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Abstract: Siphon-based control suffers from the problem that the number of problematic siphons grows quickly
with the size of the system. To reduce the number of monitors, Li and Zhou proposed to divide problematic
siphons into elementary and dependent ones. Monitors are added only for elementary siphons; the number
of which grows linearly. They adjust the control depth variable for a dependent siphon, if the siphon does not
satisfy the controllability and can become unmarked. The control policy for weakly dependent siphons is
rather conservative because of some negative terms in the controllability. This study proposes a better
estimate of the negative terms and the policy needs no longer be that conservative.

1 Introduction

A flexible manufacturing systems (FMS) consists of several
concurrent processes competing for resources to produce
different kinds of parts. Each process conducts a sequence
of operations to manufacture a part. Circular wait for
resources can bring the system into a deadlock where no
process can proceed.

Petri nets have been applied to model FMS. Deadlocks are
closely related to structure objects called siphons S, which is a
set of places containing tokens to make their output transition
firable. When § becomes empty of tokens, it remains so
permanently and their output transitions can never be fired again.

Control places and related arcs are often added upon
emptiable siphons such that they cannot be emptied to
avoid deadlocks. The number of emptiable siphons or
control elements grows quickly with respect to the size of
a Petri net. It is impractical to add a monitor to each
emptiable siphon for large systems. Li and Zhou [1-6]
tackle this problem by classifying siphons into elementary
and dependent ones.

A T-vector n is associated with each siphon § such that
(i) is the number of tokens gained in or lost from S by firing
transition # once. A dependent siphon §y strongly depends
on elementary siphons §1, S, ..., 8 if ny =aym; +aymy
+--+agm,withala; i=1,2,3,..., %) are positive. Sy is
a weakly dependent siphon if some a4; is negative. The
T-vectors (resp. number) for elementary siphons are mutually
independent (linear to the size of the net).

Liand Zhou [1, 2] add monitors to elementary siphons only
by greatly reducing the number of control nodes and arcs. It is
essential to apply the concept of elementary siphons for the
control of large systems. The control depth variable for a
dependent siphon may need to be increased, if the siphon
does not satisfy the controllability and can become unmarked.
The larger the control depth variable, the fewer states the
system will reach. The control policy for weakly dependent
siphons is rather conservative (such that fewer states are
reached) because of some negative terms in the controllability.
This paper proposes a better estimate of the negative terms
and the policy needs no longer be that conservative.

The rest of the paper is organised as follows. Section 2
presents the basis (elementary siphons and characteristic
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T-vectors) to understand the paper. Section 3 reviews the
theory on controllability of weakly dependent siphons in
[1, 2]. Section 4 presents an example to show that the
control policy may be conservative and develops the theory
to upgrade the controllability. Section 5 concludes the paper.

2 Preliminaries

A P-vector is a column vector L: P — Z indexed by Pand a
T-vector is a column vector J: 7'— Z indexed by 7, where Z
is the set of integers. For economy of space, we use ) _L(p)p
(resp. D_J(#)¢) to denote a P (resp. T')-vector. P-vector I is
a P-invariant Iif I # 0 and I"e[N]=0". ||| = {p € P|
I(p) # 0} is called the support of I. A P-invariant is said
to be minimal if its support is not a strict superset of that
of another, and the greatest common divisor of its elements
is one.

For a net system (V, Mp), a non-empty subset S (resp. 7)
of places is called a siphon (resp. trap) if °S C §°(resp.
7" C °7), that is, every transition having an output (resp.
input) place in § has an input (resp. output) place in § (resp.
7). § is called an empty siphon at M, if My(S) =
> = sMy(p) =0. A minimal siphon does not contain a
siphon as a proper subset. It is called a strict minimal siphon
(SMS), denoted by &, if it does not contain a trap.

Tokens in a siphon § of an ordinary Petri net (OPN) can
either leak out to the complementary set [S] of § or stay in §.
Thus, if § U [§] forms the support of a minimal P-invariant
I, the sum of tokens in § U [S] is a constant and [S] = | 1]|\S.

Table 1 lists § and [S] of the net in Fig. 1a. This paper
deals with OPNs only.

Deﬁ‘niﬂbn 1: N = (P, T', F')is called a subnet of Nwhere
PPCPRT CTandF =FN (P xT)U (T xP).A
net NV is strongly connected iff for every node pair (;, 7)), #;,
n; € P U T, there is a directed path from #; to 7;. A subnet
N;= (P, T;, F;) of N is generated by X=P;U T}, if
F,=FNXxX).

a+b+c+d

Figure 1 Weakly dependent siphon and its controlled model

a Example of weakly dependent siphon [2]
b Controlled model of that in Fig. 1a
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Table 1 Four SMS in Fig. la and their . g =n1+ 71, — 13

S ] Set of places [S]
Si| +ty—tat+tg—to | {Pa, P12, P13, | P2, P3, Ps, Pa,
P14, P15} P10, P11}
Sy | +ty —ts+t; —tio | {Ps, P11, P1a, | {P3) Pa, P7, Ps,
P1s, P16} Pa, P10}
S3| +ty —ts—ta+t; | {Pa, P11, P14, {p3, ps, Po,
p1s} P10}
Sa | +ti+tg—to — tio | {Ps, P12, P13, | P2, P3, P, P7,
P14, P1s, P1s} | Ps, Pa, P10, P11}

D(gﬁniz‘ion 2: A siphon is said to be controlled if it is always
marked.

An S°PR is composed of some state machines (with
choices) holding and releasing some common resources.
Figs. 1a and 4 show an example of S®PR and its controlled

model, respectively.

Property 1 [1]: SU[S] =8z U (U,ceg H(r) is the

support of a P-invariant I.

Definition 3 [1]: Let Q C P be a subset of places of N.
P-vector Aq is called the characteristic P-vector of ()
iff Vp € O, Aa(p) = 1; otherwise Aq(p) = 0. 71 is called the
characteristic 7-vector of (), if nT = \ge[N ], where [V] is
the incidence matrix where ‘e’ means a vector or matrix
multiplication.

Physically, the firing of a transition # where (n(#) > 0,
1n(¢#) = 0 and n(#) < 0) increases, maintains and decreases
the number of tokens in §.

Deﬁniz‘ion 4 [2]: Let N=(P, T, F) be a net with
|P| = m, which has % siphons 81, S,, ... , 8, m, 2 € IN, where

IN={0, 1, 2,...}. Define [n]e, = [mlml...Ind". [n] is
called the characteristic 7-vector matrix [7] of the siphons in V.
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Let s, Msgs -5 s, ({o, B, ..., v} C{1,2,..., k) bealinear
independent maximal set of matrix [9]. Then Il = {8, Sg, . . .,
8§} is called a set of elementary siphons. § €& Il is called a
strongly dependent siphon if g = } ¢ <1y a;m5, where 4; > 0.
§ & Il is called a weakly dependent siphon if 3 a non-empty
A, BC g, such that AN B=0 and ng = 5 a5~
>_s,ep 4;Ms, Where ;> 0. l

Note that Definition 4 and the above calculation of linearly
independent vectors do not assume N to be an S’PR and are
applicable to arbitrary nets.

Fig. 1a shows an example of weakly dependent siphon.
Table 1 below lists the four § and their n. ny = 11 + 12 — 3.

3  Controllability by Li and Zhou

This section reviews the control policy and controllability
results in [1, 2, 4, 6]. A monitor V5 and some control arcs
are added upon each elementary siphon § similar to adding
a resource. Thus, Vs plus H(V) (the set of holder places of
Vs) forms the support of a new minimal P-invariant. To
avoid new siphon generation, the output transitions of Vg
end at source transitions (P°*) of the processes. The input
transitions of Vg end at output transitions of places in [§]
such that * V5= [S]°\"[§]. The initial marking of Vs is set
to Mo(S) — &s so that the marking of § is always no less
than the control depth variable & > 1. See Fig. 14 for the
added monitors and control arcs.

Li and Zhou adjust & of elementary siphons associated
with a dependent siphon to satisfy a marking linear
inequality (MLI) as follows:

Theorem 1 (Theorem 1 in [1]): Let (N, M) be a net
system and S, S, S5, ..., and §, be its SMS. Assume that
So is a strict dependent SMS with respect to elementary
siphons 81, 8, ..., S, where mo = > "1(am;) = 7,. S is
controlled if (i) Ny is extended by 7 additional control places
Ve Vs oo s Vs, such that §;, S, ..., S, are controlled and
(i) if Mo(So) > >y (4, My(S)) — a;és) = oy — 0 where
&, s the control depth variables for §;, where
OpMy = 21 a;My(8;) and o =3 1y ;&

This theorem can be proved based on the so-called
marking equality (ME) in Theorem 2(iii):

Theorem 2: Let (Ny, M) be a net system and Sy be a
dependent SMS with respect to elementary siphons 8y, S5,

e Sm Sn+la Sn+2) LR Sn+m7 where

Nsy = 21: (ﬂi”’lsi) - 21: (@ﬁ'ns”ﬁ) =0, 0y
= Jj=

o, = 21: (”i”’ls,.) and o, = Z;(énﬁnsj)
i= j=

Then

(1) VS e {SOy Sl, S2y B Sm Sn+1, Sn+2) R ] Sn+m}y
ns= —ms) (characteristic 7T-vector of the complementary
set of siphon § equals the negative of that of ).

(i) A= Y (a;Ai57) — Z]m:l <én+j)‘[5n+,-])’ where  a;,
b; € R (set of real numbers), : € {1, 2,..., »} and j € [1,
2, ..., m] (characteristic P-vectors of the complementary
sets of siphon Sp, 81, 82,5 80 Suv1s Sut2s-ovs S
follow the same equation as that of the corresponding
characteristic 7-vectors).

(iii) The ME holds

M([S]) = Z; (a;M([S])) - ij:l (6, M([S,4;1),
M € R(N, M,) 1

(total tokens in the complementary sets of siphon Sy, Si,
825 o5 8ny Sutty Sut2y -+ s Sy follow the same equation
as that of the corresponding characteristic 7T-vectors).

Proofof(i).‘ S U [8]= 8z U (U,esr H(7)) is the support
of a P-invariant I based on Property 1 and § N [§] = .
Note that Sg=S8SNPrVpE SUI[S], I(p)=1 (valid
for OPN); otherwise, I(p) =0. Thus, I= Ag+ Arg.
ITe[N] = ALe[N] + /\Eg]O[N] =0 (by the definition of

P-invariant), where 0 is a vector with all components being 0.
= Mg = ~Ms) O

Proof of (ii): Based on eq}rlation M5, = 0, — 0y, the fact
that ng = —mg) and 1L = As o[N], we have

Nis,] = 21: (ﬂm[si]) - 21: (5n+j77[s”+j])
1= Jj=

n m

T T T
= Mo [V1 =) (adfs o [N) = Y (6,05, o [N])
i=1 j=1
n m T
= (/\[SO] — Z ﬂi)\[si] + Z bn+j)\[sn+j]> ‘[N] = 0
i=1 j=1

If é’ = A[SO] — Z?:l di)\[sl_] + ij:1 bn+jA[S”+j] 75 0, thCl’l é’ iS
a P-invariant. However, all places in [So], [S1], [S2), .-,
[S,+n] are not marked in the initial marking of NV and
hence the union of [Sg], [S1], [S2], ..., [Sstm] cannot be
the support of a P-invariant. This implies that

{=0= A= D2y aidis) + 20 buiiAs,, - O

Proof of (iii): Multiplying both sides of the equation in (1)
by M*, we have

T Z T “ T
Nsg®M' =) adg oM =) b, N, oM

i=1 =1

n

= M(So]) =Y aM([S]) = Y 6, M(S,,;])
j=1

i=1 O
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This theorem holds for FMS modelled by OPN [not general
Petri net (GPN)] such as an S’PMR, since we have assumed
Vp € SU [S], I(p) = 1. However, it can be extended to
FMS modelled by GPN such as S*PR and S’PGR, by
replacing M with W((M(A))), the weighted sum of tokens
inA= Sor[S].

This ME says that the total number of tokens trapped in
[So] and [S;] follows the same linear algebraic relationship
between 75, and Mg, i=1,2,...,n n+1,..., ntm
This is because physically —ng(#) is the number of tokens
removed from § by firing # once. Now, max
M([S;]) = My(S;) — 1 (S; is said to be limit controlled) for
S; to have tokens. In order for Sy to be controlled, we have
M(Sp) > max M([S,]) or

M(S;) > max (Z az-M([Si])> min (Z b,y M( [Sn+]])>
i=1 =
)

To be conservative, the term associated with the negative
terms is set to zero. That is, if M(Sp) is large enough to be
greater than max(}_714; M([S.])), then (2) necessarily holds.

However, it may not hold that

M(SO) > 611(M0(S1) -1+ ﬂz(Mo(Sz) -1+

n

- Xn:ai(MO(Si) — D=0y, - Z“i

i=1 i=1

+ a,(My(S,) — 1)

That is, So may not be controlled when each §; is limit
controlled. After lowering M([S;]) to My(S;) — &si, ési > 1,
where &; is the control depth variable mentioned in [1],
for each §;, it may hold that

M(So) > ﬂ1(M0(S1) - fsl) + ”2(MO(SZ) -

n

+ a,(My(S,) — &) = Zﬂi(Mo(Si) — &5)) = Ouy, — ¢

i=1

§S2)+...

This is exactly the MLI. Hence M(Sy) > max M([So]) and
8o is controlled.

Li and Zhou further improved the controllability as
follows:

Lemma 1 [4]: Let Sy be a weakly dependent siphon with
respect to elementary siphons 81, S5, ..., 8. Spt1, Spg2s - - - »
S,im in net system (I, M), with Mg, = Yo (a nS)
Zj 1 (bn+j ns,. ) So is controlled if 1nequa]_1ty MO(SO)>
Zz 14; MO(S) Z/ 16,+iMo (S) D] holds,
where D; = mm{Z 1aM(S)|M My + [N]OX M=>0,
X >0} and D, = max{} 15, M(S)IM = My + [N]e X,
M > 0, X> 0}, where 0 is a vector with all components
being 0.
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4 Better controllability

This section improves the controllability in last section by
upgrading the estimate of D, corresponding to the negative
terms in 7, defined in Definition 4 based on the following:

Tbeorem 3. Let 8o be a weakly dependent siphons such that
Mg, = 0, — 0, Let § be unmarked under marking M.
Then (1) M(H(r)) = My(r), where r € Sy and H(r) C [Sp].
(i) M(H(r) N [So]) = My(r), where r€ Sy and H(r) N
[Sol # [Sol-

Proof Of (i): Since {r} U H(7) is the support of a minimal

P-invariant

M(H(r)) + M(r) = My(r) 3)
M(r) = 0 since r € §y and S, is unmarked, M(S,) = 0. The
above equation now reduces to M(H(r)) = My(r).
Proof of (ii):  Again, M(H(r)) = My(r). M(H(») N
[So) + M(H(r) N Sy) = M(H(r)). M(H(r) N S5) =0 since
M(Sy) = 0. Hence, (H(r) N [Sy]) = My(r). O

When § is empty under M, 3§;, where j € [1, 2, ..., m]
such that » € §;and H(r) C [Sy]. For instance, 7 = p14 € §3
in Fig. la. H(r) = {p3, ps, p1o} C [Sol, So = S4. We have
M(H(r)) = My(r) = ¢ and

M([83]) > ¢ (4)
by Theorem 3(i) and the fact that H(p14) C [S3].

Since Sy is empty under M, Ipy, 1, pu, 7, (€.8- P2, 135 P75
P16 in Fig. 1a) such that py € H(ry), p, € H(r,), H(ry) N
So # @ and H(r,) N Sy # . Then M(p,) = My(r,) and
M(p1) = My(r1) (Theorem 3(ii)). Otherwise, M(H(r) N
So) > 0 or M(H(r,) N Sy) > 0 and S is marked.

In Fig. 1a, D; = max {oy|M = Mo+ [N]eX, M > 0,
X > 0} = max{M(S3)|M = My + [N]eX, M=>0, X>
0} = My(S;5) based on Lemma 1, where oy,= ) /g
by, M(S)). That is

max M(8;) = M(S;) ormin M([S;]) =0 (5)
However, max M(S3) < My(S3) — ¢ is based on (4), which
contradicts with (5). Note that (5) implies that min

M([S3]) = 0, whereas (4) implies that min M([S;]) = ¢. In
general, a better estimate of D, is shown in the following:

Theorem 4: Let p(S;) = {r|H(r) C ([So] N [S;])}. () min

M(S;]) = D repsyMo(r). (i) Dy = max{oyn|M = M, +
[N].Xa M > 07 XZ 0} = ijzlbn+j(M0(Sj) - ZrE@(Sj)
Mo(r)) — min{d 16,13 re(ris) — o(snMEHT) N [S])]

M= My+[N]eX, M > 0, X > 0}, where R(S)) is the set
of resource places in §;.
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Proafaf(i): By Theorem 3(i), M(H(r)) = M(r), r € p(S)).
M([S,]) = M(H(r)) = Mo(r)  since  H(r) C ([So] N [S]).
Thus, M([S;]) = My(r), Vr € p(§,). Similarly, M([S;]) >
Y reps)MHP) = D epspMo(r) since (U,eps)H(r) C

[l

[5,). Hence, min M([5,]) = 3" e (55 Mol).
Proof of (ii): In general
M([S;]) = My(S;) — M(S;) = Zrep
+ 2 ewig-otgn ME@ NISD
= 2oty MU W)
+ 2 ctris-oigy MEO OIS 6)

o MEHE NS

Equation (6) implies that

M(S) = My(S;) = M([(S)]) = My(S) — > My(r)
r€p(8)

- > MHEHONI)

r€(R(8)—p(8))
Substituting this equation into D,, we have

:an-t-j MO(SJ‘)— Z My(r)

m
Jj=1 r€p(S;)

— min Zén+j Z MH)NLSDIM
i=1

rE(R(S)—p(S)

=M,+[N]eX,M>0,X >0

O

For instance, in Fig. 14, there is only one negative 4; term
corresponding to §3. 9(S;) = {p14}. D> = max{o,y|M =
Mo+ [N]eX, M>0, X=>0}=(MyS;) — My(p14)). Set
Mo(Pls) =a, MO(P14) =5, Mo(Pls) = ¢ and Mo(Pls) =d
Using Lemma 1, we have Sy = §4 is controlled if inequality
My(So) > Y 71Mo(8) — Dy — [(M(S3) — D5] holds. Using
MySo)=a+b+c+d, My(S)=a+b+c MyS,)=
b+ o4 d, My(Ss) = b+ ¢, Dy = minM(S;) + minM(S,) = 2
and D, = My(8;) — ¢. The inequality is now

at+b+c+d>a+b+c+b+c+d—2—c¢
=a+b4+c+d+bo—-2=>2>0

which (i.e. the controllability) holds when & = 1.

On the other hand, if we follow Li and Zhou, D, =0,
the inequality now becomes 2 > 4+, which (ie. the
controllability) can never hold since 4>1, ¢>1 and
b+c>2. A subsequent time-consuming linear integer
programming (LIP, Theorem 5 in [1]) may be performed
to decide whether S is controlled. This LIP is not required
using Theorem 4 when 4 = 1.

Similar to Theorem 2, Theorem 4 holds for FMS
modelled by OPN [not GPN] such as an S’PMR, since
we have assumed Vp € S U [S], I(p) = 1. However, it can
be extended to FMS modelled by GPN such as S*PR and
S’PGR, by replacing M with W((M(4))), the weighted
sum of tokens in 4 = S or [S].

5 Conclusion

Li and Zhou [1] indicated that the control policy for weakly
dependent siphons is rather conservative. As a result, a weakly
dependent siphon may be already controlled and needs no
monitor even though it fails the controllability. We have
improved the controllability by providing a better estimate
of D, corresponding to the negative terms in 1), defined
in Definition 4.
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