8.19 11.05 13.49

Note: q is the dimension of the parameter vector being tested.

Table 2
Summary statistics for stock returns rt and volume v t .

NYSE S&P 500 FTSE 100

rt v t rt v t rt v t

Mean 0.03 769.43 0.04 863.18 0.02 778.10
Standard deviation 0.89 541.27 1.02 761.37 1.02 662.77
Median 0.05 609.31 0.05 494.88 0.04 426.80
Skewness �0.23 0.53 �0.09 0.61 �0.11 0.94
Kurtosis 4.15 �0.96 3.74 �1.07 3.11 �0.07
Minimum �6.79 31.64 �7.25 2.08 �5.89 26.36
Maximum 5.18 2767.75 5.61 3345.21 5.90 4461.01

Note: Volumes here are traded share volumes times 10�6.
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where 1A is the indicator function of the event A. The solution to this
problem, denoted as bhTðsÞ, can be computed using a linear pro-
gramming algorithm.

In what follows, let !D denote convergence in distribution, )
weak convergence (of associated probability measures), and k � k
the Euclidean norm. Under suitable regularity conditions, ĥTðsÞ is
consistent and asymptotically normally distributed such thatffiffiffi

T
p bhTðsÞ � hðsÞ
h i

!D ½sð1� sÞ�1=2XðsÞ1=2
Nð0; IkÞ;

where XðsÞ ¼ DðsÞ�1MzzDðsÞ�1
; Mzz :¼ limT!1T�1PT

t¼1zt�1z0t�1, and

DðsÞ :¼ lim
T!1

1
T

XT

t¼1

ft�1ðF�1
t�1ðsÞÞzt�1z0t�1;

with Ft�1 and ft�1 being, respectively, the distribution and density
functions of yt conditional on Zt�1, the information set generated
by zt�1; zt�2; . . .; see Koenker (2005) and Koenker and Xiao (2006).2

Given a linear model for conditional quantiles, testing (3)
amounts to testing

H0 : bðsÞ ¼ 0; 8s 2 ð0;1Þ: ð5Þ

To this end, we must check significance of the entire parameter
process bð�Þ. Letting W be a q� k selection matrix such that
WhðsÞ ¼ bðsÞ, we haveffiffiffi

T
p
½b̂TðsÞ � bðsÞ� ¼

ffiffiffi
T
p

W½ĥTðsÞ � hðsÞ�

!D ½sð1� sÞ�1=2½WXðsÞW0�1=2
Nð0; IqÞ: ð6Þ

For a given s, the Wald statistic of bðsÞ ¼ 0 is

WTðsÞ :¼ Tb̂TðsÞ0ðW bXðsÞW0Þ�1
b̂TðsÞ=½sð1� sÞ�;

where bXðsÞ is a consistent estimator of XðsÞ. In the special case that
ftð�Þ ¼ f ð�Þ, the unconditional density of yt;XðsÞ ¼ f ðF�1ðsÞÞ�2M�1

zz ,
and the Wald statistic becomes

WTðsÞ ¼ Tb̂TðsÞ0ðWcM�1
zz W0Þ�1

b̂TðsÞf̂ 2=½sð1� sÞ�;

where cMzz ¼ T�1PT
t¼1zt�1z0t�1, and f̂ is a consistent estimator of f. To

test (5), Koenker and Machado (1999) suggest using a sup-Wald
test, i.e., the supremum of WTðsÞ.

Note that BqðsÞ, a vector of q independent Brownian bridges,
equals ½sð1� sÞ�1=2

Nð0; IqÞ in distribution. Thus, (6) can be ex-
pressed asffiffiffi

T
p
½b̂TðsÞ � bðsÞ�!D ½WXðsÞW0�1=2BqðsÞ: ð7Þ

Under suitable conditions, (7) holds uniformly on a closed inter-
val T � ð0;1Þ, so that under the null hypothesis (5),

WTðsÞ )
BqðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð1� sÞ

p�����
�����

2

; s 2T;

where the weak limit is the sum of squares of q independent Bessel
processes.3 This immediately leads to the following result:

sup
s2T

WTðsÞ!
D

sup
s2T

BqðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð1� sÞ

p�����
�����

2

: ð8Þ
2 Note that when E½s� 1fets<0gjZt�1� ¼ 0; zt�1½s� 1fets<0g� is a martingale difference
sequence and hence obeys a central limit theorem:

T�1=2
XT

t¼1

zt�1½s� 1fets<0g�!
D ½sð1� sÞ�1=2M1=2

zz Nð0; IkÞ:

The asymptotic normality of bhT ðsÞ and the asymptotic covariance matrix XðsÞ read-
ily follow from the Bahadur representation and this result. For some regularity con-
ditions ensuring E½s� 1fets<0gjZt�1� ¼ 0, see Koenker and Xiao (2006).

3 Note that kBqðsÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð1� sÞ

p
k tends to infinity when s! 0 or 1 (Andrews, 1993).

Thus, WT ðsÞ; s 2T, would not have a well defined limit unless T is a closed interval
in (0,1).
In practice, we may set T ¼ ½�;1� �� for some small � in (0,0.5)
and choose n points ð� ¼ s1 < � � � < sn ¼ 1� �). The sup-Wald test
for (5) is computed as

sup�WT ¼ sup
i¼1;...;n

WTðsiÞ:

When n is large, the right-hand side of (8) with T ¼ ½�;1� ��
ought to be a good approximation to the null limit of sup-WT .
See Koenker and Machado (1999) for some simulation results on
the finite-sample performance of this test. Similarly, we may test
the null:

H0 : bðsÞ ¼ 0; 8s 2 ½a; b� ð9Þ

by the supremum of WTðsiÞ with a ¼ s1 < � � � < sn ¼ b. It is clear
that the limit in (8) carries over to T ¼ ½a; b�. The results of the
sup-Wald test on various ½a; b� may be used to identify the quantile
range from which causality arises. For example, if the null hypoth-
esis (5) is rejected but (9) is not rejected for some interval ½a; b�, one
may infer that causality mainly arises from the quantiles outside
½a; b�.

Remark. The linear model considered here is convenient for
model estimation and hypothesis testing. Yet, our approach to
testing causality, the sup-Wald test in particular, would be valid
provided that the linear model is correctly specified for conditional
quantile functions.

To determine the critical values for the sup-Wald test, we note
that, for s ¼ s=ð1� sÞ, the one-dimensional Bessel process
BðsÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð1� sÞ

p
and the normalized, one-dimensional Brownian

motion WðsÞ=
ffiffi
s
p

are equal in distribution. It follows that

P sup
s2½a;b�

BqðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð1� sÞ

p�����
�����

2

< c

8<:
9=; ¼ P sup

s2½1;s2=s1 �

WqðsÞffiffi
s
p

���� ����2

< c

( )
;

with s1 ¼ a=ð1� aÞ; s2 ¼ b=ð1� bÞ, and Wq a vector of q independent
Brownian motions. That is, the critical values c are determined by
the sum of squared normalized Brownian motions. The critical val-
ues for some q and s2=s1 have been tabulated in DeLong (1981) and
Andrews (1993); other critical values can be easily computed via
simulations. The simulated critical values of the sup-Wald test
(with q ¼ 1;2;3) on ½0:05; 0:95� are summarized in Table 1.4
4 Our simulation approximates the standard Brownian motion using a Gaussian
random walk with 3000 i.i.d. Nð0;1Þ innovations; the number of replications is
20,000.
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Fig. 1. The series of log volume (upper panel) and detrended residuals (lower panel).
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4. Empirical study

Our empirical study of return–volume relations focuses on
three stock market indices: NYSE, S&P 500 and FTSE 100. The daily
data from the beginning of 1990 (Jan. 2 or Jan. 4) to June 30, 2006
are taken from Datastream database, and there are 4135, 4161 and
4166 observations for NYSE, S&P 500 and FTSE 100, respectively. As
will be shown in Section 4.4, our results are quite robust to differ-
ent sample periods.

Returns are calculated as rt ¼ 100� ðlnðptÞ � lnðpt�1ÞÞ, where pt

is index at time t; volumes v t are the traded share volumes of these
indices. Their summary statistics are collected in Table 2. It can be
seen that the mean and median returns are all close to zero and
their standard deviations are close to one. Also, the return series
behave similarly to what we usually observe in the literature: they
fluctuate around their respective mean levels and exhibit volatility
clustering and excess kurtosis. For each volume, the mean and
median are quite different, and its kurtosis coefficient is small.

There are pronounced trending patterns in the volume series.
Following Gallant et al. (1992), we consider log volume series and
remove their trends by regressing ln v t on a constant, t=T and
ðt=TÞ2; see also Chen et al. (2001) and Lee and Rui (2002). To con-
serve space, we plot only the log volume series and their detrended
residuals in Fig. 1. It can be seen that there is no trend in these resid-
ual series. Our subsequent analysis of return–volume relations is
thus based on rt and ln v t while controlling the time trend effects.5

4.1. Causal effects of volume on return: model without r2
t�j

We first consider the following model for return and estimate
this model using the least-squares (LS) and quantile regression
(QR) methods:
5 We also considered the causal relations between return and the growth rate of
volume and found that the latter does not Granger causes the former in quantiles.
This agrees with the finding of Su and White (2007) which is based on a test at the
distribution level.
rt ¼ aðsÞ þ bðsÞ t
T
þ cðsÞ t

T

� �2

þ
Xq

j¼1

ajðsÞrt�j

þ
Xq

j¼1

bjðsÞ ln v t�j þ et ; ð10Þ

where T is the sample size and q P 1; this model will be referred to
as a lag-it q model. In the light of Fig. 1, we include t=T and ðt=TÞ2 as
regressors in the model so as to control the trending effect in ln v t .
We do not report the results of the model with detrended ln v t (i.e.,
the residuals of regressing ln v t on t=T and ðt=TÞ2) as regressors be-
cause, as far as causality is concerned, all regressors should be in the
information set so that the model involves no future information.6

Although we may specify different models for the conditional mean
and quantile functions, we estimate the same model (10) in our
study so that the LS and QR estimates can be compared directly.

We apply the sup-Wald test to determine an appropriate lag or-
der q�. If the null of bqðsÞ ¼ 0 for s in [0.05,0.95] is not rejected for
the lag-q model but the null of bq�1ðsÞ ¼ 0 for s in [0.05,0.95] is re-
jected for the lag-ðq� 1Þmodel, we infer that ln v t�q does not Gran-
ger cause rt in quantiles but ln v t�qþ1 does. The desired lag order is
then set as q� ¼ q� 1. For simplicity, we do not consider the model
that includes rt�j and ln v t�j with different lag orders. For NYSE, the
sup-Wald test of b4ðsÞ in the lag-4 model is 11.813 and that of
b3ðsÞ in the lag-3 model is 18.261. The latter is significant at 1% le-
vel, but the former is not; see the critical values in Table 1 (under
q ¼ 1). For S&P 500, the sup-Wald test of b3ðsÞ in the lag-3 model is
12.421 which is insignificant at 1% level, but that of b2ðsÞ in the
lag-2 model is 25.227 which is significant. For FTSE 100, the sup-
Wald test of b3ðsÞ in the lag-3 model is 7.7 which is insignificant
even at 10% level, and that of b2ðsÞ in the lag-2 model is 13.567
which is significant at 1% level. Thus, we set q� ¼ 3 for NYSE and
q� ¼ 2 for S&P 500 and FTSE 100.7 For each lag-q� model (10), 91
6 Nonetheless, we find that the QR estimates of (10) are very close to those of the
model with lagged rt and lagged detrended ln v t as regressors.

7 At 5% level, we find q� ¼ 5 for NYSE, q� ¼ 5 for S&P 500, and q� ¼ 2 for FTSE 100.
To ease our illustration, we choose 1% level and deal with simpler models.
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Fig. 2. QR and LS estimates of the causal effects of log volume on return: model without r2
t�j .
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quantile regressions (with s ¼ 0:05;0:06; . . . ;0:95) are estimated
using the R program (version 2.4.0) with the ‘‘quantreg” package
(version 4.01) written by Koenker.8

In Fig. 2, we plot against s the QR estimates of bjðsÞ (solid line)
and their 95% confidence intervals (in shaded area), together with
the LS estimate (dashed line) and its 95% confidence interval (dot-
ted lines). It can be seen that, for NYSE and S&P 500, the LS esti-
mates of bj, the mean causal effects of log volumes, are all
negative but insignificantly different from zero. This suggests no
causality in mean in these two series. Yet, the QR estimates of
bjðsÞ vary with quantiles and exhibit an interesting pattern. First,
the QR estimates are negative at lower quantiles and positive at
upper quantiles. Second, the magnitude of these estimates in-
creases as s moves toward 0 and 1. Third, these estimates are, in
general, significant at tail quantiles.9 Thus, lagged log volume ex-
erts opposite and heterogeneous quantile causal effects on the
two sides of the return distribution, and such effects are stronger
at more extreme quantiles.
8 These programs are available from the CRAN website: http://cran.r-project.org/.
9 For NYSE, we obtain insignificant QR estimates of b1ðsÞ for s in [0.53,0.79] and

[0.87,0.95], insignificant estimates of b2ðsÞ for s in [0.30, 0.72], and insignificant
estimates of b3ðsÞ for s in [0.26,0.62] and [0.68,0.76]. For S&P 500, there are
insignificant QR estimates of b1ðsÞ for s in [0.24,0.64] and insignificant estimates of
b2ðsÞ for s in [0.34,0.65].
The estimation results for FTSE 100 are quite different. The LS
estimate of b1 is significantly negative at 5% level, but that of
b2ðsÞ is insignificant. This shows that there is causality in mean
in FTSE 100. The QR estimates of bjðsÞ are also heterogeneous
across s. The QR estimates of b1ðsÞ are significantly negative
at lower quantiles but insignificant at upper quantiles, and the
QR estimates of b2ðsÞ are significantly positive at most upper
quantiles.10

To be sure, we apply the sup-Wald test to check joint signifi-
cance of all coefficients of lagged log volumes. The null hypothesis
for NYSE is b1ðsÞ ¼ b2ðsÞ ¼ b3ðsÞ ¼ 0 on [0.05,0.95], and the null
for S&P 500 and FTSE 100 is b1ðsÞ ¼ b2ðsÞ ¼ 0 on [0.05,0.95]. As
shown in Table 3, these statistics overwhelmingly reject the null
of non-causality at 1% level, suggesting causality in quantiles in
these indices. We also test biðsÞ ¼ 0 on the ranges of quantiles at
which the estimates of biðsÞ are found insignificant individually.
As shown in Table 3, none of these null hypotheses can be rejected
at 5% level. Thus, we conclude that, for NYSE and S&P 500, the
quantile causal effects are mainly due to the tail quantiles outside
the interquartile range (except that of ln v t�1 for NYSE). Our results
are in contrast with many existing findings of non-causality that
10 For FTSE 100, the quantiles range of insignificant QR estimates are [0.67,0.95] for
b1ðsÞ and [0.08, 0.49] and [0.83,0.85] for b2ðsÞ.

http://cran.r-project.org/


Table 3
The sup-Wald tests of non-causality in different quantile ranges.

Index biðsÞ ¼ 0; i ¼ 1;2;3 b1ðsÞ ¼ 0 b2ðsÞ ¼ 0 b3ðsÞ ¼ 0

NYSE [0.05,0.95] [0.53,0.79] [0.87,0.95] [0.3,0.72] [0.26,0.62] [0.68,0.76]
79.12** 3.48 3.11 2.65 2.86 2.26
biðsÞ ¼ 0; i ¼ 1;2 b1ðsÞ ¼ 0 b2ðsÞ ¼ 0

S&P 500 [0.05,0.95] [0.24,0.64] [0.34,0.65]
134.27** 5.80 5:71

FTSE 100 [0.05,0.95] [0.67,0.95] [0.08,0.49] [0.83,0.85]
27.53** 2.18 2.98 2.78

Note: Each interval in the square bracket is the quantile range on which the null hypothesis holds; the entry below each interval is the sup-Wald statistic. The critical values
for the tests on [0.05,0.95] are in Table 1; the other critical values are obtained by simulations.
** Denotes significance at 1% level.
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are based on a test for linear causality in mean (e.g., Kocagil and
Shachmurove, 1998; Chen et al., 2001; Lee and Rui, 2002).

Following Buchinsky (1998), we test whether the pairwise cau-
sal effects at the sth and ð1� sÞth quantiles are symmetric about
the median, i.e., biðsÞ þ bið1� sÞ ¼ 2bið0:5Þwith i ¼ 1;2;3 for NYSE
and i ¼ 1;2 for both S&P 500 and FTSE 100. This amounts to check-
ing whether

d̂i;TðsÞ ¼ b̂i;TðsÞ þ b̂i;Tð1� sÞ � 2b̂i;Tð0:5Þ

is sufficiently close to zero. To this end, we conduct a v2ð1Þ test
based on the square of the normalized d̂TðsÞ for the s pairs:
ð0:05;0:95Þ; ð0:1;0:9Þ; . . . ; ð0:45;0:55Þ, where the standard error of
d̂TðsÞ is computed via design matrix bootstrap. We may also con-
duct a joint test to check if d̂i;TðsÞ; i ¼ 1; . . . ; k, are close to zero.
For NYSE, it is a v2ð3Þ test; for S&P 500 and FTSE 100, it is a v2ð2Þ
test. The testing results of all indices are summarized in Table 4.

Table 4 shows that, for NYSE and S&P 500, the null of symmetric
causal effects can not be rejected at 5% for all s pairs we consid-
ered. This is so for both individual test and joint test. For FTSE
100, these effects are not symmetric for some middle s pairs of
b1ðsÞ. These symmetry results are somewhat different from those
of Hutson et al. (2008). The symmetry of these quantile causal ef-
fects helps to explain why the conventional methods, such as cor-
relation coefficient and LS estimation, usually yield an insignificant
estimate of the causal effect of volume, as the positive and negative
effects at corresponding upper and lower quantiles tend to cancel
out each other in ‘‘averaging.”

The estimation and testing results for NYSE and S&P 500 lead to
a vivid pattern of quantile causal effects. By putting lagged log vol-
ume on the vertical axis and return on the horizontal axis, the
quantile causal effects of log volume on return exhibit a spectrum
of symmetric V-shape relations, in which the V’s at more extreme
quantiles have wider opening. Thus, an increase in lagged log vol-
Table 4
Testing symmetry of quantile causal effects: Models without r2

t�j .

s pair ðs;1� sÞ NYSE S&

b1 b2 b3 Joint b1

0.05 0.027 0.139 2.692 4.325 0.3
0.10 0.023 0.699 0.056 1.695 0.0
0.15 1.665 0.029 0.001 3.134 0.0
0.20 2.160 0.338 0.658 3.967 0.3
0.25 2.931 0.598 1.432 5.259 0.3
0.30 1.484 0.495 0.234 3.120 0.7
0.35 0.929 1.162 0.002 4.301 0.1
0.40 1.025 0.008 0.006 1.463 0.2
0.45 0.327 0.135 0.526 0.873 0.0

Note: Each entry is a test statistic for the hypothesis that the quantile causal effects are s
v2ð1Þ, 9.21 and 5.99 for v2ð2Þ, and 11.34 and 7.81 for v2ð3Þ.
* Denotes significance at 5%.
** Denotes significance at 1%.
ume results in a larger return in either sign, and such effect is
stronger for returns with larger magnitude. This dynamic V-shape
pattern complements the findings of Karpoff (1987); Gallant et al.
(1992) and Blume et al. (1994). These V-shape relations also imply
that the dispersion of return increases with lagged volume, so that
return volatility depends positively on lagged volume, analogous to
the results in the context of conditional variance, e.g., Lamoureux
and Lastrapes (1990); Gallant et al. (1992); Moosa and Al-Loughani
(1995); Kocagil and Shachmurove (1998); Chen et al. (2001) and
Xu et al. (2006).

4.2. Causal effects of volume on return: model with r2
t�j

From the preceding subsection we find that the dispersion (vol-
atility) of return changes with lagged log volume. To see if the
quantile causal effects of log volume are robust, we take squared
return as a proxy for return volatility and consider an extension
of (10) which includes lagged r2

t�j as additional regressors:

rt ¼ aðsÞ þ bðsÞ t
T
þ cðsÞ t

T

� �2

þ
Xq

j¼1

ajðsÞrt�j þ
Xq

j¼1

bjðsÞ ln v t�j

þ
Xq

j¼1

cjðsÞr2
t�j þ et : ð11Þ

This allows us to examine whether log volume still Granger
causes return in the presence of r2

t�j. The model (11) carries the fla-
vor of an ARCH-in-mean model and is also able to capture some
nonlinearity in lagged return.

We again apply the sup-Wald test to determine an appropriate
lag order q�. For NYSE, the sup-Wald test of b3ðsÞ in the lag-3 model
is 12.402 which is significant at 1% level and that of b2ðsÞ in the
lag-2 model is 21.158 which is significant. For S&P 500, the sup-
Wald test of b3ðsÞ in the lag-3 model is 11.362, and that of b2ðsÞ
P 500 FTSE 100

b2 Joint b1 b2 Joint

35 0.760 0.724 0.042 0.447 0.874
00 0.384 0.608 3.615 1.477 3.857
20 0.452 0.566 4.253* 1.119 4.597
29 0.612 0.629 8.339** 1.082 10.236**

49 0.013 0.740 7.150** 0.883 8.749*

90 0.009 1.487 6.224* 1.434 7.040*

20 0.601 1.571 1.815 0.106 2.567
34 0.867 0.871 0.697 1.311 1.280
62 0.095 0.100 1.296 3.508 3.408

ymmetric about the median. The corresponding critical values are 6.63 and 3.84 for
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Fig. 3. QR and LS estimates of the causal effects of log volume on return: model with r2
t�j .

Table 5
Testing symmetry of quantile causal effects: Models with r2

t�j .

s pair ðs;1� sÞ NYSE S&P 500 FTSE 100

b1 b2 joint b1 b2 joint b1

0.05 0.005 1.732 2.003 1.256 0.105 1.409 0.629
0.10 0.003 2.520 2.885 0.612 0.061 0.748 0.660
0.15 0.259 1.093 2.576 0.395 0.123 1.299 3.390
0.20 0.426 0.811 2.422 0.751 0.489 2.921 8.367**

0.25 0.617 0.341 1.584 1.703 0.042 3.221 3.969*

0.30 0.063 0.801 1.519 1.357 0.031 2.408 2.820
0.35 0.217 0.554 1.322 0.513 0.581 2.569 0.349
0.40 0.953 0.044 0.962 0.202 1.374 1.544 0.157
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in the lag-2 model is 20.554; the latter is significant at 1% level but
the former is not. Therefore, we estimate (11) with q� ¼ 2 for both
NYSE and S&P 500. For FTSE 100, q� ¼ 1 because the sup-Wald test
of b2ðsÞ in the lag-2 model is 5.27 which is insignificant at 10% level
and that of b1ðsÞ in the lag-1 model is 20.513 which is significant at
1% level. Thus, the desired lag order q� may be affected when r2

t�j

are included in the model. For each lag-q� model, we also estimate
91 quantile regressions. The resulting QR and LS estimates and
their 95% confidence intervals are plotted in Fig. 3.

For NYSE and S&P 500, we observe that the LS estimates of
mean causal effect are insignificantly different from zero, except
that the estimate of b1 for NYSE is significantly negative at 5% level
(but still insignificant at 1% level). Thus, one may still conclude that
there is no causality in mean in NYSE and S&P 500. On the other
hand, their quantile causal effects are similar to those in Fig. 2.
For NYSE, the QR estimates of b1ðsÞ at upper quantiles are mostly
insignificant, and those of b2ðsÞ are negative (positive) at lower
(upper) quantiles and significant at tail quantiles. For S&P 500,
the QR estimates for each bjðsÞ also have opposite signs at two
sides of the return distribution and are significant at tail quan-
tiles.11 Moreover, we find that the magnitude of the QR estimates
at tail quantiles are weaker than the corresponding estimates in
Fig. 2. For FTSE 100, the LS estimate of b1 is significantly negative,
and the QR estimates are significantly negative at middle and lower
quantiles and significantly positive at right tail quantiles (except for
s in [0.66,0.89]). These are somewhat similar to the results of FTSE
100 in Fig. 2.

The sup-Wald test of non-causality again significantly rejects
the null of biðsÞ ¼ 0 on [0.05,0.95] for these indices. The results
of the symmetry test are collected in Table 5, which are similar
to those in Table 4. For NYSE and S&P 500, the quantile causal ef-
fects are symmetric about the median for all s pairs. For FTSE
11 For NYSE, the QR estimates of b1ðsÞ are insignificant for s in [0.55,0.95], and those
of b2ðsÞ are insignificant for s in [0.31,0.67]. For S&P 500, the QR estimates of b1ðsÞ are
insignificant at [0.22,0.29] and [0.44,0.79], and those of b2ðsÞ are insignificant at
[0.34,0.72].
100, the causal effects are symmetric, except for some pairs of mid-
dle quantiles. To summarize, the presence of r2

t�j in the model may
reduce the strength of quantile causal effects of log volume but
does not affect causality in quantiles per se. For S&P 500, these
quantile causal effects exhibit a spectrum of ‘‘smaller”, symmetric
V-shape relations. This is also the pattern of the quantile causal ef-
fects of ln v t�2 on the return of NYSE.

We also examine the effects of r2
t�j on rt i.e., the estimates of

cjðsÞ in (11). These estimates are plotted in Fig. 4. It is quite inter-
esting to see that the heterogeneity of the estimated cjðsÞ is some-
what similar to that of the estimated bjðsÞ. In particular, the
quantile causal effects increase with s. The estimated c2ðsÞ for
NYSE and S&P 500 and the estimated c1ðsÞ for FTSE 100 have oppo-
site signs at the two side of the return distribution. Putting r2

t�j on
the vertical axis and rt on the horizontal axis, we would also obtain
a spectrum of V-shape relations based on these estimates. This re-
sult, together with the quantile causal effects in Figs. 2 and 3, con-
firms that both ln v t�j and r2

t�j are able to account for distribution
dispersion (volatility) in a similar manner.
0.45 0.017 0.481 0.696 0.745 0.000 1.274 0.270

Note: Each entry is a test statistic for the hypothesis that the quantile causal effects
are symmetric about the median. The corresponding critical values are 6.63 and
3.84 for v2ð1Þ and 9.21 and 5.99 for v2ð2Þ.
* Denotes significance at 5%.
** Denotes significance at 1%.
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4.3. Causal effects of return on volume

To see if there is two-way causality between return and log vol-
ume, we now consider the following models for ln v t:

ln v t ¼ ayðsÞ þ byðsÞ t
T
þ cyðsÞ t

T

� �2

þ
Xq

j¼1

ayj ðsÞ ln v t�j

þ
Xq

j¼1

byj ðsÞrt�j þ et ;

ln v t ¼ ayðsÞ þ byðsÞ t
T
þ cyðsÞ t

T

� �2

þ
Xq

j¼1

ayj ðsÞ ln v t�j

þ
Xq

j¼1

byj ðsÞrt�j þ
Xq

j¼1

cyj ðsÞr
2
t�j þ et :

The first model is common in empirical studies; the second one
extends the first by including r2

t�j as regressors and is compatible
with the model (11).

As in the preceding subsections, we first determine an appropri-
ate lag order q� by the sup-Wald test. For NYSE, the sup-Wald test
of by2ðsÞ in the lag-2 model without r2

t�j is 11.138 which is insignif-
icant at 1% level and that of by1ðsÞ in the lag-1 model without r2

t�j is
16.298 which is significant. For S&P 500, the sup-Wald test of by3ðsÞ
in the lag-3 model without r2

t�j is 10.107 and that of by2ðsÞ in the
lag-2 model is 16.636. The latter is significant at 1% level and the
former is not. Therefore, for models without r2

t�j, we set q� ¼ 1
for NYSE and q� ¼ 2 for S&P 500. We also find that, for models with
r2

t�j, q� ¼ 1 for NYSE and S&P 500.12 On the other hand, the lagged
return does not Granger cause log volume in FTSE 100 because the
sup-Wald test of by1ðsÞ in the lag-1 model without and with r2

t�j yields
6.161 and 7.767 which are insignificant even at 10% level.

We now focus on NYSE and S&P 500 and summarize the LS
and QR estimates of byj ðsÞ in the models without and with r2

t�j
12 For NYSE, the sup-Wald test of b2ðsÞ in the lag-2 model is 6.808 and that of b1ðsÞ
in the lag-1 model is 13.512. For S&P 500, the sup-Wald test of b2ðsÞ in the lag-2
model is 12.003 and that of b1ðsÞ in the lag-1 model is 20.564.
in Figs. 5 and 6. We observe that the LS estimates in these
models are all significantly negative. The QR estimates are also
significantly negative at most quantiles and stay within the
confidence interval of the corresponding LS estimate. Thus,
the causal effects of return on log volume are relatively stable
(homogeneous) across quantiles for NYSE and S&P 500. These
results are consistent with the existing findings, such as Moosa
and Al-Loughani (1995); Silvapulle and Choi (1999); Chen et al.
(2001) and Lee and Rui (2002). We also note that the quantile
causal effects of r2

t�1 on log volume are all significantly
positive.

To summarize, we find from these subsections that there are
two-way quantile causal relations between return and log volume
for NYSE and S&P 500 but only one-way causality in quantiles from
log volume to return for FTSE 100. The quantile causal effects of a
lagged log volume on return still exhibit symmetric V shapes in
general, yet the causal effects of a lagged return on log volume
are negative. Thus, lagged log volume carries important informa-
tion that is not contained in the past returns and past squared re-
turns. Similarly, lagged return also carries information that is not
contained in the past volumes and past squared returns. This is
in line with Blume et al. (1994).

4.4. Robustness check

As our sample extends a fairly long time (17 years), we check
the robustness of our results by evaluating the causal relations be-
tween return and volume in different sub-samples. Specifically, we
conduct the same causality analysis on two sample periods: Janu-
ary 1995–June 2006 and January 2000–June 2006. The choice of
these sub-samples is arbitrary.

We briefly summarize our estimation results here; the detailed
statistics and estimation results are available upon request. At 1%
level, the sup-Wald test suggests q� ¼ 1 in the model (10) for each
index in each sub-sample considered, except for S&P 500 in 1995–
2006 the sup-Wald test of b1ðsÞ ¼ 0 in the lag-1 model is 9.69
which is almost significant at 5% level. To ease our comparison,
we estimate all models with q� ¼ 1. The resulting estimates of
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b1ðsÞ based on the sample of 1995–2006 are plotted in Fig. 7, and
those based on the sample of 2000–20006 are plotted in Fig. 8. It is
readily seen that the LS estimates in these plots are all insignificant
at 5% level while the quantile causal patterns of these estimates are
qualitatively similar to those in Fig. 2. Indeed, we observe V-shape
causal relations for NYSE and S&P 500 in these sub-samples. Esti-
mating the model (11) with r2

t�j also yields similar results. To con-
serve space, the plots of these parameter estimates are not
presented here.

5. Concluding remarks

In this paper we estimate quantile causal effects and test Gran-
ger non-causality in different quantile ranges based on the quantile
regressions of return (log volume). We find that there are quantile
causal relations between return and log volume. More importantly,
our results indicate that the causal relations may be far more com-
plicated than what can be described using least-squares regression.
Indeed, the causal effects may be heterogeneous across quantiles
and that the causal effects at tail quantiles may be much different
from those at middle quantiles and at the mean. Thus, the conclu-
sion on non-causality based solely on a conventional test on the
mean relation may be misleading.

The empirical results of causality in quantiles, however, can not
be explained by existing equilibrium models (e.g., Campbell et al.,
1993). These models typically yield implications on the conditional
mean but say little about the behaviors of conditional quantiles.
Therefore, different models are needed to account for the quantile
causal patterns found in this paper. It is also interesting to note
that quantile causal relations provide detailed information about
distribution dispersion and hence can complement conventional
volatility measures, such as conditional variance. How to incorpo-
rate such information to improve on the evaluation of volatility
and related assets (e.g., VIX option) is an interesting topic and cur-
rently being investigated.
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