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Abstract Computer music composition is the dream of computer music researchers. In this
paper, a top-down approach is investigated to discover the rules of musical composition
from given music objects and to create a new music object of which style is similar to the
given music objects based on the discovered composition rules. The proposed approach
utilizes the data mining techniques in order to discover the styled rules of music
composition characterized by music structures, melody styles and motifs. A new music
object is generated based on the discovered rules. To measure the effectiveness of the
proposed approach in computer music composition, a method similar to the Turing test was
adopted to test the differences between the machine-generated and human-composed music.
Experimental results show that it is hard to distinguish between them. The other experiment
showed that the style of generated music is similar to that of the given music objects.

Keywords Algorithmic composition . Data mining . Music style . Repeating patterns

1 Introduction

Computer music generation is the dream of computer music researchers. The process of
producing musical content consists of two major steps: composition and arrangement. First,
composers create original melodies with chords in the basic structure. Next, arrangers
rewrite and adapt the original melodies and chords specifying harmonies, instrumentation,
style, dynamics, and sequence. After these two steps, performance, recording, mixing, and
audio mastering are conducted to produce the music for the general listener. Composing
needs most originality and shows the most valuable part among these processes.
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Machine-generated music compositions have been investigated for a long time. Current
research on computer composition may be classified under two approaches based upon the
method used to generate the compositional rules. In the explicit approach, the
compositional rule is specified by humans while in the implicit approach the composition
rule is derived from sample music. Therefore, in the implicit approach, training data is
required in order to discover the compositional rules.

As shown in Fig. 1, there are four design issues regarding the implicit approach: feature
extraction, feature analysis, rule learning and music generation. Feature extraction concerns
the extraction of low-level music features from sample music. Feature analysis obtains the
high-level semantic information from low-level music features. Rule learning discovers the
patterns (compositional rules) in terms of the high level semantic information from the set
of sample music. Finally, music generation employs the discovered patterns to generate
music.

A musical work, the result of a composer’s skillful training, is expected to possess rich
compositional information. In a set of musical works from whether composed by the same
composer or collected from an audience’s personal preference, this set of musical works
must share the commonly compositional patterns. From the rich background and nature of
extant musical works, this study seeks to discover more about their compositional rules.
Data mining technique is applied since it has been the adaptive ability to discover variant
patterns.

In this paper, the implicit approach to computer music composition based on the
discovered musical patterns from music examples is investigated. The developed approach
takes a set of user-specified music examples as input and generates music with a style
similar to that of the user-specified music set. While most of previous works on algorithmic
music composition adopt the bottom-up approach, this paper develops a top-down approach
that composers might prefer for music composition. A new framework considering the
properties of music structures, melody styles and motif development is proposed.
Furthermore, most of previous works characterize the melody style as repetition or
statistics of notes which are in the level of musical surfaces, the proposed approach models
melody styles in terms of melody features hidden from the melody surfaces. More
specifically, the proposed approach is developed based on the data mining techniques in
order to discover music style patterns. With respect to the algorithmic compositional

Fig. 1 Flow chart of computer-generated music composition
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models, the proposed approach is a hybrid model with a learning procedure. Finally, we
examine proposed system by a critical approach which is similar to Turing-test.

The remainder of this paper is organized as follows. In the next section, there is a review
of previous work on computer music composition. Section 3 provides the system
architecture and feature extraction of the proposed approach. Feature analysis and rule
learning are described in Section 4. Section 5 presents the method of music generation.
Next, in Section 6, the experiments are presented. At last, the conclusion is drawn in
Section 7.

2 Related work

There exist many systems for computer music composition. Basically, there are two
different types of computer music composition systems. One is the algorithmic composition
which generates music automatically while the other is the computer-aided composition
which servers as a tool to help the composer to generate music. Although the first
commonly recognized algorithmic composition system pioneered in the mid 1950s, there is
no universal classification for different approaches of algorithmic composition. In this
section, we review approaches of algorithmic composition according to the method used to
obtain the composition rules as mentioned in Section 1.

2.1 Composing with explicit rules

Early work on the generation of computer music focuses on compositions with rules
explicitly specified by composers.

Stochastic system generates the sequence of musical parameters by selection from a
given set according to specified probability distribution function. This random process
fulfils the expectation of musicians. Therefore, the compositional rule is embedded within
the stochastic process itself. Hidden Markov Model (HMM) is probably the most common
approach of stochastic process for music composition. Especially, in Markov model, the
probability of future events depends on past events. This fulfils the sequence requirement of
melody. An example is CAMUS which consults a user-specified Markov table to control
rhythm and the temporal organization of note group [32].

The hierarchical structure of musical thought has a strong similarity to linguistics. While
formal grammars and finite automata are normally utilized for representation of the laws of
formation of a language, some music composition mechanisms are developed based on
formal grammars or automata. BP2 is an example of software developed for composing
using grammars. Production rules whose terminal nodes correspond to sound objects are
employed to generate music with constraint-satisfaction programming [4].

Artificial life is a discipline that studies natural living systems by computer simulation of
their biological aspects. Cellular automata and genetic algorithms (GA) are two common
approaches for algorithmic music composition. A cellar automata consists of an array of
cells that change states according to evolution rules. While cellar automata generates
tremendous amount of patterns, music composition can be modeled as a pattern propagation
process. CAMUS, which consults Markov chains to generate rhythm, is a cellar automata
music generator. It utilizes both Game of Life and Demon Cyclic Space automation to
produce triple of notes and to determine the orchestration, respectively, in parallel [30].

Music composition can be treated as a combinatorial optimization problem. Therefore, it
is natural to develop music composition mechanism based on genetic algorithm. In GA,
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initially, a population of entities is randomly created. Reproduction which involves
mutation process is performed to create the next generation. This reproduction process
repeats until the population passes the evaluation specified as the fitness function. In terms
of music composition based on GA, musical phrases, with a higher, post-evaluation fitness
value, are selected for creating the next generation. The desired musical phrase is generated
gradually after each round. Therefore, the fitness function acts as the compositional rules.
One GA-based example is offered by J. A. Biles who proposed the GenJam system that
generates jazz solos [5]. Another was designed by G. Papadopoulos et al. [35] who utilized
the genetic algorithm to generate jazz melody. The major difference between these two
approaches lies in the fitness function. The fitness function of the former is evaluated
interactively by human while that of the latter is evaluated against eight characteristics of
the melody. More discussions on GA-based music composition can be found in [7, 50].

The particle swarm system, SWARMUSIC [6], employs particle motion to produce
musical material by mapping particle position onto a MIDI event. This system can also
improvise and interact with users in real-time. Similar idea is employed to generate music
by simulating moves of artificial ants on a graph where vertices represent notes and edges
represent possible transitions between notes [23]. Another interesting approach is
developed recently in the field of artificial chemistry. To compose music using the virtual
model of the chemical system, molecules and chemical equations are designed to
implement a set of musical rules. The implemented system based on a non-deterministic
algorithm successfully generates musical phrases [33, 44].

2.2 Composing with implicit rules

Recent work on computer-generated musical composition has been attempted to learn the
features or rules of composition from examples of musical work implicitly.

Some approach comes with the development of the machine learning technology.
Reagan [38] adopted decision tree classifier to discover the common properties of the meta-
level features from the examples labeled as scores and to composes music using these
features. At the IRCAM research center, S. Dubnov et al. proposed a machine learning
methods for musical style learning from examples [20, 28]. Two different approaches,
incremental parsing and prediction suffix tree are utilized to model patterns and to inference
new music. Both approaches try to model musical repeating patterns in an approximate
way.

D. Conklin [12] proposed the use of statistical model to capture music styles from a
corpus of music work. Several methods for sampling from a statistical model along with the
pattern-based sampling are investigated. Hidden Markov Model has been applied with
success to implicit music composition. Cybernectic Composer is an earlier example based
on HMM to generate music in different styles [3]. Farbood and Schoner present an
algorithmic composition system which generates Palestrina-style music [22]. Palestrina was
a famous sixteenth-century composer whose work is seen as a summation of Renaissance
polyphony. Given counterpoint examples, the system infers the probability tables of
Markov model and composes a counterpoint line given a cantus firmus. In most HMM-
based approaches, each state represents a note. Recent approach treats each state as the
patterns extracted from examples [48]. Therefore, this approach learns the composition
rules from examples implicitly using sequences of patterns.

The artificial neural network (ANN) has been used in the last years for music
composition. It resembles the activities of human brain structure. In this computation, the
process is performed by a set of several simple units, the neurons, connected in a network
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by weights. The parameters of the network are adjusted by learning from examples. The most
recent research is conducted by Correa et al. Both supervised and unsupervised approaches
were proposed to learn aspects of music structure and to compose new melody, by using
Back-Propagation-Through-Time and Self Organizing Maps neural networks. [10, 17].

D. Cope [13–16] has conducted a series of work in algorithmic composition, whose
basic idea is from Mozart’s dice game. The basic approach is to extract signatures which are
short musical passages from existing works by pattern matching techniques first. Then the
extracted signatures are replicated and recombined to create a reasonable melody by
evaluation against augment transition network borrowed from natural language processing.
The composition process also takes other musical properties into consideration, such as
phrase structures, texture, earmarks and unifications. The music produced by this kind of
approaches has demonstrated an elegant result.

2.3 Discussions

All of the above-mentioned researches belong to the bottom-up approach where smaller
segments are extended to compose higher level musical sections for the entire work.
Furthermore, most approaches focus on learning patterns of note sequences while music
structures and motives are not considered. In the majority of previous approaches, no
special attention has been paid to the beginning and ending of generated melody, to say
nothing of music structures. Motif is an important element in music composition. In the
bottom-up approach, simple notes instead of motives are used as the basic units of melody.
The top-down approach, on the other hand, starts by developing a composition plan and
proceeds to refine this plan. This approach forces the composition to be creative within
formal constraints, such as musical structure. While most, if not all, of the bottom-up
approaches, deal with algorithmic composition as a problem solving task, the top-down
approaches treat it as a creative process. Composers might prefer the top-down approach
that helps the composer to be creative within the formal constraints of generative process.
Compared with the above-mentioned bottom approaches, our proposed framework is a top-
down approach that analyzes and learns the musical structure style, discovers the motives
and the melody style from examples first. Then a new music object is generated by settling
on the musical structure, determining the melody style and generating melody sequence.

3 System architecture and main melody extraction

Figure 2 shows the system architecture and the process flow of the proposed music system.
Given a set of music in MIDI format, the main melody extraction component extracts the
main melody which is a monophonic melody. Then, each extracted melody is analyzed
using the music structure analysis component, the melody style analysis component and the
motif mining component individually. All analysis steps are off-line processes, namely, all
music objects in database can be analyzed before using system. In contrast, the learning and
the generation procedures are performed after the music objects are specified by the user.
The structure analysis component detects the musical section-phrase structure, extracts
section features and generates the section sequences for the structure learning component.
The structure learning component generates the music structure model by statistics analysis
of section and phrase features. The melody style analysis component extracts the melody
style by finding accompanied chords and generates different melody style representations
for the melody style learning component. The melody style learning component discovers

Multimed Tools Appl (2010) 46:1–23 5



the melody style model by frequent pattern mining techniques. The motif mining
component finds the set of motives which constitute the potential candidates by motivic
repeating pattern mining technique for the motif selection learning component. The motif
selection learning component generates the motif selection model by frequency analysis of
extracted motives. Finally, after these analysis and learning processes, the three models
(music structure model, melody style model and motif selection model) are established.
These three models involve the music style of the selected music objects. In the music
generation component, a new music object is generated based on these three models.

Melody is the essential element of music composition. The main melody extraction
component consists of two steps. In the first step, quantization is performed. In digital
music processing, quantization is the process to align music notes to a precise setting. This
is achieved by setting the timing grid and moving each note to the closest point on the
timing grid. In our system the timing grid is set to a quarter of a beat and quantization is
applied to both MIDI’s Note-On messages and Note-Off messages. Figure 3 illustrate an
example of quantization process.

The next step extracts the monophonic melody from the polyphonic melody.
Uitdenbogerd et al. [45] have presented four melody extraction methods: All-mono,
Entropy-channel, Entropy-part and Top-channel. According to their experimental result,
All-mono method, adopted in this paper, obtains the best accuracy. All-mono combines all
the music tracks and among the simultaneous notes, includes the highest notes as the main
melody. In Fig. 4, the first staff (Fig. 4a) shows an example of polyphonic segment while
the second staff (Fig. 4b) shows the extracted main melody using All-mono.
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Fig. 2 The system architecture and process flow of the proposed approach

6 Multimed Tools Appl (2010) 46:1–23



4 Analysis and learning

4.1 Music structure analysis and structure rule learning

Musical structure can be regarded as a hierarchical structure similar to the structure of an
article. In our approach, a music object is composed of sections and a section is composed
of one or more phrases [19]. The structure analysis component discovers the section-phrase
hierarchical structure of a music object while the structure learning component analyzes
common characteristics from structures of given music examples. Some researchers have
devoted to the investigation of music segmentation techniques for symbolic music [8, 11,
31, 43, 49]. Most work focuses on the extraction of phrases. Takasu et al. proposed the
phrase extraction method based on some heuristic rules and extended the work to classify
phrases into two classes: theme phrases and non-theme phrases based on the decision tree
algorithm [43]. Chen et al. adopted a similar approach to extract phrases and to group
similar phrases for sentence extraction [11]. Nevertheless, to the best of our knowledge,
nobody has focused on the detection of musical sections which constitute the musical form.
Therefore, we present a heuristic method for section detection.

Fig. 4 An example of All-mono method to extract the main melody

Pitch

Time

Pitch

Time

Quantization

Fig. 3 An illustration of quantization
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There are three main steps in the music structure analysis component. In the first
step, section detection is performed. To find the section structure in music, first we
discover repeating patterns over main melody. A repeating pattern is a sequence of
notes repeats several times in a music object. The main melody is a note sequence
where a note can be parameterized with several property values such as pitch, duration
and velocity. Velocity is only relevant to music performance. Therefore only pitch and
duration are considered for the structure analysis. The repeating patterns over pitch-
duration sequence are discovered by repeating pattern mining techniques. Over the past
few years, several algorithms have been proposed to mine repeating patterns in a
sequence [25, 27, 29, 46]. Suffix tree is a well-know data structure originally developed for
string matching. It is also utilized to find the repeating patterns by storing the suffix
information [29]. There may exist a large number of repeating patterns in a sequence.
Therefore, the concept of non-trivial repeating patterns was introduced by Hsu et al. [26]. A
repeating pattern is non-trivial if and only if there does not exist another superstring with
the same frequency. Hsu et al. proposed two different approaches, correlative matrix and
string-join, to mine non-trivial repeating patterns [25]. In the former approach, a data
structure called correlative matrix is constructed by lining up the note sequence the
horizontal and vertical dimensions respectively to keep the intermediate information of
substring matching. Each cell of this matrix denotes the length of a founded repeating
pattern. After the construction of this matrix, the repeating frequencies of all repeating
patterns can be derived by computing the non-zero-cells in the matrix. The latter approach,
string-join, utilizes the anti-monotony property to avoid generating large amount of
candidates. In this approach, shorter patterns are joined into longer ones and the non-
qualified candidates are pruned out. Here, we employ the correlative matrix technique to
find the repeating patterns.

After the repeating pattern mining process, a music object may contain more than one
repeating pattern. Each repeating pattern appears several times. Figure 5 illustrates the
instances of non-trivial repeating patterns after correlative matrix technique has been
applied to the musical piece “Little Bee.” Repeating patterns with durations shorter than
two bars are not shown here. In Fig. 5, each strip denotes an instance of a non-trivial
repeating pattern. There are six non-trivial repeating patterns. For example, the first pattern
NTRP0 has three instances. One starts at the first bar, another starts at the fifth bar, and the
other starts at the thirteenth bar.

As not all instances of repeating pattern are required for section structure detection,
appropriate instances need to be selected. First, in our proposed approach, all the
instances of the repeating patterns with durations shorter than two bars are filtered out.
Then we attempt to extract the musical sections by finding the set of non-overlapping
repeating pattern instances such that the total length of the selected instances is
maximized.

We modify the algorithm for exon-chaining problem developed in the field of
bioinformatics [26]. Given a set of weighted intervals in a chain, the exon-chaining
problem attempts to find a set of non-overlapping intervals such that the total weight is
maximal. This algorithm can be modified to accommodate the pattern selection problem by
replacing the weight of an interval with its duration. As the detailed pattern-selection
algorithm in Fig. 6 shows, given n pattern instances, this problem can be solved using
dynamic programming in a one dimension array S of 2n elements, n of which corresponds
to the starting (left) positions of the instances and n of which corresponds to the ending
(right) positions of the phrases. For the sake of simplicity, it is assumed that all instances are
distinct. This algorithm starts by sorting the starting and ending positions of all instances
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into a one dimension array T of 2n elements. The i-th element of S, Si, represents the
maximum duration for the set of instances which ends before the position Ti. The set of
instances, which ends before or at Ti, to maximize the total duration either excludes the
instance ends at Ti, or includes the instance ends at Ti to the maximum set of phrases which
ends before the left position of this instance (Fig. 6, lines 5 to 11). This leads to the
following formula

Si ¼ max Si�1; Sf�1 þ Ti � Tf
� �

; if Ti is the ending position of an instance starting at Tf
Si ¼ Si�1; ; otherwise:

�

The set of selected phrases can be derived by backtracking the array S (Fig. 6, lines 13 to 20).
To describe the computation of this algorithm, Fig. 7 gives the example corresponding to
the pattern instances in “Little Bee.” In this example, the duration of each instance is
measured in beats. The circled instances constitute the set which maximizes the total
duration.
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Fig. 5 The instances of repeating patterns in the main melody of “Little Bee”
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The next step of section structure detection is to find the section boundary based on the
selected pattern instances. Each selected instance corresponds to a section. Initially, the
starting and ending positions of a section are set to those of corresponding instance. Then
each section is shrunk or expanded by adjusting the starting position to the nearest starting
position of an odd numbered bar. For example, the second section in Fig. 8 is shrunk by

S

T

0 9 9 9 18 23 23 23 23 23 23 26 26 27 27 27 27 27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

9

14

39

9
14

19 20 21 22 23 24 25 26 27 28 29 30
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3

4

4

3

3

3

4

4

14

9

9

3 3 3

44

3 3 3

44
14

9

27 27 27 30 30 31 31 31 31 31 40 45

backtracking

1 10 15 17 26 29 33 33 34 34 35 36 37 37 38 38 41 41 42 42 43 44 45 45 46 46 47 49 58 61

Fig. 7 An illustration of example of pattern selection corresponding to Fig. 5

Fig. 6 Pattern-selection algorithm
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adjusting its starting position to the first beat of the fifth bar. At last, each section is
expanded by aligning its ending position to meet the starting position of the next section.
For example, in Fig. 8, the ending position of the first section is set to the end of the fourth
bar.

The second step in music structure is phrase detection. To obtain the number of phrases
in a musical section, the LBDM (Local Boundary Detection Model) approach developed by
Cambouropoulos et al. [8] is used to segment a section into phrases. Previous experiments
have adopted LBDM as representative of the melodic feature-based algorithms for melody
segmentation [31]. LBDM extracts the pitch interval sequence, the inter onset interval
sequence and the reset sequence from the main melody. Then these three sequences are
integrated into the sequence of boundary strength values measured by the change rule and
the proximity rule. The resulting peaks of the boundary strength value sequence are
regarded as the phrase boundaries.

The final step in music structure analysis is to extract features for each section, including
section labeling. Each section is labeled such that all the instances of the same repeating
pattern are labeled with the same symbol. For example, in Fig. 8, the labeled sequence
becomes ABCDB. The second and the fifth section correspond to the same repeating
pattern, so do the third and the fourth section. At last, the structure analysis component
outputs a section sequence where the section is parameterized by label, numberOfOccur-
rences, numOfPhrases and length. While the attribute label denotes which label it is, the
attribute numberOfOccurrences denotes the number of appearances of the same label. The
attribute numOfPhrases denotes the number of phrases in this section and the attribute
length denotes the length of the section measured in beats.

In the learning step, the probability distribution of section sequences along with
associated meters is derived to model the style of musical form. Moreover, the conditional
probability Prob(numOfPhrases|label, numberOfOccurrences) of the number of phrases
given a label and an occurrence value is derived. So does the conditional probability that
Prob(length|label, numberOfOccurrences) of the section length given a label and an
occurrence value.

4.2 Melody style analysis and melody style rule learning

After the analysis of the musical structure, the melodies are segmented into sections. The
segmented melodies are collected for the purpose of melody style mining. The design issues
regarding melody style mining techniques are melody feature extraction, melody feature
representation and melody style mining/classification algorithms. In a sense, most works on
algorithmic music composition may be regarded as approaches to model melody styles and

NTRP 0 0

NTRP 1

NTRP 4

NTRP 5

beat 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16bar

Fig. 8 The selected pattern instances of the example in Fig. 5
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to generate note sequences based on the models. For example, the HMM-based approach
models melody style as Hidden Markov Model where the probability of next note depends
on one or more previous notes. In addition, there exist some researches on melody style
analysis from symbolic music [9, 18, 37, 39, 40, 47]. The work developed in MIT Media
Lab. [9] employed Hidden Markov Model to model and classify the melodies of Irish,
German and Austrian folk song. Melodies are represented as a sequence of absolute pitches,
absolute pitches with duration, intervals and contours. Another research in CMU utilized
the naïve classifier, linear and neural network respectively to recognize music style for
interactive performance systems [18]. Thirteen statistical features derived from MIDI are
identified for learning of music style. Kranenburg and Backer extracted 20 low level
characteristics of counterpoint for polyphonic music style recognition. The K-means
clustering, the k-nearest-neighbor and C4.5 classification algorithms are employed to obtain
music styles [47]. In [37], 28 statistics of melody content, such as number of notes, pitch
range, average of note duration, number of diatonic notes, are developed for feature
representations of automatic music style recognition from symbolic representation of
melodies. The Bayesian classifier, the k-nearest neighbor and the self-organizing map are
applied to perform music style learning. Most of these approaches characterize the melody
style as repetition of notes or statistics of pitches which are in the level of musical surfaces.
However, stylistic features that characterize the music are usually hidden from the melody
surface.

We have proposed the music style mining technique to construct the melody style model
for a set of music objects [39, 40]. The basic idea is to utilize the chord based on harmony
to extract the melody features. A chord is comprised of a number of pitches sounded
simultaneously. Accompanying chords can be used as the melody feature to characterize the
melody style. Figure 9 illustrates the reason why we choose chord as the feature for melody
style mining. Figure 9a and b show two different music segments. These two segments are
quite similar in terms of either note sequence or interval contour. However, the music style
and feelings of them are quite different. On the contrary, both music segments composed by
Bach shown in Figure 9c and d are of the same style. The chords assigned to these two
music segments are the same.

Fig. 9 Examples of music segments and assigned chords [40]
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To match up the chords and melody, we have developed the chord assignment method
based on the music theory. This algorithm starts by the determination of the chord sampling
unit. Then, for each sampling unit, sixty common chords are selected as the candidates.
Each candidate is scored based on harmony and chord progression rules. The chord with
the highest score is assigned to the respective sampling unit. The detailed algorithm can be
found in our previously published paper [39, 40].

After determining the chord respective to each sampling unit, the melody feature can be
represented in the following different ways.

(1) Chord sequence: the feature of a melody is represented as a sequence of chords.
(2) Set of chord bi-grams: the feature of a melody is represented as a set of bi-grams of

chords. A bi-gram is an adjacent pair of chords extracted from a chord sequence.
(3) Chord set: the feature of a melody is represented as a set of chords.

For instance, assume that in a melody of four sampling units, the chords with the
highest scores are C, G, G, and C respectively. The melody feature is represented by the
chord set {C, G}, the set of chord bi-grams {CG, GG, GC}, and the chord sequence
<CGGC>.

In order to obtain the interesting hidden relationships between chords and music styles,
we adopted two melody mining methods with respect to the melody feature representations.

Frequent itemset If the feature of a melody is represented as a set of chord or a set of chord
bi-grams, the concept of frequent itemset mining in the association rule mining is utilized.
In our work, each item corresponds to a chord or a chord bi-gram. An itemset is frequent if
the number of music examples that contain this itemset is larger than a specified minimum
support minsup. Assume that there exists a frequent itemset {C, F, G} from a set of lyric-
style melody examples, this represents that a great part of lyric-style melody examples
consist of chords C, F and G together. The Apriori algorithm is employed to find the
frequent itemsets [1]. Apriori is a well-known data mining approach originally developed
for the discovery of frequent itemsets from a database of itemsets. The classic Apriori
algorithm for the discovery of frequent itemsets makes multiple passes over the database. In
the first pass, the support of each individual item is calculated and those above the minsup
are kept as a seed set. In the subsequent pass, the seed set is used to generate new
potentially frequent itemsets, namely candidate itemsets. Then the support of each
candidate itemset is calculated by scanning the database. The candidates with support no
less than the minsup are the frequent itemsets and are fed into the seed set that will be used
for the next pass. The process continues until no new frequent itemsets are found.

Frequent substring If the feature of a melody is represented as a sequence of chords, to find
the ordered patterns, we mine the frequent substring, by modifying the concept of
sequential pattern mining in sequence data mining techniques. The substring is consecutive,
which differs from the sequential patterns. A substring is frequent if the number of music
examples, which are the superstrings of this substring, is larger than a specified minimum
support. The frequent substring is found by modifying the join step of the Apriori-based
sequential mining algorithm [2].

Given a set of music examples, the discovered frequent chord patterns constitute the
music style model of user specified examples. Figure 10 gives an example of melody style
mining. In this example, there are four music sections which are transformed into chord
sequences. Given the minimum support 50%, eighteen frequent chord patterns are
discovered and constitute the music style model.
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4.3 Motif mining and motif selection rule learning

In musicology, a motive is a salient recurring segment of notes that may be used to
construct all or some of the melody and themes. Motif development is the compositional
procedure in which complete work or sections are based a thematic motif [42]. There are
several ways for developing a motif. Some of the major ways to develop a motif are
repetition, sequence, contrary motion, retrograde, augmentation and diminution, as Fig. 11
shown. The following provides a brief description for each kind of motif developments.

(1) Repetition

The repetition is the exact repeating, where Fig. 11a is an example. Exact repetition is a
motif development usually seen in composing and is usually used by composers to impress
the audience.

(2) Sequence

The sequence refers to the moving of a motive in pitch in a constant level. It is a
specialization of transposition. Figure 11b shows an example where the motive is moved
downwards by two semitones.

(3) Contrary motion

Contrary motion performs notes within the original motif but in reverse contour while
rhythm remains unchanged. More exactly, the contrary here indicates a pitch interval of
two consecutive notes when the original motif is equal to the negative pitch interval of
the two notes in derived motif. For example, in Fig. 11c, the interval sequence, in
semitones, of the original motive is <2, 2, 1, −3, 2, −4> while that of the first variation is
<−2, −2, −1, 3, −2, 4>.

(4) Retrogradation

To retrograde is to perform notes within the original motif in reverse order with the
rhythm unchanged. As an example in Fig. 11d, the first measure is an original motif and the

Music Chord set Set of chord bigrams  Chord sequence 

CGCGCC {C, G} {CG, GC}  CGCGCC

CAmDmG {C, Am, Dm, G} {CAm, AmDm, DmG}  CAmDmG 

CFFCGC {C, F, G} {CF, FF, FC, CG, GC}  CFFCGC 

AmEmFC {Am, Em, F, C} {AmEm, EmF, FC}  AmEmFC 

Frequent Itemset 
Mining 

 Frequent Itemset 
Mining 

 Frequent
Substring Mining

    

{C,G}, {C,F}, {C,Am},  {CG, GC},  CGC, CG, FC 

{C}, {F}, {G}, {Am},  {CG}, {GC}, {FC,}  GC, C, G, F 

Frequent Chord Patterns

Fig. 10 An example of melody style mining
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second measure is the one that performs the retrograde variation. The rhythm of the derived
motif isn’t changed. However, the pitch sequence is varied from the original <65, 65, 67,
71, 72, 72> to <72, 72, 71, 67, 65, 65>.

(5) Augmentation or Diminution

Composers using augmentation or diminution motif development will keep the original
melody with the rhythm scale enlarged (augmentation) or shrunk (diminution) proportion-
ally. More precisely, augmentation involves an extended duration of each note in a motif
while diminution involves a reduction in the duration of each note in a contrary motif. For
example, in Fig. 11e, the first measure is an original motif, while the second and the third
measures are the result of augmentation and diminution respectively.

To discover the motifs which are not necessarily exact repetition, the conditions of
substring matching in each cell of the correlative matrix need to be modified in order to
accommodate the motivic variations. For example, to discover the retrogradation, each cell
of the correlative matrix should consult the lower-right cell, rather than the upper-left cell in
exact repetition finding. More details concerning the motif finding algorithms can be found
in earlier work completed by the authors [24].

The motif selection model describes the importance of motifs. Let Freqm,music denote the
frequency of a motif m appearing in music object music. The formula is normalized as Eq. 1
and this is denoted as Support(m, music). For a motif m in a given music database DB, its
support are summed up and denoted as ASupport(m, DB). Finally, the ASupport is

a

d

e

c

b

M’M M’

M M’

M M’’M’

M’ M’’M

Fig. 11 Examples of the development of motif: a Repetition, b Sequence, c Contrary Motion, d Retrograde,
e Augmentation and Diminution
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normalized as Eq. 3 and it is denoted by NSupport(m,DB), where Min(DB) and Max(DB)
represent the minimum and maximum ASupport of motives in DB, respectively.

Support m;musicð Þ ¼ Freqm;music

, X
8motif 2music

Freqmotif ;music ð1Þ

ASupport m;DBð Þ ¼
X

8am2DB
Support m; amð Þ ð2Þ

NSupport m;DBð Þ ¼ ASupport m;DBð Þ �Min DBð Þ þ 1ð Þ= Max DBð Þ �Min DBð Þ þ 1ð Þ
ð3Þ

5 Music generation

In this section, the method used to generate music from the three models constructed in the
previous steps is discussed. The flow chart is shown in the music generation component of
Fig. 2, and Fig. 12 is an example of music generation.

According to the probabilistic distribution in the music structure model, the music
generation component first generates the music structure expressed as a sequence of
parametric sections, top level structure. As an example in Fig. 14, the structure model
generates the sequence of the sections <(A,3,3,4), (A,3,3,4), (B,1,2,4), (A,3,3,4)>. For the
description of each attribute, refer to the last paragraph in Sec. 4.2. According to these
attributes, the system allocates phrases in each section which forms the second level. In
general, the length of a phrase composed by musicians is a power of two bars [42]. Richard
Strauss, describing his method of composing, has written “…a motif or a melodic phrase of
two to four bars occurs to me immediately. I put this down on paper and then expand it
straightaway into a phrase of eight, sixteen, or thirty-two bars… ”

Therefore, given the length of a section and the required number of phrases, we design a
heuristic algorithm, phrase allocation algorithm shown in Fig. 13, to allocate phrases. The
basic idea of this algorithm is to allocate the phrases such that each is of length power of 2.
As an example in Fig. 12, the length of the section A is four and the number of phrases is
three. The algorithm allocates three phrases of length one, one, and two in order,

Structure Generation Chord Generation Melody Generation

A

A

B

A

A

A

B

A

C C G C

C C G C

G G C C

C C G C

Fig. 12 An example of music generation
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respectively. Note that if any label of the section is equal to ‘A’, it is applied similar
arrangement of section A, directly.

After the determination of section-phrase structure, the chord generation component
generates the chord for each bar based on the music style model. As stated in Section 4.2,
the music style model consists of frequent chord patterns. The chord generation component
randomly generates several chord sequences. The greater the number of frequent chord
patterns contained in a randomly generated chord sequence, the higher the score of the
chord sequence. The chord sequence with the highest score is assigned to the respective bar.

After the structure and chord information are determined, the melody generation
component works as follows. For each phrase, the melody generation component selects a
motif from the motif selection model. In general, the duration of a motif is shorter than that
of a phrase. The selected motif is developed (repeated) based on the major ways of motif
development mentioned in Section 4.3.

To ensure that the motif-developed sequence is harmonic to the determined chord
sequence, an evaluation function is employed to measure the harmonization between a
motif sequence and a chord sequence. This evaluation function is, in fact, the inverse
function of the chord assignment algorithm mentioned in Section 4.2. In melody style

Fig. 13 Phrase-allocation algorithm

Music structure
ABA

Section
<A, 2, 3, 4>

Section
<B, 1, 2, 4>

Phrase
a1 L=1

Phrase
a1’ L=1

Phrase
a2 L=2

Section
<A, 2, 3, 4>

Phrase
b1’ L=2

Phrase
b1 L=2

similar similar

Fig. 14 An example of music structure generation and melody generation
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mining, given a melody, the chord assignment algorithm tries to find the best accompanied
chord sequence. In contrast, in melody generation, given a chord sequence, the evaluation
function tries to find the best accompanied motif sequence. If the developed motif sequence
is judged to be disharmonious, the melody generation component selects another motif
from the motif selection model and develops the motif variation. This process is repeated
until a harmonious motif sequence is produced.

Note that, from the perspective of music structure, some sections are associated with the
same label. For instance, the example shown in Fig. 14 contains Sections 1 and 3 which are
both associated with label “A.” For those phrases contained in the repeated section, the
motif sequences are simply duplicated from the motif sequences generated in the phrases of
the previous section of the same label.

Finally, the melody generation component concatenates the motif sequences along with
the corresponding chord sequences to compose the music.

6 Experiments

To demonstrate the performance of the proposed top down approach for algorithm music
composition, we have implemented a music composition system on the World Wide Web
(http://avatar.cs.nccu.edu.tw/~stevechiu/cms/experiment2). Our music composition system
was implemented in Java along with jMusic [41] and Weka [51]. Both jMusic and weak are
open source packages. jMusic is a Java library written for musicians. It is designed to assist
the compositional process by providing an environment for musical exploration, musical
analysis and computer music education. jMusic supports music data structure based upon
note/sound events, and provides methods for organizing, manipulating and analyzing
musical data. Weka is a collection of libraries for data mining tasks. It contains tools for
data pre-processing, classification, regression, clustering, association rules, and visualiza-
tion. In our implementation, jMusic is utilized to extract MIDI messages, maintain music
data structure and output MIDI message. The chord assignment algorithm in the melody
style analysis component is also developed in jMusic. Weka is used to implement the music
style mining component.

Little attention in the research literature has been paid to the problem of evaluating the music
generated by systems for algorithmic music composition. This comes from the fact that
evaluation of aesthetic value in works of art often comes down to individual subjective opinion.
The majority of music composition systems proposed in the research literature evaluate the
performance by presenting the examples of composed music works only. Some researches
performed qualitative analysis by asking subjects about the preference of the generated music
works. Only few researches have conducted experiments for quantitative analysis of
performance by asking subjects to discriminate system generated music from human composed
music. However, to the best of our knowledge, there exists no research on algorithmic
composition which performs comparative analysis of performances among different systems.
This is partly owing to the availability or implementation of other music composition systems.

To evaluate the effectiveness and efficiency of the proposed music generation approach,
three experiments were performed. One experiment is a test designed to discriminate
system-generated music from conventionally-composed music. Another experiment is to
test whether the music style of the generated music is similar to that of the given music
objects. Moreover, to evaluate the efficiency of the proposed approach, the other
experiment was conducted to measure the elapsed time of music generation. At last, a
case study is given to demonstrate an example generated by our system.

18 Multimed Tools Appl (2010) 46:1–23
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6.1 Turing-like test

It is difficult to evaluate the effectiveness of a computer-generated music composition
system because the evaluation of effectiveness in works of art often comes down to
subjective opinion. In 2001, M. Pearce addressed this problem and proposed a method to
evaluate the computer music composition system [36]. This study has adopted this method
to design the necessary experiments.

The proposed system can be considered successful if the subjects cannot distinguish the
system-generated music from the human-composed music. There were 36 subjects,
including four well-trained music experts. The prepared dataset consisted of 10 machine-
generated music objects and 10 human-composed music objects. The latter comprised
“Beyer 8”, “Beyer 11”, “Beyer 35”, “Beyer 51”, “Through All Night”, “Beautiful May”,
“Listen to Angle Singing”, “Melody”, “Moonlight”, and “Up to Roof.” These music objects
are all piano music containing melody and accompaniment. These 20 music objects were
sorted randomly and displayed to the subjects. The subjects were asked to listen to each
music object and to determine whether it is system-generated or human-composed music.
The proportions of correctly discriminated music were calculated from the obtained result
(Mean is the average of the accuracy). The significant test was performed with the one-
sample t-test against 0.5 (the expected value if subjects discriminated randomly).

The results of the experimental test are shown in Table 1. The results show that it is
difficult to discriminate the system-generated music objects from the human-composed
ones. All the subjects (including the experts) displayed a higher degree of discrimination
because some of them possess extensive musical backgrounds.

6.2 Effectiveness evaluation for styled composition

In the second experiment, an attempt was made to evaluate whether or not the music style
of the system-generated music is similar to that of the given music. The proposed system
was demonstrated for the subjects on the world-wide web: http://avatar.cs.nccu.edu.tw/
~stevechiu/cms/experiment2. For each round of music generation, subjects were asked to
give a score, from 0 to 3, to denote the degree to which they felt it was dissimilar or similar.
Each subject repeated this process three times. A total of 31 subjects performed the test with
a resulting mean score of 1.405 and a standard deviation of 0.779.

6.3 Efficiency evaluation of music generation

To evaluate the response time of the developed music composition system, the third
experiment was conducted. The experiment was conducted on an IBM desktop computer
with a 2.4 Ghz Intel(R) Pentium(R) quad-core processor with 4 gigabytes main memory
running Linux 2.6 operating system.

Table 1 The results of the discrimination test

Mean SD DF t P-value

All subjects 0.522 0.115 35 1.16 0.253

All subjects except experts 0.503 0.106 31 0.166 0.869

SD the standard deviation, DF the degree of freedom, t t statistic
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There are 39 music objects collected from the Internet. The average number of notes per
music in database was 145.2. The analysis component, especially the motif mining, takes
most of the execution time in the whole process. While the analysis component was
executed offline instead of online, the elapsed time for learning step and generating a new
music object is shown in Fig. 15 as a function of the number of selected music examples. It
can be seen that with the increasing number of selected music examples, the elapsed time of
on line processing takes less than 10 ms.

6.4 Case study

The results of the proposed approach are shown by using an example. Using six music
objects as input, “Beyer 55,” “Grandfather’s clock,” “Little Bee,” “Little Star,” “My
Family,” and “Ode to Joy,” the obtained result is an AABA form. The resulting phrase
arrangements are 1-1-2 in Section A and 2-2 in Section B. At the melody style mining step,

Fig. 16 An example of composed music using the proposed approach

Fig. 15 Elapsed time of the online process of our system
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the following patterns were discovered: {{C}, {G}, {C, G}}, {(G, C), (C, G)}, {<C, G>,
<G, C>, <C, G, C>}. Furthermore, the chord generation component was found to generate
the chord progressions <C, C, G, C> in Section A and <C, G, G, C> in Section B. The
motif selection model chose a motif “sol-mi-mi” for generating the first phrase and the
melody generation component develops this motif for the second phrase melody in Section
A. Finally, the resulting musical composition is shown in Fig. 16.

7 Conclusions

In this paper, we have proposed a top-down approach for a music compositional system.
Data mining techniques have been utilized to analyze and discover the common patterns or
characteristics of music structure, melody style and motifs from the given musical pieces.
The patterns discovered and the characteristics which constitute music structure, the melody
style, and the motif selection model. The proposed system generates music based on these
three models. The experimental results show that it is not easy to distinguish the system-
generated music from the human-composed music. Future work includes of embedding
other compositional elements such as rhythmic development, mode, and tone color into the
composition process.
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