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a b s t r a c t

A well-known difficulty in estimating conditional moment restrictions is that the parameters of
interest need not be globally identified by the implied unconditional moments. In this paper, we
propose an approach to constructing a continuum of unconditional moments that can ensure parameter
identifiability. These unconditional moments depend on the ‘‘instruments’’ generated from a ‘‘generically
comprehensively revealing’’ function, and they are further projected along the exponential Fourier series.
The objective function is based on the resulting Fourier coefficients, from which an estimator can be
easily computed. A novel feature of our method is that the full continuum of unconditional moments
is incorporated into each Fourier coefficient. We show that, when the number of Fourier coefficients in
the objective function grows at a proper rate, the proposed estimator is consistent and asymptotically
normally distributed. An efficient estimator is also readily obtained via the conventional two-step GMM
method. Our simulations confirm that the proposed estimator compares favorablywith that of Domínguez
and Lobato (2004, Econometrica) in terms of bias, standard error, and mean squared error.
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1. Introduction

To estimate the parameters in conditional moment restrictions,
it is typical to find a finite set of unconditional moment restrictions
implied by the original restrictions and apply a suitable estimation
method, such as the generalized method of moment (GMM) of
Hansen (1982) and Hansen and Singleton (1982), or the empirical
likelihoodmethod of Qin and Lawless (1994) and Kitamura (1997).
A leading example is the instrumental-variable estimationmethod
for regression models. This approach hinges on the assumption
that the parameters in the conditional restrictions can be globally
identified by the implied, unconditional restrictions. With this
assumption, estimator consistency is not really a problem and
holds under suitable regularity conditions. Therefore, much
research interest focuses on estimator efficiency, e.g., Chamberlain
(1987), Newey (1990, 1993), Carrasco and Florens (2000) and
Donald et al. (2003).

Domínguez and Lobato (2004) challenge the assumption of
global identifiability and show that the unconditional moments,
when chosen arbitrarily, need not be equivalent to the origi-
nal conditional restrictions. The identification problem may arise

✩ This paper was originally entitled: ‘‘Consistent Parameter Estimation for
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even when the unconditional moments are based on the so-
called optimal instruments. Without assuming global identifiabil-
ity, Domínguez and Lobato (2004) introduce the ‘‘instruments’’
generated from an indicator function and construct a continuum
of unconditional moment restrictions that can identify the param-
eters of interest. However, there are some disadvantages of their
method. First, the indicator function takes only the values one and
zero and hence may not well present the information in the condi-
tioning variables. Second, their estimation method does not utilize
the full continuum of moment restrictions. This may result in fur-
ther efficiency loss (Carrasco and Florens, 2000). Third, it is not easy
to obtain an efficient estimate from their consistent estimate.

In this paper, we propose a different approach to constructing a
continuum of unconditional moments that can ensure parameter
identifiability. These unconditional moments depend on the ‘‘in-
struments’’ generated from the class of ‘‘generically comprehen-
sively revealing’’ (GCR) functions (Stinchcombe and White, 1998),
and these moments are further projected along the exponential
Fourier series. The objective function is then based on the result-
ing Fourier coefficients, from which an estimator can be easily
computed. A novel feature of our method is that it utilizes all
possible information in the conditioning variables because all un-
conditionalmoments have been incorporated into each Fourier co-
efficient. Moreover, an efficient estimator can be obtained via the
conventional two-step GMM method, which is computationally
simpler than that of Carrasco and Florens (2000).

http://dx.doi.org/10.1016/j.jeconom.2011.05.008
http://www.elsevier.com/locate/jeconom
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We first show that the proposed estimator is consistent and
asymptotically normally distributed when the number of Fourier
coefficients in the objective function grows at a proper rate. We
also specialize on the ‘‘instruments’’ generated from the expo-
nential function, a special case in the class of GCR functions. For
such instruments, the unconditional moments and Fourier coeffi-
cients have analytic forms, which greatly facilitate estimation in
practice. Our simulations confirm that, under various settings, the
proposed consistent and efficient estimators perform significantly
better than that of Domínguez and Lobato (2004) in terms of bias,
standard error, and mean squared error. The proposed estimators
also outperform the estimator based on the optimal instruments.

This paper is organized as follows. We introduce the new class
of consistent estimators in Section 2 and establish its consistency
and asymptotic normality in Section 3. The Efficient estimator
based on the proposed consistent estimator is discussed in Sec-
tion 4. The simulation results are reported in Section 5. Section 6
concludes this paper. All proofs are deferred to Appendix.

2. Consistent estimation

We are interested in estimating θo, the q×1 vector of unknown
parameters, in the following conditional moment restriction:

E[h(Y, θo)|X] = 0, with probability one (w.p.1), (1)

where h is a p × 1 vector of functions, Y is an r × 1 vector of
data variables, and X is an m × 1 vector of conditioning variables.
Without loss of generality, we shall work on the case that X is
bounded with probability one; see e.g., Bierens (1994, Theorem
3.2.1).

It is well known that (1) is equivalent to the unconditional
moment restriction:

E[h(Y, θo)f (X)] = 0, (2)

for all measurable functions f , where each f (X)may be interpreted
as an ‘‘instrument’’ that helps us to identify θo. In practice, one
typically forms an estimating function by subjectively choosing
certain instruments, such as the square and cross products of the
elements in X. This would not be a problem in a linear model if
the resulting unconditional moments can exactly identify θo. Yet,
when h is nonlinear in θo, Domínguez and Lobato (2004) show that
θo is not necessarily identified when unconditional moments are
determined arbitrarily, and its identifiability may depend on the
marginal distributions of the conditioning variablesX. This concern
is practically relevant because models with nonlinear restrictions
are quite common in econometric applications; see e.g., Hansen
and Singleton (1982) and Hansen and West (2002).1

Oneway to ensure parameter identifiability is to employ a class
of instruments that span a space of functions of X (Bierens, 1982,
1990; Stinchcombe and White, 1998). Domínguez and Lobato
(2004) set the instruments as 1(X ≤ τ) =

∏m
j=1 1(Xj ≤ τj),

where 1(A) is the indicator function of the event A. This leads
to a continuum of unconditional moments indexed by τ that are
equivalent to (1):

E[h(Y, θo)1(X ≤ τ)] = 0, τ ∈ Rm. (3)

Then, θo can be globally identified by an L2-normof thesemoments,
i.e.,

θo = argmin
θ∈Θ

∫
Rm

|E[h(Y, θ)1(X ≤ τ)]|2dP(τ), (4)

1 Hansen and West (2002) studied the papers published in 7 top economics
journals in 1990 and 2000 and found that, among 35 articles that employed the
GMM technique, 14 of them deal with models with nonlinear restrictions.
with P(τ) a distribution function of τ and |·| denotes the Euclidean
norm.

A natural choice of P(τ) is PX(τ), the distribution function of X.
The L2-norm in (4) can then be well approximated by the sample
average. Domínguez and Lobato (2004) suggest the following
estimator:

θDL(T ) = argmin
θ∈Θ

1
T

T−
k=1

 1T
T−

t=1

h(yt , θ)1(xt ≤ τk)


2

, (5)

where yt and xt are the sample observations of Y and X, respec-
tively, and τk = xk, k = 1, . . . , T . Clearly, this is a GMM estima-
tor based on T unconditional moments induced by the indicator
function.2

2.1. A class of consistent estimators

The indicator function is not the only choice for the desired
instruments; Stinchcombe andWhite (1998) demonstrate that any
GCR function will also do. Specifically, let ΛG(T ) be the collection
of λ(X) = G(A(X, τ)) with τ ∈ T ⊂ Rm+1 and A(X, τ) =

τ0 +
∑m

j=1 Xjτj. ΛG is said to be GCR if for all T with nonempty
interior, the uniform closure of the span of ΛG(T ) contains C(B)
for every compact B, where C(B) is the set of all bounded and
continuous functions on B. The function G is said to be GCR if ΛG
is GCR. Corollary 3.9 of Stinchcombe and White (1998) shows that
a real analytic function is GCR if and only if it is not a polynomial
(of a finite degree).3 Note that polynomials of finite degree are not
uniformly dense in the set of all continuous and bounded functions
andhence cannot be aGCR function. The legitimate choices ofG are,
for example, the exponential function (Bierens, 1982, 1990) or the
logistic function (White, 1989).

The discussion above suggests that, when G is GCR, (2) holds
with G(A(X, τ)) as legitimate instruments and τ in an arbitrarily
chosen index set T in Rm+1. The unconditional moment restric-
tions induced by a GCR function are

E[h(Y, θo)G(A(X, τ))] = 0, for almost all τ ∈ T ⊂ Rm+1, (6)

where T maybe a small subsetwith a nonempty interior. Note that
the indicator function is not GCR; hence (3) must hold for all τ in
Rm. Similar to (4), θo now can be globally identified by the L2-norm
of (6):

θo = argmin
θ∈Θ

∫
T

|E[h(Y, θ)G(A(X, τ))]|2dP(τ). (7)

In contrast with Domínguez and Lobato (2004), there is no natural
choice of P(τ), and it is not easy to find a proper sample counterpart
of the L2-norm in (7). Although an objective function for estimating
θo can be constructed using randomized τ, the resulting estimate
is arbitrary and may not be preferred.

In this paper, we take a different approach to deriving a class of
consistent estimators for θo without assuming parameter identifia-
bility in the implied unconditional moments. This approach finds a
condition equivalent to the L2-norm in (7). To this end, we project
the unconditional moments in (6) along the exponential Fourier
series and obtain

E[h(Y, θ)G(A(X, τ))] =
1

(2π)m+1

−
k∈S

CG,k(θ) exp(ik′τ),

2 Alternatively, Ai and Chen (2003) and Kitamura et al. (2004) consider
nonparametric estimation methods that deal with the conditional moments
directly.
3 A function is said to be analytic if it locally equals its Taylor expansion at every

point of its domain.
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where S := {k = [k0, k1, . . . , km]
′

∈ Zm+1
} with ki = 0, ±1,

±2, . . . ,±∞, and CG,k(θ) is a Fourier coefficient:

CG,k(θ) =

∫
T

E[h(Y, θ)G(A(X, τ))] exp(−ik′τ)dτ

= E
[
h(Y, θ)

∫
T

G(A(X, τ)) exp(−ik′τ)dτ
]

, k ∈ S.

It can be seen that each CG,k(θ) incorporates the full continuum of
the original instruments G(A(X, τ)) into a new instrument:

ϕG,k(X) =

∫
T

G(A(X, τ)) exp(−ik′τ)dτ, (8)

in which the index parameter τ has been integrated out.
We shall use the following notations. Given a complex number

f , let f̄ denote its complex conjugate and Re(f ) and Im(f ) denote
its real and imaginary parts, respectively. For a vector of complex
numbers f, its complex conjugate, real part and imaginary part are
defined elementwise. Then, |f|2 = f′ f̄. Apart from a scaling factor,
Parseval’s Theorem implies that the L2-norm in (7) is equivalent to−
k∈S

|CG,k(θ)|
2

=

−
k∈S

|E[h(Y, θ)ϕG,k(X)]|2.

It follows that θo can be identified as

θo = argmin
θ∈Θ

−
k∈S

|E[h(Y, θ)ϕG,k(X)]|2, (9)

where the right-hand side no longer involves τ; cf. (7).
By replacing E[h(Y, θ)ϕG,k(X)] in (9) with its sample counter-

part, an objective function for estimating θo is readily obtained. It
is well known that CG,k(θ) → 0 as |k| tends to infinity by Bessel’s
inequality. This suggests that the new instruments ϕG,k(X), and
hence E[h(Y, θ)ϕG,k(X)], contain little information for identifying
θo when |k| is large. As such, we may omit ‘‘remote’’ Fourier coef-
ficients and compute an estimator of θo as

θ(G, KT) = argmin
θ∈Θ

−
k∈S(KT)

 1T
T−

t=1

h(yt , θ)ϕG,k(xt)


2

, (10)

where S(KT) is a subset of S with ki = 0, ±1, . . . ,±KT , such that
KT grows with T but at a slower rate. The proposed estimator (10)
depends on the function G, and it is also a GMMestimator based on
(2KT +1)m+1 unconditional moments with the identity weighting
matrix. Hence,θ(G, KT) is not an efficient estimator in general.

Note that the Domínguez–Lobato estimator (5) relies only on
a finite number of unconditional moments determined by the
sample observations. By contrast, the proposed estimator (10)
utilizes all possible information in estimation because each ϕG,k
has included the full continuum of the instruments required for
identifying θo. Our estimator is also computationally simpler than
that of Carrasco and Florens (2000), which requires preliminary
estimation of a covariance operator and its eigenvalues and
eigenfunctions. Moreover, a regularization parameter must be
determined in practice so as to ensure the invertibility of the
estimated covariance operator.

2.2. A specific estimator

To compute the proposed estimator, we follow Bierens (1982,
1990) and set G as the exponential function. This choice has
some advantages relative to the indicator function. First, the
indicator function takes only the values one and zero, whereas
the exponential function is more flexible and hence may better
present the information in the conditioning variables. That
is, the exponential function may generate better instruments
for identifying θo. Second, the exponential function is smooth
and hence is convenient in an optimization program. Further,
exp(A(X, τ)) with τ ∈ Rm+1 and exp(X′τ) with τ ∈ Rm only
differ by a constant and hence play the same role in function
approximation (Stinchcombe and White, 1998). By employing
exp(X′τ) as a desired instrument, we are able to reduce the
dimension of integration in (7) by one, i.e., T ⊂ Rm, and the
summation in (9) is over S = {k = [k1, . . . , km]

′
∈ Zm

}.
More importantly, choosing exp(X′τ) results in an analytic form

for the instrument ϕexp,k which in turn facilitates estimation in
practice. In particular, settingT = [−π, π]

m, the new instruments
that integrate out τ are

ϕexp,k(X) =

∫
T

exp(X′τ) exp(−ik′τ)dτ

= ϕexp,k1(X1) · · · ϕexp,km(Xm), k ∈ S, (11)
where

ϕexp,kj(Xj) =

∫ π

−π

exp(Xjτj) exp(−ikjτj)dτj

=
(−1)kj · 2 sinh(πXj)

(Xj − ikj)
, j = 1, . . . ,m,

and sinh(w) = (exp(w)−exp(−w))/2. Based on ϕexp,k(X), θo can
be identified as in (9). The proposed estimator thus reads

θ(exp, KT) = argmin
θ∈Θ

−
k∈S(KT)

 1T
T−

t=1

h(yt , θ)ϕexp,k(xt)


2

, (12)

where k is m × 1.

2.3. Implementing the proposed method

To summarize, the proposed consistent estimator for θo in the
conditional moment restriction (1) can be computed via the fol-
lowing steps.
1. Choose a GCR function G, a subset T ⊂ Rm+1 with a nonempty

interior, and an integer KT smaller than T .
2. Denote S(KT) := {k = [k0, k1, . . . , km]

′, ki = 0, ±1, ±2,
. . . , ±KT }, and compute the instrument

ϕG,k(X) =

∫
T

G(A(X, τ)) exp(−ik′τ)dτ

for k ∈ S(KT). When G is the exponential function and T =

[−π, π]
m, ϕG,k(X) has the analytic form given in (11).

3. Using a GMM estimation program with the identity weighting
matrix, the proposed estimator is computed as

θ(G, KT) = argmin
θ∈Θ

−
k∈S(KT)

 1T
T−

t=1

h(yt , θ)ϕG,k(xt)


2

.

Thus far, it is not clear how the number of the required
Fourier coefficients, KT, should be determined. For convenience,
we suggest to choose KT when there is not much change between
the estimates with KT and KT + 1. That is, given a tolerance level
q%, KT is chosen when

‖θ(G, KT + 1) −θ(G, KT)‖

‖θ(G, KT)‖
< q%,

where ‖ · ‖ denotes a vector norm.

3. Asymptotic properties

We now establish the asymptotic properties of the proposed
estimatorθ(G, KT). To ease our illustration and proof, we begin
our analysis with the case that m = 1; the univariate X is denoted
as X (no boldface). The asymptotic properties for the case with
multivariate X are discussed in Section 3.3.
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3.1. Consistency

We impose the following conditions.

[A1] The observed data (y′
t , xt)

′, t = 1, . . . , T , are independent
realizations of (Y′, X)′.

[A2] For each θ ∈ Θ,h(·, θ) is measurable, and for each y ∈

Rr ,h(y, ·) is continuous on Θ , where Θ is a compact subset
inRq. Also, θo inΘ is the unique solution toE[h(Y, θ)|X] = 0.

[A3] E[supθ∈Θ |h(Y, θ)|2] < ∞.
[A4] G is real analytic but not a polynomial such that, w.p.1,

supτ∈T |G(A(X, τ))| < ∞, supτ∈T |Gi(A(X, τ))| < ∞,
and supτ∈T |Gij(A(X, τ))| < ∞, where Gi(A(X, τ)) =

∂G(A(X, τ))/∂τi and Gij(A(X, τ)) = ∂2G(A(X, τ))/(∂τi∂τj),
for i, j = {0, 1}.

These conditions are convenient and quite standard in theGMM
literature. Theymay be relaxed at the expense ofmore technicality.
For example, it is possible to extend [A1] to allow for weakly
dependent and heterogeneously distributed data; see, e.g., Gallant
and White (1988) and Chen and White (1996). Note that in [A2],
θo is assumed to be the unique solution to the original conditional
restrictions; we do not require θo to be the unique solution to some
implied, unconditional moment restrictions. As in Stinchcombe
and White (1998), [A4] requires G to be real analytic but not a
polynomial. [A4] also imposes additional restrictions on G and its
derivatives, yet it still permits quite general G functions.

Setting T = [−π, π]
2, the instruments resulted from G are

ϕG,k(X) =

∫
[−π,π]2

G(A(X, τ)) exp(−ik′τ)dτ. (13)

Here, k = (k0, k1)′. Define c(ki) = |ki| for ki ≠ 0 and c(ki) = 1 for
ki = 0, i = 0, 1. The result below provides a bound on ϕG,k(X).

Lemma 3.1. Given [A4], |ϕG,k(X)| ≤ ∆/[c(k0)c(k1)] w.p.1, where
∆ is a real number.

Define the sample counterpart of CG,k(θ) as

mG,k,T (θ) =
1
T

T−
t=1

h(yt , θ)ϕG,k(xt).

With Lemma 3.1, we are able to characterize the approximating
capability of mG,k,T (θ).

Lemma 3.2. Given [A1]–[A4], if KT → ∞ and KT = o(T 1/2), then

sup
Θ

KT−
k0,k1=−KT

|mG,k,T (θ) − CG,k(θ)|
2 P

−→ 0,

where
P

−→ stands for convergence in probability.

Lemma 3.2 implies

KT−
k0,k1=−KT

|mG,k,T (θ)|
2 P

−→

∞−
k0,k1=−∞

|CG,k(θ)|
2, (14)

uniformly for all θ in Θ . As θo is the unique minimizer of the
right-hand side of (14), the consistency result below follows from
Theorem 2.1 of Newey and McFadden (1994).

Theorem 3.3. Given [A1]–[A4], if KT → ∞ and KT = o(T 1/2),
thenθ(G, KT)

P
−→ θo as T → ∞.

For the estimatorθ(exp, KT) in (12), note that exp(Xτ) satisfies
[A4] with τ a scalar. It is easy to deduce that Lemma 3.1 holds with
|ϕexp,k(X)| ≤ ∆/k. In analogy with Lemma 3.2, we also have
KT−
k=−KT

|mexp,k,T (θ) − Cexp,k(θ)|
2 P

−→ 0, (15)

when KT = o(T ). The result below follows from (15) and is
analogous to Theorem 3.3.

Corollary 3.4. Given [A1]–[A3], if KT → ∞ and KT = o(T ), thenθ(exp, KT)
P

−→ θo as T → ∞.

3.2. Asymptotic normality

Recall that the Fourier coefficient CG,k(θ) can be expressed as

E[h(Y, θ)ϕG,k(X)]

=

∫
[−π,π ]2

E[h(Y, θ)G(A(X, τ))] exp(−ik′τ)dτ,

which is the integral of the product of two functions in τ, i.e.,
E[h(Y, θ)G(A(X, ·))] and exp(−ik′

·). To establish asymptotic nor-
mality, we work on E[h(Y, θ)G(A(X, ·))] and its sample counter-
part directly. This requires some results in the function space, as
given below.

Consider functions in the Hilbert space L2[−π, π]. The inner
product of two p × 1 vectors of functions f and g is ⟨f, g⟩ = π

−π
f(τ )′ḡ(τ )dτ , and the norm induced by the inner product is

⟨f, f⟩1/2. A random element U has mean E(U) if E[⟨U, g⟩] =

⟨E(U), g⟩ for any g in L2[−π, π]. The covariance operator K
associated with U is, for any g in L2[−π, π], Kg = E[⟨U −

E(U), g⟩(U − E(U))] such that

(Kg)(τ ) = E[⟨U − E(U), g⟩(U(τ ) − E(U(τ )))]

=


p−

i=1

∫ π

−π

κji(τ , s)gi(s)ds


j=1,...,p

,

with the kernel κji(τ , s) = E[(Uj(τ ) − EUj(τ ))(Ui(s) − EUi(s))].
U is said to be Gaussian if for any g in L2[−π, π], ⟨U, g⟩ has
a normal distribution on R with mean ⟨E(U), g⟩ and variance
⟨Kg, g⟩. Analogous results also hold in L2([−π, π]

m). For more
discussions on random elements in Hilbert space, see, e.g., Chen
and White (1998) and Carrasco and Florens (2000).

In view of (10),θ(G, KT) must satisfy the first order condition:

0 =

KT−
k0,k1=−KT

∇θmG,k,T (θ)
′mG,k,T (θ) + ∇θmG,k,T (θ)

′mG,k,T (θ)

=

KT−
k0,k1=−KT

2 Re(∇θmG,k,T (θ)
′mG,k,T (θ)),

where ∇θmG,k,T (θ) is a p × q matrix with ∇θimG,k,T (θ) its ith
column. A mean-value expansion of mG,k,T (θ(G, KT)) about θo
gives

mG,k,T (θ(G, KT)) = mG,k,T (θo) + ∇θmG,k,T (θ
Ď
T )(
θ(G, KT) − θo),

where θ
Ď
T is betweenθ(G, KT) and θo, and its valuemay be different

for each row in the matrix ∇θmG,k,T (θ
Ď
T ). Thus,

KT−
k0,k1=−KT

Re


∇θmG,k,T (θ(G, KT))

′
[mG,k,T (θo)

+ ∇θmG,k,T (θ
Ď
T )(
θ(G, KT) − θo)]


= 0. (16)

To derive the limiting distribution of normalizedθ(G, KT), we
impose the following conditions.
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[A5] θo is in the interior of Θ .
[A6] For each y,h(y, ·) is continuously differentiable in a neigh-

borhood N of θo such that E[supθ∈N ‖∇θh(Y, θ)‖2
] < ∞,

where ‖ · ‖ is a matrix norm.
[A7] The q × qmatrix Mq, with the (i, j)th element

⟨E[∇θih(Y, θo)G(A(X, ·))], E[∇θjh(Y, θo)G(A(X, ·))]⟩,

is symmetric and positive definite.

[A8] T−1/2∑T
t=1 h(yt , θo)G(A(xt , ·))

D
−→ Z, where

D
−→ denotes

convergence in distribution, and Z is a p-dimensional Gaus-
sian random element that has mean zero and the covariance
operator K with

(Kg)(τ ) = E[⟨h(Y, θo)G(A(X, ·)), g⟩(h(Y, θo)G(A(X, τ )))],

for any p-dimensional function g.

Here, [A5] is needed for mean-value expansion; [A6] is a
standard ‘‘smoothness’’ condition in nonlinear models. By [A7],
Mq is invertible so that the normalized estimator has a unique
representation, as given in (17). We directly assume functional
convergence in [A8] for convenience; this condition is the same
as Assumption 11 in Carrasco and Florens (2000). To ensure such
convergence, one may also impose primitive conditions on h,G
and the data; see, e.g., Chen and White (1998).

To study the behavior of the normalized estimator via (16),
we give two limiting results for the terms on the right-hand side
of (16).

Lemma 3.5. Given [A1]–[A6], if KT → ∞ and KT = o(T 1/4), then

KT−
k0,k1=−KT

Re(∇θmG,k,T (θ(G, KT))
′
∇θmG,k,T (θ

Ď
T ))

P
−→

∞−
k0,k1=−∞

∇θCG,k(θo)
′
∇θCG,k(θo).

The limit in Lemma 3.5 is precisely the matrix Mq defined in
[A7], because its (i, j)th element is

∞−
k0,k1=−∞

∇θiCG,k(θo)
′
∇θjCG,k(θo)

= ⟨E[∇θih(Y, θo)G(A(X, ·))], E[∇θjh(Y, θo)G(A(X, ·))]⟩,

by the Multiplication theorem (e.g. Stuart, 1961).

Lemma 3.6. Given [A1]–[A6], if KT → ∞ and KT = o(T 1/4), then

KT−
k0,k1=−KT

Re(∇θmG,k,T (θ(G, KT))
′
√
T mG,k,T (θo))

=

∞−
k0,k1=−∞

∇θCG,k(θo)
′
√
T mG,k,T (θo) + oP(1).

With Lemmas 3.5 and 3.6, (16) can be expressed as
√
T (θ(G, KT) − θo)

= −M−1
q


∞−

k0,k1=−∞

∇θCG,k(θo)
′
√
TmG,k,T (θo)


+ oP(1). (17)

The functional convergence condition [A8] now ensures that the
term in the square bracket on the right-hand side of (17) has a
limiting normal distribution, which in turn leads to the asymptotic
normality ofθ(G, KT).
Theorem 3.7. Given [A1]–[A8], if KT → ∞ and KT = o(T 1/4),
then
√
T (θ(G, KT) − θo)

D
−→ N (0, V),

where V = M−1
q ΩqM

−1
q and Ωq is a q × q matrix with the (i, j)th

element:

⟨E[∇θih(Y, θo)G(A(X, ·))], KE[∇θjh(Y, θo)G(A(X, ·))]⟩.

For the estimatorθ(exp, KT)withG(A(X, τ)) = exp(Xτ), it can
be verified that the results analogous to Lemmas 3.5 and 3.6 hold
when KT is o(T 1/2). In particular,

KT−
k=−KT

Re(∇θmexp,k,T (θ(exp, KT))
′
∇θmexp,k,T (θ

Ď
T ))

P
−→

∞−
k=−∞

∇θCexp,k(θo)
′
∇θCexp,k(θo), (18)

which is the matrix Mq with the (i, j)th element:
⟨E[∇θih(Y, θo) exp(X ·)], E[∇θjh(Y, θo) exp(X ·)]⟩,

and
KT−

k=−KT

Re(∇θmexp,k,T (θ(exp, KT))
′
√
T mexp,k,T (θo))

=

∞−
k=−∞

∇θCexp,k(θo)
′
√
T mexp,k,T (θo) + oP(1). (19)

In this case, (17) becomes
√
T (θ(exp, KT) − θo)

= −M−1
q


∞−

k=−∞

∇θCexp,k(θo)
′
√
T mexp,k,T (θo)


+ oP(1), (20)

which also has a limiting normal distribution. The result below is
analogous to Theorem 3.7.

Corollary 3.8. Given [A1]–[A3] and [A5]–[A8], if KT → ∞ and
KT = o(T 1/2), then
√
T (θ(exp, KT) − θo)

D
−→ N (0, V),

where V = M−1
q ΩqM

−1
q and Ωq is a q × q matrix with the (i, j)th

element:

⟨E[∇θih(Y, θo) exp(X ·)], KE[∇θjh(Y, θo) exp(X ·)]⟩.

For estimation of V in Corollary 3.8, note from (18) that Mq can
be consistently estimated by

KT−
k=−KT

∇θmexp,k,T (θ(exp, KT))
′
∇θmexp,k,T (θ(exp, KT)).

From [A8] and (19), Ωq can be consistently estimated by the real
part of

KT−
k=−KT

KT−
ℓ=−KT

[∇θmexp,ℓ,T (θ(exp, KT))
′
]

×


1
T

T−
t=1

h(yt ,θ(exp, KT))ϕexp,ℓ(xt)ϕexp,k(xt)

× h(yt ,θ(exp, KT))
′


[∇θmexp,k,T (θ(exp, KT))].

A consistent estimator of V is readily computed from these two
estimators.
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3.3. The results for multivariate X

We now extend the asymptotic properties above to the case
withmultivariateX. Recall thatX is anm×1 vector of conditioning
variables. Setting T = [−π, π]

m+1, the proposed instruments
based on G are

ϕG,k(X) =

∫
[−π,π ]m+1

G(A(X, τ)) exp(−ik′τ)dτ,

where k = (k0, k1, . . . , km)′. The required conditions for asym-
ptotics are unchanged, except [A4] is changed to [A4′].

[A4′
] G is real analytic but not a polynomial such that w.p.1,

sup
τ∈T


∂ jG(A(X, τ))

m∏
i=0

(∂τi)li

 < ∞,

where i = 0, 1, . . . ,m, j = 1, . . . ,m, and li = 0, 1, . . . , j
such that

∑m
i=1 li = j.

Again, let c(ki) = |ki| for ki ≠ 0 and c(ki) = 1 for ki = 0, i =

0, 1, . . . ,m. Similar to Lemma 3.1, we obtain the following bound
on ϕG,k(X) when X is multivariate.

Lemma 3.9. Given [A4′
], |ϕG,k(X)| ≤ ∆/[

∏m
i=0 c(ki)] w.p.1, where

∆ is a real number.

With Lemma 3.9, the results below include Theorems 3.3 and
3.7 as special cases. Note that the growth rates of KT depend onm,
the dimension ofX.4 The results for the specific estimatorθ(G, KT)
can be obtained similarly.

Theorem 3.10. Given [A1]–[A3] and [A4′
], if KT → ∞ and KT =

o(T 1/(m+1)), thenθ(G, KT)
P

−→ θo as T → ∞.

Theorem 3.11. Given [A1]–[A3], [A4′
] and [A5]–[A8], if KT → ∞

and KT = o(T 1/(2m+2)), then
√
T (θ(G, KT) − θo)

D
−→ N (0, V),

where V = M−1
q ΩqM

−1
q and Ωq is a q × q matrix with the (i, j)th

element:

⟨E[∇θih(Y, θo)G(A(X, ·))], KE[∇θjh(Y, θo)G(A(X, ·))]⟩.

4. Efficient estimation

It now remains to show how an efficient estimator can be
computed; this is the topic to which we now turn. Following
Newey (1990, 1993) and Domínguez and Lobato (2004), an
efficient estimate may be obtained from the proposed consistent
estimate via an additional Newton–Raphson step. That is, an
efficient estimator can be computed asθe
T =θ(G, KT) − [∇θθ′QT (θ(G, KT))]

−1
∇θQT (θ(G, KT)),

where QT (θ) is an objective function for the efficient estimator
that can locally identify θo, and ∇θQT (θ) and ∇θθ′QT (θ) are
its gradient vector and Hessian matrix, both evaluated at the
consistent estimate θ(G, KT). In practice, identifying such an
objective function and estimating its gradient and Hessian matrix

4 The dimension m affects the growth rates of KT only through the implication
rule and the generalized Chebyshev inequality in the proofs.
may not be as straightforward as one would like (Newey, 1990,
1993).

Carrasco and Florens (2000) consider efficient estimation based
on the objective function that takes into account the covariance
structure:

θo = argmin
θ∈Θ

∫
T

K−1/2
|E[h(Y, θ) exp(τX)]|2dP(τ ),

where K is the covariance operator introduced in Section 3.2,
and the corresponding estimation method is based on projection
along preliminary estimates of the eigenfunctions of K. There are
some drawbacks of this approach. First, this estimator depends on
various user-chosen parameters and hence is arbitrary to some
extent. Second, the generalized inverse of the covariance operator
exists only for a subset of Hilbert space, namely, the reproducing
kernel Hilbert space. Moreover, it is difficult to generalize their
results to allow for multivariate X .

Alternatively, an efficient estimator is readily computed via the
conventional two-step GMM method. As ϕG,k(X) is complex, we
now consider ϕr

G,k(X) and ϕi
G,k(X), the real and imaginary parts of

ϕG,k(X).5 Equivalent to (9), θo can also be identified as

θo = argmin
θ∈Θ

−
k∈S

|E[h(Y, θ)ϕr
G,k(X)]|2 + |E[h(Y, θ)ϕi

G,k(X)]|2,

where the minimum of this objective function is zero. A new set
of unconditional moment restrictions now consists of E[h(Y, θo)
ϕr
G,k(X)] = 0 and E[h(Y, θo)ϕ

i
G,k(X)] = 0 with k ∈ S. Given

ϕr
G,k(X) = ϕr

G,−k(X) and ϕi
G,k(X) = −ϕi

G,−k(X) for any k ∈ S, some
of these unconditional moment restrictions are redundant and can
be omitted.

Let qt(θ,G, KT) = h(yt , θ) ⊗ ZG,KT(xt), where ZG,KT(xt) is the
(2KT+1)×(4KT+1)m-dimensional vector that contains ϕr

G,k(xt)
and ϕi

G,k(xt), where k = [k0, k1, . . . , km]
′ with k0 = 0, 1, . . . , KT,

and ki = 0, ±1, . . . ,±KT for i = 1, 2, . . . ,m. The sample
counterpart of the asymptotic covariance matrix of qt(θ,G, KT) is

VT (θ,G, KT) =
1
T

T−
t=1

qt(θ,G, KT)qt(θ,G, KT)
′.

Evaluating the inverse of VT at the consistent estimateθ(G, KT)
and taking the resulting matrix as the weighting matrix, an effi-
cient GMM estimator of θo is

θe
(G, KT) = argmin

θ∈Θ


1
T

T−
t=1

qt(θ,G, KT)

′

V−1
T (θ(G, KT),G, KT)

×


1
T

T−
t=1

qt(θ,G, KT)


. (21)

In the homoskedasticity case that E[h(yt , θo)h(yt , θo)
′
|X] is con-

stant, VT simplifies to

VT (θ,G, KT) =


1
T

T−
t=1

h(yt , θ)h(yt , θ)′


⊗


1
T

T−
t=1

ZG,KT(xt)ZG,KT(xt)
′


.

5 For example, when X is univariate and G is the exponential function,

ϕr
exp,k(X) = (−1)k

2X
X2 + k2

sinh(πX),

ϕi
exp,k(X) = (−1)k

2k
X2 + k2

sinh(πX),

are the real and imaginary parts of ϕexp,k(X).
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Table 1
Models in Domínguez and Lobato (2004) with exogenous regressors.

Sample Estimator X ∼ N (0, 1) X ∼ N (1, 1)
T Bias SE MSE Bias SE MSE

50 θ̂NLS −0.0011 0.0498 0.0025 −0.0002 0.0225 0.0005
θ̂OPIV −0.0168 0.1961 0.0387 −2.2072 0.7923 5.4992
θ̂DL −0.0058 0.1373 0.0189 −0.0011 0.0484 0.0023
θ̂ (exp, KT) −0.0024 0.0776 0.0060 −0.0004 0.0253 0.0006θ e(exp, KT) −0.0017 0.0614 0.0038 −0.0001 0.0248 0.0006

100 θ̂NLS −0.0009 0.0347 0.0012 −0.0002 0.0158 0.0002
θ̂OPIV −0.0037 0.0833 0.0070 −2.2266 0.7890 5.5801
θ̂DL 0.0021 0.0840 0.0071 −0.0003 0.0336 0.0011
θ̂ (exp, KT) −0.0008 0.0501 0.0025 −0.0001 0.0174 0.0003θ e(exp, KT) −0.0010 0.0394 0.0016 −0.0001 0.0166 0.0003

200 θ̂NLS −0.0002 0.0239 0.0006 0.0001 0.0110 0.0001
θ̂OPIV −0.0018 0.0601 0.0036 −2.2382 0.7769 5.6129
θ̂DL −0.0010 0.0580 0.0034 0.0004 0.0244 0.0006
θ̂ (exp, KT) −0.0005 0.0343 0.0012 0.0002 0.0123 0.0002θ e(exp, KT) −0.0003 0.0261 0.0007 0.0001 0.0115 0.0001

NOTE:
1. The DGP is Y = θ2

o X + θoX2
+ ϵ, ϵ ∼ N (0, 1), where θo = 1.25, X ∼ N (0, 1) or X ∼ N (1, 1).

2. We set KT = 5 forθ(exp, KT) andθ e(exp, KT).
The inverse of VT is easy to compute in practice because the first
term in VT is positive definite and the inverse of the second term
can be obtained by any generalized inverse method. Under the im-
posed conditions, it is reasonable to expectθe

(G, KT) being as ef-
ficient as that of Carrasco and Florens (2000) asymptotically.

By treating ZG,KT(xt) as a class of approximating functions, the
results in Donald et al. (2003) may be employed to establish the
asymptotic properties of the efficient estimator (21).6 It should be
emphasized that, with the proposed unconditional moments, the
two-step GMM estimation method is not the only way to obtain
an efficient estimator. Other methods, such as empirical likelihood
estimation (e.g., Qin and Lawless, 1994) and continuously updated
estimation (e.g., Hansen et al., 1996) will also do.

5. Simulations

In this section, we focus on the finite-sample performance of
the proposed consistent and efficient estimators:θ(exp, KT) andθe

(exp, KT). We compare their performance with the nonlinear
least squares (NLS) estimator:

θNLS = argmin
θ∈Θ

1
T

T−
t=1

|h(yt , θ)|2,

and the DL estimator of Domínguez and Lobato (2004), θDL in
(5). Our comparison is based on the bias, standard error (SE), and
mean squared error (MSE) of these estimators. The parameter
estimates are computed using the GAUSS optimization procedure,
OPTMUM,with the BFGS algorithm. In all experiments, the samples
are T = 50, 100, 200; the number of replications is 5000. In each
replication, we randomly draw 10 initial values for all estimators,
and for each estimator, the estimate that leads to the smallest value
of the objective function is chosen. The data xt are transformed
using a logistic mapping: exp(xt)/[1 + exp(xt)], so that they are
bounded between 0 and 1. Note that we set KT = 5 for the
proposed estimators; the effect of different KT on the proposed
estimator will be examined in Section 5.4.

6 Some stronger conditions are needed. For example, when G is the exponential
function and X is univariate, Theorems 5.3 and 5.4 in Donald et al. (2003) require
the growth rate of KT being o(T 1/2). This is more restrictive than the rate required
for the consistent estimator:θ(exp, KT); cf. Corollary 3.4.
5.1. The experiments in Domínguez and Lobato (2004)

Following Domínguez and Lobato (2004), we postulate the
following nonlinear model with exogenous regressors:

Y = θ2
o X + θoX2

+ ϵ, ϵ ∼ N (0, 1),

where θo = 1.25 is the unique solution to the conditional moment
restriction: E(ϵ|X) = 0. We consider two cases: X ∼ N (0, 1) and
X ∼ N (1, 1).

When X ∼ N (0, 1), θo = 1.25 is the only real solution to
the unconditional moment restriction resulted from the ‘‘feasible’’
optimal instrument (2θX + X2); the other two solutions are
complex: −0.625 ± 1.0533i. When X ∼ N (1, 1), in addition to
θo = 1.25, θ = −1.25 and θ = −3 also satisfy the unconditional
moment restriction with the ‘‘feasible’’ optimal instrument. In this
case, 1.25 is the global minimum of the NLS objective function;
the other two solutions are only local minima. For comparison,
our simulations here also includes the optimal instrument variable
(OPIV) estimator:

θOPIV = argmin
θ∈Θ


1
T

T−
t=1

(yt − θ2xt − θx2t )(2θxt + x2t )

2

,

which is different from the NLS estimator; cf. Domínguez and
Lobato (2004, p. 1608).

The simulation results are summarized in Table 1. Inmost cases,
the NLS estimator outperforms the other estimators in terms of
bias, SE and MSE, as it ought to be. On the other hand,θOPIV has
severe bias and large SE and is dominated by the other estimators.
Note that when X ∼ N (1, 1), the existence of 3 possible solutions
(1.25, −1.25 and −3) suggests that the bias of the OPIV estimator
should be close to −2.25. This is confirmed in our simulation.7 It
is also clear that the proposed consistent and efficient estimators,θ(exp, KT) andθ e(exp, KT), both dominate the DL estimator in
terms of bias, SE and MSE in all cases. Also, there is no significant
difference between these two estimators and the DL estimator
in terms of the speed of convergence. When the sample size is
not too small (T = 100, 200), the performance of the proposed
efficient estimator is comparable with that of the NLS estimator. It

7 Note that Domínguez and Lobato (2004) report a much smaller bias (about
−0.4) under the same simulation design.
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Table 2
Models with an endogenous regressor.

ρ Est. T = 50 T = 100 T = 200
Bias SE MSE Bias SE MSE Bias SE MSE

0.01 θ̂NLS 0.0014 0.0315 0.0010 0.0010 0.0212 0.0005 0.0015 0.0146 0.0002
θ̂DL −0.0108 0.1129 0.0129 −0.0037 0.0800 0.0064 −0.0006 0.0560 0.0031
θ̂ (exp, KT) −0.0001 0.0557 0.0031 0.0007 0.0368 0.0014 0.0007 0.0239 0.0006θ e(exp, KT) −0.0005 0.0492 0.0024 0.0001 0.0331 0.0011 0.0005 0.0218 0.0005

0.1 θ̂NLS 0.0098 0.0314 0.0011 0.0102 0.0212 0.0006 0.0103 0.0147 0.0003
θ̂DL −0.0137 0.1170 0.0139 −0.0054 0.0826 0.0068 −0.0021 0.0565 0.0032
θ̂ (exp, KT) −0.0025 0.0568 0.0032 −0.0006 0.0358 0.0013 −0.0001 0.0241 0.0006θ e(exp, KT) −0.0019 0.0503 0.0025 −0.0001 0.0325 0.0011 0.0003 0.0217 0.0005

0.3 θ̂NLS 0.0324 0.0314 0.0020 0.0311 0.0210 0.0014 0.0314 0.0145 0.0012
θ̂DL −0.0100 0.1183 0.0141 −0.0067 0.0836 0.0070 −0.0046 0.0574 0.0033
θ̂ (exp, KT) −0.0029 0.0571 0.0033 −0.0023 0.0369 0.0014 −0.0011 0.0242 0.0006θ e(exp, KT) 0.0016 0.0512 0.0026 0.0004 0.0335 0.0011 0.0005 0.0220 0.0005

0.5 θ̂NLS 0.0539 0.0310 0.0039 0.0527 0.0206 0.0032 0.0522 0.0144 0.0029
θ̂DL −0.0120 0.1237 0.0154 −0.0088 0.0852 0.0073 −0.0029 0.0593 0.0035
θ̂ (exp, KT) −0.0049 0.0575 0.0033 −0.0033 0.0360 0.0013 −0.0009 0.0249 0.0006θ e(exp, KT) 0.0024 0.0522 0.0027 0.0012 0.0324 0.0011 0.0012 0.0224 0.0005

0.7 θ̂NLS 0.0746 0.0291 0.0064 0.0736 0.0202 0.0058 0.0731 0.0139 0.0055
θ̂DL −0.0168 0.1268 0.0164 −0.0079 0.0851 0.0073 −0.0051 0.0588 0.0035
θ̂ (exp, KT) −0.0102 0.0606 0.0038 −0.0039 0.0369 0.0014 −0.0026 0.0252 0.0006θ e(exp, KT) 0.0011 0.0536 0.0029 0.0020 0.0340 0.0012 0.0007 0.0226 0.0005

0.9 θ̂NLS 0.0968 0.0287 0.0102 0.0951 0.0187 0.0094 0.0939 0.0131 0.0090
θ̂DL −0.0153 0.1287 0.0168 −0.0082 0.0866 0.0076 −0.0034 0.0587 0.0035
θ̂ (exp, KT) −0.0112 0.0623 0.0040 −0.0048 0.0372 0.0014 −0.0010 0.0239 0.0006θ e(exp, KT) 0.0021 0.0574 0.0033 0.0028 0.0336 0.0011 0.0030 0.0216 0.0005

NOTE:
1. The DGP is Y = θ2

o Z + θoZ2
+ ϵ, and Z = X + ν with[

ϵ

ν

]
∼ N


0,
[
1 ρ

ρ 1

]
,

where θo = 1.25, ρ = 0.01, 0.1, 0.3, 0.5, 0.7, 0.9, and X ∼ N (0, 1) is independent of ϵ and ν.
2. We set KT = 5 forθ(exp, KT) andθ e(exp, KT).
is somewhat surprising to see that, compared with the proposed
consistent estimator, our efficient estimator has not only smaller
SE and MSE but also slightly smaller bias in many cases. The
trade-off between SE and bias can be seen in the experiments in
Section 5.3.

5.2. Model with an endogenous regressor

We extend the previous experiment to the case that there is an
endogenous regressor. The model specification is

Y = θ2
o Z + θoZ2

+ ϵ,

and Z = X + ν, with[
ϵ
ν

]
∼ N


0,
[
1 ρ
ρ 1

]
,

where θo = 1.25, ρ = 0.01, 0.1, 0.3, 0.5, 0.7, 0.9, and X ∼

N (0, 1) is independent of ϵ and ν. Given this specification,
E(ϵ|X) = 0. The simulation results are collected in Table 2.

It is clear that the bias of these estimators all increaseswithρ. In
particular, the NLS estimator has very large biases, and such biases
do not diminish when the sample size increases. This should not
be surprising because the NLS estimator is inconsistent (due to the
endogenous regressor). On the other hand, the proposed consistent
and efficient estimators perform remarkablywell. They havemuch
smaller bias than theNLS estimator, and they again outperform the
DL estimator in terms of bias, SE, andMSE for anyρ and any sample
size. Although the NLS estimator typically has a smaller SE, the
proposed estimators may yield smaller MSE when the correlation
between ϵ and ν is not too small (e.g., ρ ≥ 0.3).
5.3. Noisy disturbances

We now examine the effect of the disturbance variance on the
performance of various estimators. The model is again

Y = θ2
o X + θoX2

+ ϵ, ϵ ∼ N (0, σ 2),

where θo = 1.25, X is the uniform random variable on (−1, 1) and
independent of ϵ, and σ 2

=1, 4 and 9. It can be verified that there
are 3 solutions to the unconditional moment restriction resulted
from the ‘‘feasible’’ optimal instrument (2θX + X2): θ = 1.25 and
(−25 ±

√
145)/40, where 1.25 is the global minimum.

The results are summarized in Table 3. We note first that, in
contrast with the results in Table 1, the NLS estimator is no longer
the best estimator even when there is a unique global minimum
and the regressor is exogenous. The proposed consistent estimator
has smaller biases than all other estimators in all cases, except its
bias is slightly larger than the NLS estimator when σ 2

= 1 and T =

200. In terms ofMSE, the proposed consistent estimator dominates
the DL estimator in all cases and outperforms the OPIV estimator
when σ 2 is not too large. Although the proposed efficient estimator
has larger bias thanθ(exp, KT) in most cases, it still outperforms
the other estimators in terms of bias in all cases (except when
T = 50 and σ 2

= 1). Moreover, the efficient estimator has the
smallest MSE in all cases with T = 100, 200, and its MSE is only
slightly larger than the NLS estimator for T = 50. As far as MSE
is concerned, the proposed efficient estimator is to be preferred to
the other estimators.

5.4. The proposed estimator with various KT

We now examine the effect of KT on the performance of the
proposed estimator. The model specification is the same as that in
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Table 3
Models with different disturbance variances.

σ 2 Estimator T = 50 T = 100 T = 200
Bias SE MSE Bias SE MSE Bias SE MSE

1 θNLS −0.4144 0.9391 1.0535 −0.2227 0.7166 0.5631 −0.0680 0.4055 0.1690θOPIV −1.0993 0.9027 2.0230 −1.1143 0.9086 2.0669 −1.1370 0.9230 2.1444θDL −0.8468 1.0712 1.8643 −0.6325 0.9782 1.3567 −0.4303 0.8550 0.9160θ(exp, KT) −0.3146 1.0875 1.2814 −0.1543 0.8050 0.6717 −0.0685 0.4931 0.2478θ e(exp, KT) −0.4241 0.9645 1.1100 −0.2105 0.7089 0.5467 −0.0559 0.3707 0.1405

4 θNLS −0.7696 1.1993 2.0303 −0.6318 1.1061 1.6223 −0.4155 0.9399 1.0559θOPIV −1.1114 0.9403 2.1192 −1.0835 0.9315 2.0415 −1.1021 0.9157 2.0529θDL −1.2274 1.1969 2.9387 −1.0644 1.1360 2.4232 −0.8628 1.0637 1.8757θ(exp, KT) −0.5048 1.5702 2.7199 −0.3924 1.2976 1.8374 −0.2346 1.0388 1.1340θ e(exp, KT) −0.7614 1.2632 2.1750 −0.5727 1.0948 1.5262 −0.3573 0.8932 0.9252

9 θNLS −0.9124 1.3041 2.5328 −0.8078 1.2110 2.1187 −0.6299 1.1001 1.6067θOPIV −1.1412 0.9744 2.2517 −1.1136 0.9458 2.1345 −1.0870 0.9238 2.0347θDL −1.3675 1.3043 3.5709 −1.2492 1.1965 2.9918 −1.0814 1.1259 2.4369θ(exp, KT) −0.5511 1.8035 3.5556 −0.4478 1.5662 2.6530 −0.3624 1.3195 1.8720θ e(exp, KT) −0.8602 1.3805 2.6453 −0.7479 1.2245 2.0584 −0.5786 1.0817 1.5046

NOTE:
1. The DGP is Y = θ2

o X + θoX2
+ ϵ, ϵ ∼ N (0, σ 2), where θo = 1.25, X is the uniform random variable on (−1, 1) and independent of ϵ, and σ 2

= 1, 4 and 9.
2. We set KT = 5 forθ(exp, KT) andθ e(exp, KT).
Table 4
The performance of θ̂ (exp, KT) with various KT: ρ = 0.5.

KT Bias Bias (+%) SE SE (+%) MSE MSE (+%)

T = 100

1 −0.0033 – 0.0378 – 0.0014 –
2 −0.0032 −0.6704 0.0373 −1.3585 0.0014 −2.6884
3 −0.0032 −0.2632 0.0371 −0.5527 0.0014 −1.0981
4 −0.0032 −0.1372 0.0370 −0.2945 0.0014 −0.5858
5 −0.0032 −0.0835 0.0369 −0.1817 0.0014 −0.3617
6 −0.0032 −0.0560 0.0369 −0.1230 0.0014 −0.2447
7 −0.0032 −0.0401 0.0369 −0.0886 0.0014 −0.1763
8 −0.0032 −0.0301 0.0368 −0.0668 0.0014 −0.1330
9 −0.0032 −0.0234 0.0368 −0.0521 0.0014 −0.1038

10 −0.0032 −0.0187 0.0368 −0.0418 0.0014 −0.0832
15 −0.0032 −0.0560 0.0368 −0.1258 0.0014 −0.2504
20 −0.0032 −0.0279 0.0367 −0.0631 0.0014 −0.1256

θ̂DL −0.0081 0.0868 0.0076

T = 200

1 −0.0011 – 0.0251 – 0.0006 –
2 −0.0011 0.8887 0.0248 −1.3657 0.0006 −2.7036
3 −0.0011 0.3617 0.0247 −0.5580 0.0006 −1.1091
4 −0.0011 0.1945 0.0246 −0.2979 0.0006 −0.5928
5 −0.0011 0.1210 0.0245 −0.1840 0.0006 −0.3663
6 −0.0011 0.0824 0.0245 −0.1245 0.0006 −0.2480
7 −0.0011 0.0597 0.0245 −0.0897 0.0006 −0.1788
8 −0.0012 0.0452 0.0245 −0.0677 0.0006 −0.1348
9 −0.0012 0.0354 0.0245 −0.0528 0.0006 −0.1053

10 −0.0012 0.0285 0.0244 −0.0424 0.0006 −0.0844
15 −0.0012 0.0863 0.0244 −0.1276 0.0006 −0.2540
20 −0.0012 0.0436 0.0244 −0.0640 0.0006 −0.1275

θ̂DL −0.0025 0.0577 0.0033

NOTE:
1. The DGP is the same as that for Table 2.
2. +% stands for the percentage change when KT increases.
3. The bias (SE, MSE) look the same across different KT because the program
recorded only 4 digits after the decimal points. These numbers are actually different,
as can be seen in the column of percentage changes.

Section 5.2, where the regressor is endogenous. We consider the
cases that ρ equals 0.1, 0.5 and 0.9, and the sample T = 50, 100
and 200.We simulate the DL estimator andθ(exp, KT)with KT =

1, 2, . . . , 10, 15, 20.Wedonot consider theNLS estimator because
its performance is too poor when regressor is endogenous. To ease
our computation, we do not simulate the efficient estimator here.
We report only the results for ρ = 0.5 and ρ = 0.9, each with
Table 5
The performance of θ̂ (exp, KT) with various KT: ρ = 0.9.

KT Bias Bias (+%) SE SE (+%) MSE MSE (+%)

T = 100

1 −0.0047 – 0.0379 – 0.0015 –
2 −0.0047 −0.4598 0.0374 −1.2201 0.0014 −2.4021
3 −0.0047 −0.1770 0.0372 −0.4955 0.0014 −0.9786
4 −0.0047 −0.0909 0.0371 −0.2638 0.0014 −0.5214
5 −0.0047 −0.0547 0.0371 −0.1627 0.0014 −0.3216
6 −0.0047 −0.0363 0.0370 −0.1100 0.0014 −0.2175
7 −0.0047 −0.0258 0.0370 −0.0792 0.0014 −0.1567
8 −0.0047 −0.0193 0.0370 −0.0597 0.0014 −0.1181
9 −0.0047 −0.0149 0.0370 −0.0466 0.0014 −0.0922
10 −0.0047 −0.0119 0.0370 −0.0374 0.0014 −0.0739
15 −0.0047 −0.0354 0.0369 −0.1124 0.0014 −0.2223
20 −0.0047 −0.0175 0.0369 −0.0564 0.0014 −0.1115

θ̂DL −0.0089 – 0.0860 – 0.0075 –

T = 200

1 −0.0021 – 0.0257 – 0.0007 –
2 −0.0021 −1.0072 0.0253 −1.3333 0.0006 −2.6445
3 −0.0021 −0.4112 0.0252 −0.5452 0.0006 −1.0856
4 −0.0021 −0.2183 0.0251 −0.2911 0.0006 −0.5804
5 −0.0021 −0.1342 0.0251 −0.1798 0.0006 −0.3587
6 −0.0021 −0.0905 0.0250 −0.1217 0.0006 −0.2429
7 −0.0021 −0.0650 0.0250 −0.0877 0.0006 −0.1751
8 −0.0021 −0.0489 0.0250 −0.0662 0.0006 −0.1321
9 −0.0020 −0.0381 0.0250 −0.0517 0.0006 −0.1031

10 −0.0020 −0.0305 0.0250 −0.0414 0.0006 −0.0827
15 −0.0020 −0.0916 0.0250 −0.1247 0.0006 −0.2489
20 −0.0020 −0.0458 0.0249 −0.0626 0.0006 −0.1249

θ̂DL −0.0048 0.0592 0.0035

NOTE:
1. The DGP is the same as that in Table 2.
2. +% stands for the percentage change when KT increases.
3. The bias (SE, MSE) look the same across different KT because the program
recorded only 4 digits after the decimal points. These numbers are actually different,
as can be seen in the column of percentage changes.

T = 100, 200 in Tables 4 and 5. In addition to the bias, SE and
MSE, we also report their percentage changes when KT increases.
For instance, for ρ = 0.9 and T = 100, the bias decreases 0.46%,
SE decreases 1.22%, and MSE decreases 2.40% when KT increases
from 1 to 2.

These tables show that, when KT increases, the proposed esti-
mator becomes more efficient (with a smaller SE), while its bias
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typically decreases.8The percentage changes of bias and SE are
small; in most cases, such changes are less than 0.1% when KT is
greater than 5 or 6. These results suggest that the first few Fourier
coefficients indeed contain themost information for identifying θo.
Further increase of KT can only result in marginal improvements
on the bias and SE. Note that the proposed estimator again
dominates theDL estimator in termsof bias, SE andMSE in all cases.

6. Concluding remarks

This paper is concerned with consistent and efficient estima-
tion of conditional moment restrictions without assuming the pa-
rameters can be identified by the implied unconditional moments.
We propose an approach to constructing unconditional moments
that can identify the parameter of interest. The consistent and ef-
ficient estimators are then readily computed using the conven-
tional GMM method. Our simulations confirm that the proposed
estimators perform very well in finite samples and compare favor-
ablywith existing estimators, such as that proposed by Domínguez
and Lobato (2004). It must be emphasized that we do not have to
confine ourselves with GMM estimation. Based on the proposed
moment conditions, other estimation methods, such as the empir-
ical likelihood method, can also be employed to obtain consistent
and/or efficient estimators.

The proposed estimator may be further improved. First, it
is important to establish a criterion determining the (optimal)
number of the required Fourier coefficients, KT, in the objective
function. Second, as different GCR functions result in different
sets of unconditional moment conditions and hence different
estimators, it would be very useful if we know, in practice, how
to choose a better one among such estimators. Moreover, it is
interesting to examine if the proposed method remains effective
when the instruments are ‘‘weak’’. Chao and Swanson (2005) show
that consistent estimation may be possible when the number of
weak instruments increases to infinity at some suitable rate. As
our approach provides a systematic way to increase the number of
unconditional moments so as to identify parameters, it may still
work even when instruments are weak. These topics all require
thorough analysis and hence are left to future research.
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Appendix

Proof of Lemma 3.1. Let ∆ be a generic constant whose value
varies in different cases. Recall that A(X, τ ) = τ0 + τ1X and X is

8 In the lower panel of Table 4, the bias actually increases with KT . This ill
behavior may be due to the convergence criterion in our procedure; the criterion
for the gradient of estimated coefficients is set to 10−4 .
univariate. We have

ϕG,k(X)

=

∫ π

−π

∫ π

−π

G(τ0 + τ1X) exp(−ik0τ0) exp(−ik1τ1)dτ0dτ1

=

∫ π

−π

[∫ π

−π

G(τ0 + τ1X) exp(−ik0τ0)dτ0

]
exp(−ik1τ1)dτ1.

By integration by parts, for k0, k1 ≠ 0, the term in the square
brackets above can be expressed as∫ π

−π

G(τ0 + τ1X) exp(−ik0τ0)dτ0

=
i
k0


(−1)k0 [G(π + τ1X) − G(−π + τ1X)]  

Q1(τ)

−

∫ π

−π

G0(τ0 + τ1X) exp(−ik0τ0)dτ0  
Q2(τ)


.

Then,

ϕG,k(X) =
i
k0

∫ π

−π

[Q1(τ) − Q2(τ)] exp(−ik1τ1)dτ1,

so that

|ϕG,k(X)| ≤
1

|k0|

∫ π

−π

Q1(τ) exp(−ik1τ1)dτ1


+

∫ π

−π

Q2(τ) exp(−ik1τ1)dτ1




.

Again by integration by parts,∫ π

−π

Q1(τ) exp(−ik1τ1)dτ1

=
(−1)k0 i

k1


(−1)k1 [G(π + πX) − G(−π + πX)

−G(π − πX) + G(−π − πX)]

−

∫ π

−π


G1(π + τ1X) − G1(−π + τ1X)


exp(−ik1τ1)dτ1


,

and∫ π

−π

Q2(τ) exp(−ik1τ1)dτ1

=
i
k1


(−1)k1

∫ π

−π

[G0(τ0 + πX)

−G0(τ0 − πX)] exp(−ik0τ0)dτ0

−

∫ π

−π

∫ π

π

G01(τ0 + τ1X) exp(−ik0τ0)dτ0


× exp(−ik1τ1)dτ1


.

Given [A4], we have∫ π

−π

Q1(τ) exp(−ik1τ1)dτ1


≤

1
|k1|


4 sup

τ∈T
|G(τ0 + τ1X)|
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+ 2
∫ π

−π

sup
τ∈T

|G1(τ0 + τ1X)|| exp(−ik1τ1)|dτ1



≤
∆

|k1|
,

and∫ π

−π

Q2(τ) exp(−ik1τ1)dτ1


≤

1
|k1|


2
∫ π

−π

sup
τ∈T

|G0(τ0 + τ1X)|| exp(−ik0τ0)|dτ0

+

∫ π

−π

∫ π

π

sup
τ∈T

|G01(τ0 + τ1X)|| exp(−ik0τ0)|dτ0


× | exp(−ik1τ1)|dτ1



≤
∆

|k1|
.

It follows that |ϕG,k(X)| ≤ ∆/(|k0||k1|) for k0, k1 ≠ 0. Similarly,
we can show that |ϕG,k(X)| ≤ ∆/|k1| for k0 = 0 and k1 ≠ 0 and
that |ϕG,k(X)| ≤ ∆/|k0| for k0 ≠ 0 and k1 = 0. Also, it is clear that
|ϕG,0(X)| ≤ ∆. The proof is thus complete. �

Proof of Lemma 3.2. Again let∆ denote a generic constantwhose
value varies in different cases. Define

ηG,k,t = h(yt , θ)ϕG,k(xt) − E[h(Y, θ)ϕG,k(X)],

for t = 1, . . . , T and k = (k0, k1)′. By Lemma 3.1, |ϕG,k(X)| ≤

∆/[c(k0)c(k1)]. With [A3], we have

E[|ηG,k,t |
2
] ≤ E[|h(Y, θ)|2 |ϕG,k(X)|2] ≤

∆

c(k0)2c(k1)2
.

Under [A1], these bounds lead to

KT−
k0,k1=−KT

E

 1T
T−

t=1

ηG,k,t


2
 =

1
T 2

KT−
k0,k1=−KT

T−
t=1

E[|ηG,k,t |
2
]

≤
4∆
T

KT−
k0=1

1
k20

KT−
k1=1

1
k21

+
2∆
T

KT−
k0=1

1
k20

+
2∆
T

KT−
k1=1

1
k21

+
∆

T

≤
∆

T
,

by the fact that
∑n

k=1 k
−2

≤ 2 − 1/n ≤ 2. It follows from the
implication rule and the generalized Chebyshev inequality that

P

 KT−
k0,k1=−KT

 1T
T−

t=1

ηG,k,t


2

≥ ε


≤

KT−
k0,k1=−KT

P

 1T
T−

t=1

ηG,k,t


2

≥
ε

(2KT + 1)2


≤

(2KT + 1)2

ε

KT−
k0,k1=−KT

E

 1T
T−

t=1

ηG,k,t


2


≤
(2KT + 1)2

ε

∆

T
,

which holds uniformly in θ, because ∆ does not depend on θ. It is
clear that this bound can be made arbitrarily small when KT =

o(T 1/2). �
Proof of Theorem 3.3. The proposed estimator, θ(G, KT), is the
solution to the left-hand side of (14). Hence, it must converge to
the uniqueminimizer, θo, of the right-hand side of (14) by Theorem
2.1 of Newey and McFadden (1994). �

Proof of Corollary 3.4. Given G(A(X, τ)) = exp(Xτ), we have
from the text that (15) holds when KT = o(T ). Analogous to (14),
we obtain

KT−
k=−KT

|mexp,k,T (θ)|
2 P

−→

∞−
k=−∞

|Cexp,k(θ)|
2,

uniformly in θ. The assertion again follows from Theorem 2.1 of
Newey and McFadden (1994). �

Proof of Lemma 3.5. Given [A1]–[A4] and KT = o(T 1/4), θ(G,

KT)
P

−→ θo. Hence, θ
Ď
T → θo. With [A6], we can apply a standard

argument to get

∇θmG,k,T (θ(G, KT)) − ∇θmG,k,T (θo)
P

−→ 0,

∇θmG,k,T (θ
Ď
T ) − ∇θmG,k,T (θo)

P
−→ 0.

Also note that ∇θCG,k(θo)
′
∇θCG,k(θo) is real and

KT−
k0,k1=−KT

∇θCG,k(θo)
′
∇θCG,k(θo)

→

∞−
k0,k1=−∞

∇θCG,k(θo)
′
∇θCG,k(θo).

Therefore, it suffices to show that
KT−

k0,k1=−KT

(∇θmG,k,T (θo)
′
∇θmG,k,T (θo)

− ∇θCG,k(θo)
′
∇θCG,k(θo))

P
−→ 0.

We can show that this convergence holds elementwise. For sim-
plicity of notation, we drop the subscript G and the argument θo
and write ηi,k = ∇θimk,T − E[∇θimk,T ]. The (i, j)th element of the
matrix above can be expressed as η′

i,k∇θjmk,T +∇θiC
′

kη̄j,k. We need
to show that

KT−
k0,k1=−KT

(η′

i,k∇θjmk,T + ∇θiC
′

kη̄j,k)
P

−→ 0.

Again by the implication rule and the generalized Chebyshev in-
equality, we have

P


KT−

k0,k1=−KT

|η′

i,k∇θjmk,T + ∇θiC
′

kη̄j,k| ≥ ϵ



≤

KT−
k0,k1=−KT

P

|η′

i,k∇θjmk,T + ∇θiC
′

kη̄j,k| ≥
ϵ

(2KT + 1)2



≤
(2KT + 1)2

ϵ

KT−
k0,k1=−KT

E[|η′

i,k∇θjmk,T + ∇θiC
′

kη̄j,k|]

≤
(2KT + 1)2

ϵ

KT−
k0,k1=−KT

[E|ηi,k|
2
]
1/2

[E|∇θjmk,T |
2
]
1/2

+ [E|∇θiCk|
2
]
1/2

[E|η̄j,k|
2
]
1/2.

By [A1], [A6] and Lemma 3.1,

E|∇θjmk,T |
2

=
1
T

E|∇θjh(Y, θ)ϕk(X)|2 ≤
∆

Tc(k0)2c(k1)2
.
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Similarly, |∇θiCk|
2

≤ ∆/[c(k0)2c(k1)2], and

E|ηi,k|
2

= E|∇θimk,T |
2
− E|∇θiCk|

2
≤ E|∇θimk,T |

2

≤
∆

Tc(k0)2c(k1)2
.

Putting these results together we have, similar to the proof of
Lemma 3.2,

P


KT−

k0,k1=−KT

|η′

i,k∇θjmk,T + ∇θiC
′

kη̄j,k| ≥ ϵ



≤
(2KT + 1)2

ϵ

KT−
k0,k1=−KT


∆

Tc(k0)2c(k1)2
+

∆
√
Tc(k0)2c(k1)2



≤
(2KT + 1)2

ϵ

∆
√
T

,

which can be made arbitrarily small when KT = o(T 1/4). �

Proof of Lemma 3.6. Similar to the proof of Lemma 3.5, given
[A1]–[A6] and KT = o(T 1/4),θ(G, KT)

P
−→ θo, it is thus sufficient

to show that
KT−

k0,k1=−KT

[∇θmG,k,T (θo) − ∇θCG,k(θo)]
′
√
T mG,k,T (θo)

P
−→ 0,

since

∇θmG,k,T (θ(G, KT)) − ∇θmG,k,T (θo)
P

−→ 0

and
KT−

k0,k1=−KT

∇θCG,k(θo)
′
√
TmG,k,T (θo)

→

∞−
k0,k1=−∞

∇θCG,k(θo)
′
√
T mG,k,T (θo),

where, by invoking the multiplication theorem,
∞−

k0,k1=−∞

∇θCG,k(θo)
′
√
T mG,k,T (θo)

=


E[∇θh(Y, θo)G(A(X, ·))],

1
√
T

T−
t=1

h(yt , θo)G(A(xt , ·))


is real. Again, let ηi,k = ∇θimG,k,T (θo) − E[∇θimG,k,T (θo)] and by
the implication rule and the generalized Chebyshev inequality, we
have

P


KT−

k0,k1=−KT

|η′

i,k

√
TmG,k,T (θo)| ≥ ϵ



≤

KT−
k0,k1=−KT

P

|η′

i,k

√
TmG,k,T (θo)| ≥

ϵ

(2KT + 1)2



≤
(2KT + 1)2

ϵ

KT−
k0,k1=−KT

E[|η′

i,k

√
TmG,k,T (θo)|]

≤
(2KT + 1)2

ϵ

KT−
k0,k1=−KT

[E|ηi,k|
2
]
1/2

[E|
√
TmG,k,T (θo)|

2
]
1/2

≤
(2KT + 1)2

ϵ

KT−
k0,k1=−KT

[E|ηi,k|
2
]
1/2

[E|h(Y, θo)ϕG,k(X)|2]1/2,
where the last inequality, given [A1], is due to the fact that

E|
√
TmG,k,T (θo)|

2
= E

 1
√
T

T−
t=1

h(yt , θo)ϕG,k(xt)


2

= E|h(Y, θo)ϕG,k(X)|2.

From the proof of Lemma 3.5 we have

E|ηi,k|
2

≤
∆

Tc(k0)2c(k1)2
,

and

E|h(Y, θo)ϕG,k(X)|2 ≤
∆

Tc(k0)2c(k1)2
.

It follows that

P


KT−

k0,k1=−KT

|η′

i,k

√
TmG,k,T (θo)| ≥ ϵ


≤

(2KT + 1)2

ϵ

∆
√
T

.

The proof is complete because this bound can be made arbitrarily
small when KT = o(T 1/4) and T → ∞. �

Proof of Theorem 3.7. From [A8], we know that T−1/2∑T
t=1 h

(yt , θo)G(A(xt , ·))
D

−→ Z, where Z is a Gaussian random element
in L2([−π, π]

2) with the covariance operator K. By invoking the
multiplication theorem, we have

KT−
k0,k1=−KT

∇θCG,k,T (θo)
′
√
TmG,k,T (θo)

=

∞−
k0,k1=−∞

∇θCG,k,T (θo)
′
√
TmG,k,T (θo) + oP(1)

=


∇θiE[h(Y, θo)G(A(X, ·))],

1
√
T

T−
t=1

h(yt , θo)G(A(xt , ·))


i=1,...,p

+ oP(1)

= (⟨∇θiE[h(Y, θo)G(A(X, ·))], Z⟩)i=1,...,p + oP(1)
D

−→ N (0, Ωq).

The assertion follows from (17). �

Proof of Corollary 3.8. In this case, [A8] ensures that T−1/2∑T
t=1

h(yt , θo) exp(xt , ·)
D

−→ Z, where Z is a Gaussian random element
in L2[−π, π] with the covariance operator K. Analogous to the
proof for Theorem 3.7, the conclusion follows from (20). �
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