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Abstract: Siphon-based control suffers from the problem that the number of problematic siphons grows quickly
with the size of the system. To reduce the number of monitors, Li and Zhou proposed to divide problematic
siphons into elementary and dependent ones. Monitors are added only for elementary siphons; the number
of which grows linearly. They adjust the control depth variable for a dependent siphon, if the siphon does not
satisfy the controllability and can become unmarked. The control policy for weakly dependent siphons is
rather conservative because of some negative terms in the controllability. This study proposes a better
estimate of the negative terms and the policy needs no longer be that conservative.

1 Introduction
A flexible manufacturing systems (FMS) consists of several
concurrent processes competing for resources to produce
different kinds of parts. Each process conducts a sequence
of operations to manufacture a part. Circular wait for
resources can bring the system into a deadlock where no
process can proceed.

Petri nets have been applied to model FMS. Deadlocks are
closely related to structure objects called siphons S, which is a
set of places containing tokens to make their output transition
firable. When S becomes empty of tokens, it remains so
permanently and their output transitions can never be fired again.

Control places and related arcs are often added upon
emptiable siphons such that they cannot be emptied to
avoid deadlocks. The number of emptiable siphons or
control elements grows quickly with respect to the size of
a Petri net. It is impractical to add a monitor to each
emptiable siphon for large systems. Li and Zhou [1–6]
tackle this problem by classifying siphons into elementary
and dependent ones.

A T-vector h is associated with each siphon S such that
h(i) is the number of tokens gained in or lost from S by firing
transition ti once. A dependent siphon S0 strongly depends
on elementary siphons S1, S2, . . . , Sk if h0 ¼ a1h1 þ a2h2

þ � � � þ akhk with all ai (i ¼ 1, 2, 3, . . . , k) are positive. S0 is
a weakly dependent siphon if some ai is negative. The
T-vectors (resp. number) for elementary siphons are mutually
independent (linear to the size of the net).

Li and Zhou [1, 2] add monitors to elementary siphons only
by greatly reducing the number of control nodes and arcs. It is
essential to apply the concept of elementary siphons for the
control of large systems. The control depth variable for a
dependent siphon may need to be increased, if the siphon
does not satisfy the controllability and can become unmarked.
The larger the control depth variable, the fewer states the
system will reach. The control policy for weakly dependent
siphons is rather conservative (such that fewer states are
reached) because of some negative terms in the controllability.
This paper proposes a better estimate of the negative terms
and the policy needs no longer be that conservative.

The rest of the paper is organised as follows. Section 2
presents the basis (elementary siphons and characteristic
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T-vectors) to understand the paper. Section 3 reviews the
theory on controllability of weakly dependent siphons in
[1, 2]. Section 4 presents an example to show that the
control policy may be conservative and develops the theory
to upgrade the controllability. Section 5 concludes the paper.

2 Preliminaries
A P-vector is a column vector L: P! Z indexed by P and a
T-vector is a column vector J: T! Z indexed by T, where Z
is the set of integers. For economy of space, we use

P
L(p)p

(resp.
P

J(t)t) to denote a P (resp. T )-vector. P-vector I is
a P-invariant I if I = 0 and I T†[N ] ¼ 0 T. kIk ¼ fp [ Pj
I(p) = 0g is called the support of I. A P-invariant is said
to be minimal if its support is not a strict superset of that
of another, and the greatest common divisor of its elements
is one.

For a net system (N, M0), a non-empty subset S (resp. t)
of places is called a siphon (resp. trap) if †S # S†(resp.
t† # †t), that is, every transition having an output (resp.
input) place in S has an input (resp. output) place in S (resp.
t). S is called an empty siphon at M0 if M0(S) ¼P

p[S M0(p) ¼ 0. A minimal siphon does not contain a
siphon as a proper subset. It is called a strict minimal siphon
(SMS), denoted by S, if it does not contain a trap.

Tokens in a siphon S of an ordinary Petri net (OPN) can
either leak out to the complementary set [S] of S or stay in S.
Thus, if S < [S] forms the support of a minimal P-invariant
I, the sum of tokens in S < [S] is a constant and [S] ¼ kIk\S.

Table 1 lists S and [S] of the net in Fig. 1a. This paper
deals with OPNs only.

Definition 1: N0 ¼ (P 0, T 0, F 0) is called a subnet of N where
P 0 # P, T 0 # T and F 0 ¼ F > ((P 0 � T 0) < (T 0 � P 0)). A
net N is strongly connected iff for every node pair (ni, nj), ni,
nj [ P < T, there is a directed path from ni to nj. A subnet
Ni ¼ (Pi, Ti, Fi) of N is generated by X ¼ Pi < Ti, if
Fi ¼ F > (X � X ).

Definition 2: A siphon is said to be controlled if it is always
marked.

An S3PR is composed of some state machines (with
choices) holding and releasing some common resources.
Figs. 1a and b show an example of S3PR and its controlled
model, respectively.

Property 1 [1]: S < [S] ¼ SR < ( <r[SR H (r)) is the
support of a P-invariant I.

Definition 3 [1]: Let V # P be a subset of places of N.
P-vector lV is called the characteristic P-vector of V

iff 8p [ V, lV(p) ¼ 1; otherwise lV(p) ¼ 0. h is called the
characteristic T-vector of V, if hT ¼ lV

T†[N ], where [N ] is
the incidence matrix where ‘†’ means a vector or matrix
multiplication.

Physically, the firing of a transition t where (h(t) . 0,
h(t) ¼ 0 and h(t) , 0) increases, maintains and decreases
the number of tokens in S.

Definition 4 [2]: Let N ¼ (P, T, F) be a net with
jPj ¼ m, which has k siphons S1, S2, . . . , Sk, m, k [ IN, where
IN ¼ f0, 1, 2, . . .g. Define [h]k�n ¼ [h1jh2j. . .jhk]

T. [h] is
called the characteristic T-vector matrix [h] of the siphons in N.

Figure 1 Weakly dependent siphon and its controlled model

a Example of weakly dependent siphon [2]
b Controlled model of that in Fig. 1a

Table 1 Four SMS in Fig. 1a and their h. h4 ¼ h1þ h2 2 h3

S h Set of places [S]

S1 þt2 2 t4þ t8 2 t9 fp4, p12, p13,
p14, p15g

fp2, p3, p8, p9,
p10, p11g

S2 þt1 2 t3þ t7 2 t10 fp5, p11, p14,
p15, p16g

fp3, p4, p7, p8,
p9, p10g

S3 þt2 2 t3 2 t4þ t7 fp4, p11, p14,
p15g

fp3, p8, p9,
p10g

S4 þt1þ t8 2 t9 2 t10 fp5, p12, p13,
p14, p15, p16g

fp2, p3, p4, p7,
p8, p9, p10, p11g
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LethSa
, hSb

, . . . ,hSg
(fa,b, . . . , gg # f1, 2, . . ., kg) be a linear

independent maximal set of matrix [h]. ThenPE ¼ fSa, Sb, . . .,
Sgg is called a set of elementary siphons. S � PE is called a
strongly dependent siphon if hS ¼

P
Si[PE

aihSi
where ai � 0.

S � PE is called a weakly dependent siphon if 9 a non-empty
A, B , PE, such that A > B ¼ Ø and hS ¼

P
Si[A aihSi

�P
Si[B aihSi

where ai . 0.

Note that Definition 4 and the above calculation of linearly
independent vectors do not assume N to be an S3PR and are
applicable to arbitrary nets.

Fig. 1a shows an example of weakly dependent siphon.
Table 1 below lists the four S and their h. h4 ¼ h1þ h2 2 h3.

3 Controllability by Li and Zhou
This section reviews the control policy and controllability
results in [1, 2, 4, 6]. A monitor VS and some control arcs
are added upon each elementary siphon S similar to adding
a resource. Thus, VS plus H(VS) (the set of holder places of
VS) forms the support of a new minimal P-invariant. To
avoid new siphon generation, the output transitions of VS

end at source transitions (P0†) of the processes. The input
transitions of VS end at output transitions of places in [S]
such that †VS ¼ [S]†\†[S]. The initial marking of VS is set
to M0(S) 2 jS so that the marking of S is always no less
than the control depth variable jS � 1. See Fig. 1b for the
added monitors and control arcs.

Li and Zhou adjust jS of elementary siphons associated
with a dependent siphon to satisfy a marking linear
inequality (MLI) as follows:

Theorem 1 (Theorem 1 in [1]): Let (N0, M0) be a net
system and S0, S1, S2, . . . , and Sn be its SMS. Assume that
S0 is a strict dependent SMS with respect to elementary
siphons S1, S2, . . . , Sn where h0 ¼

P
i¼1
n (aihi) ¼ sa. S0 is

controlled if (i) N0 is extended by n additional control places
VS1

, VS2
, . . . , VSn

such that S1, S2, . . ., Sn are controlled and
(ii) if M0(S0) .

Pn
i¼1 (aiM0(Si)� aijSi

Þ ¼ sM0
� sj where

jSi
is the control depth variables for Si, where

sM0
¼
Pn

i¼1 aiM0(Si) and sj ¼
Pn

i¼1 aijSi
.

This theorem can be proved based on the so-called
marking equality (ME) in Theorem 2(iii):

Theorem 2: Let (N0, M0) be a net system and S0 be a
dependent SMS with respect to elementary siphons S1, S2,
. . . , Sn, Snþ1, Snþ2, . . . , Snþm, where

hS0
¼
Xn

i¼1

(aihSi
)�

Xm

j¼1

(bnþjhSnþj
) ¼ sa � sb,

sa ¼
Xn

i¼1

(aihSi
) and sb ¼

Xm

j¼1

(bnþjhSj
)

Then

(i) 8S [ fS0, S1, S2, . . . , Sn, Snþ1, Snþ2, . . . , Snþmg,
hS ¼ 2h[S] (characteristic T-vector of the complementary
set of siphon S equals the negative of that of S).

(ii) l[S0] ¼
Pn

i¼1 (ail[Si]
)�

Pm
j¼1 (bnþjl[Snþj ]

), where ai,
bj [ R (set of real numbers), i [ f1, 2, . . . , ng and j [ [1,
2, . . . , m] (characteristic P-vectors of the complementary
sets of siphon S0, S1, S2, . . . , Sn, Snþ1, Snþ2, . . . , Snþm

follow the same equation as that of the corresponding
characteristic T-vectors).

(iii) The ME holds

M([S0]) ¼
Xn

i¼1
(aiM([Si]))�

Xm

j¼1
(bnþjM([Snþj])),

M [ R(N , M0) (1)

(total tokens in the complementary sets of siphon S0, S1,
S2, . . . , Sn, Snþ1, Snþ2, . . . , Snþm follow the same equation
as that of the corresponding characteristic T-vectors).

Proof of (i): S < [S] ¼ SR < (<r[SR H(r)) is the support
of a P-invariant I based on Property 1 and S > [S] ¼ Ø.
Note that SR ¼ S > PR.8p [ S < [S], I(p) ¼ 1 (valid
for OPN); otherwise, I(p) ¼ 0. Thus, I ¼ lSþ l[S].
I T†[N ] ¼ lT

S †[N ]þ lT
[S]†[N ] ¼ 0 (by the definition of

P-invariant), where 0 is a vector with all components being 0.

) hS ¼ �h[S] A

Proof of (ii): Based on equation hS0
¼ sa � sb, the fact

that hS ¼ 2h[S] and hS
T ¼ lS

T†[N ], we have

h[S0] ¼
Xn

i¼1

(aih[Si]
)�

Xm

j¼1

(bnþjh[Snþj ]
)

) lT
[S0]†[N ] ¼

Xn

i¼1

(ail
T
[Si]

†[N ])�
Xm

j¼1

(bnþjl
T
[Snþj ]

†[N ])

) l[S0] �
Xn

i¼1

ail[Si]
þ
Xm

j¼1

bnþjl[Snþj ]

 !T

†[N ] ¼ 0

If z ¼ l[S0] �
Pn

i¼1 ail[Si ]
þ
Pm

j¼1 bnþjl[Snþj ]
= 0, then z is

a P-invariant. However, all places in [S0], [S1], [S2], . . . ,
[Snþm] are not marked in the initial marking of N and
hence the union of [S0], [S1], [S2], . . . , [Snþm] cannot be
the support of a P-invariant. This implies that
z ¼ 0) l[S0] ¼

Pn
i¼1 ail[Si]

þ
Pm

j¼1 bnþjl[Snþj ]
. A

Proof of (iii): Multiplying both sides of the equation in (1)
by MT, we have

l[S0]†MT
¼
Xn

i¼1

ail[Si]
†MT

�
Xm

j¼1

bnþjl[Snþj ]
†M

T

)M([S0]) ¼
Xn

i¼1

aiM([Si])�
Xm

j¼1

bnþjM([Snþj])

A
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This theorem holds for FMS modelled by OPN [not general
Petri net (GPN)] such as an S3PMR, since we have assumed
8p [ S < [S], I(p) ¼ 1. However, it can be extended to
FMS modelled by GPN such as S4PR and S3PGR2 by
replacing M with W ((M(A))), the weighted sum of tokens
in A ¼ S or [S].

This ME says that the total number of tokens trapped in
[S0] and [Si] follows the same linear algebraic relationship
between hS0

and hSi
, i ¼ 1, 2, . . . , n, nþ 1, . . . , nþm.

This is because physically 2hS(t) is the number of tokens
removed from S by firing t once. Now, max
M([Si]) ¼M0(Si) 2 1 (Si is said to be limit controlled) for
Si to have tokens. In order for S0 to be controlled, we have
M(S0) . max M([S0]) or

M(S0) . max
Xn

i¼1

aiM([Si])

 !
�min

Xm

j¼1

bnþjM([Snþj])

 !

(2)

To be conservative, the term associated with the negative
terms is set to zero. That is, if M(S0) is large enough to be
greater than max(

Pn
i¼1ai M([Si])), then (2) necessarily holds.

However, it may not hold that

M(S0) . a1(M0(S1)� 1)þ a2(M0(S2)� 1)þ � � �

þ an(M0(Sn)� 1) ¼
Xn

i¼1

ai(M0(Si)� 1) ¼ saM0
�
Xn

i¼1

ai

That is, S0 may not be controlled when each Si is limit
controlled. After lowering M([Si]) to M0(Si) 2 jSi, jSi � 1,
where jSi is the control depth variable mentioned in [1],
for each Si, it may hold that

M(S0) . a1(M0(S1)� jS1
)þ a2(M0(S2)� jS2

)þ � � �

þ an(M0(Sn)� jSn
) ¼

Xn

i¼1

ai(M0(Si)� jSi) ¼ saM0
� sj

This is exactly the MLI. Hence M(S0) . max M([S0]) and
S0 is controlled.

Li and Zhou further improved the controllability as
follows:

Lemma 1 [4]: Let S0 be a weakly dependent siphon with
respect to elementary siphons S1, S2, . . . , Sn, Snþ1, Snþ2, . . . ,
Snþm in net system (N, M0), with hS0

¼
Pn

i¼1 (aihSi
)�Pm

j¼1 (bnþjhSnþj
). S0 is controlled if inequality M0(S0).P

i¼1
n aiM0(Si) 2 D1 2 [(

P
j¼1
m bnþiM0 (Sj) 2 D2] holds,

where D1 ¼ minf
P

i¼1
n aiM(Si)jM ¼M0þ [N ]†X, M � 0,

X � 0g and D2 ¼ maxf
P

j¼1
m bnþjM(Sj)jM ¼ M0þ [N ]†X,

M � 0, X � 0g, where 0 is a vector with all components
being 0.

4 Better controllability
This section improves the controllability in last section by
upgrading the estimate of D2 corresponding to the negative
terms in hS0

defined in Definition 4 based on the following:

Theorem 3: Let S0 be a weakly dependent siphons such that
hS0
¼ sa � sb. Let S0 be unmarked under marking M.

Then (i) M(H(r)) ¼M0(r), where r [ S0 and H(r) , [S0].
(ii) M(H(r) > [S0]) ¼M0(r), where r [ S0 and H(r) >
[S0] = [S0].

Proof of (i): Since frg < H(r) is the support of a minimal
P-invariant

M(H (r))þM(r) ¼ M0(r) (3)

M(r) ¼ 0 since r [ S0 and S0 is unmarked, M(S0) ¼ 0. The
above equation now reduces to M(H(r)) ¼M0(r).

Proof of (ii): Again, M(H(r)) ¼M0(r). M(H(r) >
[S0])þM(H(r) > S0) ¼M(H(r)). M(H(r) > S0) ¼ 0 since
M(S0) ¼ 0. Hence, (H(r) > [S0]) ¼M0(r). A

When S0 is empty under M, 9Sj, where j [ [1, 2, . . . , m]
such that r [ Sj and H(r) , [S0]. For instance, r ¼ p14 [ S3

in Fig. 1a. H(r) ¼ fp3, p8, p10g , [S0], S0 ¼ S4. We have
M(H(r)) ¼M0(r) ¼ c and

M([S3]) � c (4)

by Theorem 3(i) and the fact that H(p14) , [S3].

Since S0 is empty under M, 9p1, r1, pn, rn (e.g. p2, p13, p7,
p16 in Fig. 1a) such that p1 [ H(r1), pn [ H(rn), H(r1) >
S0 = Ø and H(rn) > S0 = Ø. Then M(pn) ¼M0(rn) and
M(p1) ¼M0(r1) (Theorem 3(ii)). Otherwise, M(H(r1) >
S0) . 0 or M(H(rn) > S0) . 0 and S0 is marked.

In Fig. 1a, D2 ¼ max fsbMjM ¼M0þ [N ]†X, M � 0,
X � 0g ¼ maxfM(S3)jM ¼M0þ [N ]†X, M � 0, X �
0g ¼M0(S3) based on Lemma 1, where sbM ¼

Pm
j¼1

bnþjM(Sj). That is

max M(S3) ¼M0(S3) or min M([S3]) ¼ 0 (5)

However, max M(S3) �M0(S3) 2 c is based on (4), which
contradicts with (5). Note that (5) implies that min
M([S3]) ¼ 0, whereas (4) implies that min M([S3]) ¼ c. In
general, a better estimate of D2 is shown in the following:

Theorem 4: Let ‘(Sj) ¼ frjH(r) , ([S0] > [Sj])g. (i) min
M([Sj]) ¼

P
r[‘(Sj)M0(r). (ii) D2 ¼ maxfsbMjM ¼M0þ

[N ]†X, M � 0, X � 0g ¼
Pm

j¼1bnþj(M0(Sj) 2
P

r[‘(Sj)

M0(r)) 2 minf
Pm

j¼1bnþj

P
r[(R(Sj) 2 ‘(Sj))M(H(r) > [Sj])j

M ¼ M0 þ [N ]†X, M � 0, X � 0g, where R(Sj) is the set
of resource places in Sj .
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Proof of (i): By Theorem 3(i), M(H(r)) ¼M0(r), r [ ‘(Sj).
M([Sj]) �M(H(r)) ¼M0(r) since H(r) , ([S0] > [Sj]).
Thus, M([Sj]) �M0(r), 8r [ ‘(Sj). Similarly, M([Sj]) �P

r[‘(Sj)M(H(r)) ¼
P

r[‘(Sj)M0(r) since (<r[‘(Sj)H(r)) ,
[Sj]. Hence, min M([Sj]) ¼

P
r[‘(Sj)M0(r). A

Proof of (ii): In general

M([Sj]) ¼M0(Sj)�M(Sj) ¼
X

r[‘(Sj)
M(H (r) > [Sj])

þ
X

r[(R(Sj)�‘(Sj))
M(H (r) > [Sj])

¼
X

r[‘(Sj)
M(H (r))

þ
X

r[(R(Sj)�‘(Sj))
M(H (r) > [Sj]) (6)

Equation (6) implies that

M(Sj) ¼M0(Sj)�M([(Sj)]) ¼M0(Sj)�
X

r[‘(Sj)

M0(r)

�
X

r[(R(Sj)�‘(Sj))

M(H (r) > [Sj])

Substituting this equation into D2, we have

D2 ¼ max{sbM jM ¼M0 þ [N ]†X , M � 0, X � 0}

¼
Xm

j¼1

bnþj M0(Sj)�
X

r[‘(Sj )

M0(r)

0
@

1
A

�min
Xm

j¼1

bnþj

X
r[(R(Sj )�‘(Sj ))

M(H (r)>[Sj])jM

8<
:

¼M0 þ [N ]†X , M � 0, X � 0

)

A

For instance, in Fig. 1a, there is only one negative bj term
corresponding to S3. ‘(Sj) ¼ fp14g. D2 ¼ maxfsbMjM ¼
M0þ [N ]†X, M � 0, X � 0g ¼ (M0(Sj) 2 M0(p14)). Set
M0(p13) ¼ a, M0(p14) ¼ b, M0(p15) ¼ c and M0(p16) ¼ d.
Using Lemma 1, we have S0 ¼ S4 is controlled if inequality
M0(S0) .

P2
i¼1M0(Si) 2 D1 2 [(M0(S3) 2 D2] holds. Using

M0(S0) ¼ aþ bþ cþ d, M0(S1) ¼ aþ bþ c, M0(S2) ¼
bþ cþ d, M0(S3) ¼ bþ c, D1 ¼ minM(S1)þminM(S2) ¼ 2
and D2 ¼M0(S3) 2 c. The inequality is now

a þ bþ c þ d . a þ bþ c þ bþ c þ d � 2� c

¼ a þ bþ c þ d þ b� 2) 2 . b

which (i.e. the controllability) holds when b ¼ 1.

On the other hand, if we follow Li and Zhou, D2 ¼ 0,
the inequality now becomes 2 . bþ c, which (i.e. the
controllability) can never hold since b � 1, c � 1 and
bþ c � 2. A subsequent time-consuming linear integer
programming (LIP, Theorem 5 in [1]) may be performed
to decide whether S0 is controlled. This LIP is not required
using Theorem 4 when b ¼ 1.

Similar to Theorem 2, Theorem 4 holds for FMS
modelled by OPN [not GPN] such as an S3PMR, since
we have assumed 8p [ S < [S], I(p) ¼ 1. However, it can
be extended to FMS modelled by GPN such as S4PR and
S3PGR2 by replacing M with W ((M(A))), the weighted
sum of tokens in A ¼ S or [S].

5 Conclusion
Li and Zhou [1] indicated that the control policy for weakly
dependent siphons is rather conservative. As a result, a weakly
dependent siphon may be already controlled and needs no
monitor even though it fails the controllability. We have
improved the controllability by providing a better estimate
of D2 corresponding to the negative terms in hS0

defined
in Definition 4.
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