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Current deadlock control approaches for S3PGR2 (systems of simple sequential proc-

esses with general resources requirement) suffer from incorrect or restricted liveness 
characterization based on the concept of deadly marked siphons (DMS) and max-con- 
trolled siphons. Dead transitions may exist when there are no DMS and the net model is 
in livelock states. A new liveness condition is developed based on the so-called max*- 
controlled siphons to replace that of the restrictive max-controlled siphons. A deadlock 
control policy is further proposed for WS3PR (weighted S3PR (systems of simple sequen-
tial processes with resources)) by adding control nodes and arcs for elementary siphons 
only, reducing significantly the number of monitors compared with existing methods. A 
counter example is shown to indicate that Li’s characteristic P-vector must be weighted. 
The controlled model for WS3PR is proposed and its liveness property is proved. 

 
Keywords: flexible manufacturing systems, deadlock control, Petri nets, siphons, elemen-
tary siphons 
 
 

1. INTRODUCTION 
 

Deadlock in a Flexible Manufacturing Systems (FMS) [1] interrupts normal opera-
tion schedules degrading significantly system’s performance. Hence, it is important to 
design a PN model free of deadlocks. Fanti et al. [2] performed a comprehensive review 
on deadlock control techniques for FMS. Deadlock prevention approach [3-10] (as used 
in this paper) establishes the control policy in a static way based on off-line control 
mechanisms by building freely a Petri net model first and then adding necessary control 
to it such that the control model is deadlock-free. Control places and related arcs are of-
ten used to achieve such purpose.  
 
1.1 Relevant Literature  
 

Ezpeleta et al. proposed a class of PN called systems of simple sequential processes 
with resources (S3PR) [3]. Liveness can be enforced by adding a control place to each 
strict minimal siphon (SMS) at the cost of introduction of too many additional places and 
arcs.  

Li et al. [4, 5] proposed simpler Petri net controllers based on the concept of the set 
of elementary siphons (generally much smaller than the set of all SMS in large Petri nets) 
to minimize the new addition of places. The authors added a control place for each 
elementary siphon while controlling all dependent SMS (i.e., always marked), too. This  
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(a)                                      (b) 

Fig. 1. (a) Only SMS S = {r1, r2, p3, p5} is max*-controlled, but not max-controlled; (b) S = {r1, r2, 
p3, p5, p8}. The siphon is neither max*-controlled nor deadly marked (t7 and t8 are live).   

 
reduces significantly the number of the control places and makes the method suitable (or 
applicable) to large-scale Petri nets. 

Park and Reveliotis [8] proposed S3PGR2 (systems of simple sequential processes 
with general resources requirement, see Fig. 1). Tricas and Martinez [9] proposed a simi-
lar system called WS3PSR (weighted systems of simple sequential processes with several 
resources). The policy is so restrictive that it sequentializes the flow in the siphon. The 
marking imposed to the control places limits the number of processes that can flow in the 
problematic areas to minimal.  

All these approaches are based on deadly marked siphons (DMS). A net with DMS 
is not live; conversely, a live net does not have DMS. However the absence of DMS only 
guarantees the liveness of some (not all) transitions in the net. To provide optimum con-
trol, one needs first to improve the condition for liveness.  

Abdallah et al. [10] proposed S4PR − a generalization of S3PR nets − to extend S3PR 
and production Petri nets (PPN) to model systems that not only can use alternative re-
sources, as in S3PR nets, but also can utilize more than one resource simultaneously. They 
adopted a deadlock prevention policy by adding a control place for each siphon to remain 
max-marked for all reachable markings. However, it is only a sufficient condition imply-
ing that a non-max-controlled S4PR may be live. 
 
1.2 Proposed Approach 
 

We show that current deadlock control approaches suffer from incorrect or re-
stricted liveness characterization based on the concept of deadly marked siphons (DMS) 
or max-controlled siphons. A relaxed liveness condition is proposed called max*-con- 
trolled siphons. 

Li et al. [4] said “It should be noted that the proposed elementary siphon and related 
concepts are applicable to general Petri nets.” However, a counter example will be shown  
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Fig. 2. An example of a WS3PR with S1 = {r1, r2, p3, p6}, S2 = {r2, r3, p4, p7}, and S3 = {r1, r2, r3, 

p4, p6}. 

 
in Fig. 2 where all SMS are elementary siphons, while the S3PR of its ordinary net ver-
sion has one dependent siphon. To fix the problem, each component of a characteristic 
P-vector is weighted by that of P-invariant as shown in section 3. Also Li’s [4] approach, 
like Ezpeleta’s, is not maximum permissive because some authorized states may be sup-
pressed. 

In this work, a deadlock control policy for WS3PR is proposed by adding control 
nodes and arcs for elementary siphons only. The proposed method reduces significantly 
the number of monitors compared with the existing methods. By adjusting the control 
depth variables of its elementary siphons, other (dependent) siphons also satisfy the max*- 
controlled-siphon property. The liveness property of the controlled model is proved. 
 
1.3 Organization of the Manuscript 
 

The rest of the paper is organized as follows: sections 2 and 3 present the basis 
(WS3PR, elementary siphons, characteristic T-vectors, and max*-controlled siphons) to 
understand the paper. The control policy (algorithm) for the deadlock prevention of an 
example will be provided in section 4. Section 5 introduces an FMS example to illustrate 
the applications of the proposed concepts and policy. Finally, section 6 concludes the 
paper.  

2. PRELIMINARIES 
 

Here only the definitions used in this paper are presented. The reader may refer to 
[11] for more Petri net details. 
 
Definition 1  A subnet Ni = (Pi, Ti, Fi) of N is generated by X = Pi ∪ Ti, if Fi = F ∩ (X × 
X). It is an I-subnet, denoted by I, of N if Ti = •Pi. IS is the I-subnet (the subnet derived 
from (S, •S)) of an SMS S. Note that S = P(IS); S is the set of places in IS. 
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Property 1  [5] The linear combination of Y1 and Y2 is a P-invariant if both Y1 and Y2 
are P-invariants. Furthermore, if Y is a P-invariant of N, then given an initial marking M0, 
∀M ∈ R(N, M0), YT • M = YT • M0 or W(M) = W(M0), where W(M) = YT • M(W(M0) = YT 
• M0) is the weighted sum of tokens under M(M0).   

2.1 WS3PR 

A WS3PR is similar to an S3PR and is composed of a set of state machines (which 
are a subclass of ordinary Petri nets) holding and releasing shared resources. Its defini-
tion has been provided in this journal [6]. 

In the sequel, when talking about a marked WS3PRN = (P ∪ {p0} ∪ PR, T, F), de-
note P0 = {p0} and refer to N with a full initial marking where, by normal practice, M0(p0) 
is selected so that that the resource can be fully utilized by the S2PR. N is quasi-live and 
each transition is potentially firable under M0 since M0(r) ≥ maxt∈R●F(r, t), ∀r ∈ PR, ∀t ∈ 
r•.  

A resource subnet is a subnet where all places are resource ones. 

2.2 Max*-Controlled Siphons 

An S3PR is live if no siphons ever become empty [3], not necessarily true for WS3PR 

since it is a general Petri net (GPN). The new condition is called “max-controlled” [12] 
or the more relaxed “max*-controlled” as defined below. 

Definition 2  Let N = (P ∪ P0 ∪ PR, T, F) be a WS3PR, D a siphon, DR = D ∩ PR, DP = 
D ∩ P, and υ the resource subnet in D’s I-subnet ID. Let ay(p) = maxt∈p●F(p, t) (ay

*(p) = 
maxt∈p●∩υF(p, t), ax(p) = mint∈p●F(p, t)) be the maximal (minimal for ax(p)) arc weight 
among all output arcs (which are in υ for ay

*(p), ∀p ∈ υ and ay
*(p) = 1, ∀p ∈ DP). ∀p ∈ 

D, p is called max-marked (max*-marked, min-marked) under M if ay(p) ≤ M(p) (ay
*(p) 

≤ M(p), ax(p) ≤ M(p)). D is said to be max-controlled (max*-controlled, min-controlled), 
iff ∀M ∈ R(N, M0), ∃p ∈ D, p is max-marked (max*-marked, min-marked). N is said to 
be max-controlled (max*-controlled, min-controlled) iff each minimal siphon of (N, M0) 
is max-controlled (max*-controlled, min-controlled). 

A siphon D is max-controlled (max*-controlled, min-controlled) if for every reach-
able marking, there exists a max-marked (max*-marked, min-marked) place p in D; i.e., 
the marking of p, M(p), is greater than the weights of all its output arcs (in the resource 
subnet where all places are resources). A GPN is max-controlled (max*-controlled) iff 
all its siphons D are max-controlled (max*-controlled). 

Physically, when a GPN is max-controlled, it behaves like an OPN (ordinary PN) 
since ∀M ∈ R(N, M0), ∃p ∈ P, M(p) ≥ maxt∈p●F(p, t) (all output arcs of p are enabled). 
However, the condition can be relaxed as shown in Fig. 1 (a) with only one SMS S = {r1, 
r2, p3, p5}. None of places in S is max-marked: r1(r2) is not max-marked since the output 
arc (r1, t1) ((r2, t2)) is disabled and M(p5) = M(p3) = 0. Note that while r1 is max*-marked, 
namely ay

*(r1) = 1 < M(r1) = 2, r2 is not max*-marked, because ay
*(r2) = 4 < M(r2) = 2. 

Thus, S is not max-controlled − but max*-controlled −, yet the net system is live. The re-
source subnet υ of IS is a resource circuit c1 = [r1 t5 r2 t2 r1]. r1(r2) is (not) max-marked in 
υ since output arc (r1, t5) ((r2, t2)) in υ is enabled (disabled).  
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We now give an intuitive explanation. To reach deadlocks when there exists an 
SMS S, tokens in S must be pushed out to (called brink) places to enable transitions in IS. 
If every transition of IS is only disabled by insufficiently marked input places in IS to 
reach a so called deadlock-brink state, one can isolate IS from the rest of the net N. All 
transitions in IS are live if the marked S is max-controlled in IS (i.e., max*-controlled in N) 
even though it is not so for the marked N.  

 
Definition 3  Let N = (P ∪ P0 ∪ PR, T, F) be a WS3PR and S a siphon in N. ∀p ∈ P ∪ 
P0 ∪ PR, p ∈ ●N′, if p ∉ N′ and ∃t in N′, p ∈ ●t. p is called a brink place if ∃r ∈ IS, p ∈ 
H(r) ∩ ●IS. A cut circuit is a circuit c in IS, and ∀p′ ∈ ●c, p′ is not a brink place. A sub-IS 
I′S is a subnet of IS obtained by removing all cut circuits (denoted by the set Θ) from IS 
(but keeping the resource place in each c); i.e., I′S = IS\Θ. 

 
Note that a brink place [e.g., p2 and p6 in Fig. 1 (a)] is a holder place of a resource in 

IS and also an input place of IS. In a deadlock-brink state, all brink places p hold tokens 
so that every arc (p, t) (t ∈ I′S) is enabled; t may be disabled only by places in I′S. Note 
that there is no such t in any cut circuit. Thus, if for any reachable marking, there is a 
max-marked place p in I′S (obtained by removing cut circuits from IS), output transitions 
t of p (t ∈ I′S) can be fired since p, by Observation 1, has only two input places and both 
are marked. 

Note that for a reachable marking M such that S is max-marked in I′S; it may not be 
so in IS. That is, arc (r, t) in a cut circuit C may be disabled while r is max-marked in I′S. 
This posts no problem since transitions in I′S are live and there is a firing sequence from 
M to restore M(r) to M0(r) to enable (r, t) since (r, t) must be initially (i.e., under M0) en-
abled.  

Intuitively, ∀p ∈ S, p is max*-marked under M ∈ R(N, M0) iff p is max-marked in 
I′S. The marking (p2 + 2r1 + r2 + p6) (i.e., M(p2) = 1, M(r1) = 2, M(r2) = 1, M(p6) = 1, and 
M(p) = 0, for all other places p) in Fig. 1 (a) is a deadlock-brink state for the only SMS. 
In order to reach a deadlock, there exists an SMS S in a deadlock-brink state. If S is 
max*-controlled, at least a transition in I′S is enabled and hence is deadlock-free. Note 
that the max*-controlled condition may no longer hold (for GPN) if the weight of the arc 
(p, t), p ∈ P (not a resource place), is not one. However, it is true for most Petri net mod-
els of FMS.  

We now develop the theory for a net system to be max*-controlled. Note that the net 
system is not live, yet the only siphon S is not deadly marked. Unlike S3PR, the absence 
of deadly marked siphons (DMS) does not imply the liveness of a WS3PR. Simple exten-
sion of DMS is insufficient for the liveness analysis of WS3PR. 
 
Definition 4  Let S be an SMS and Y a P-invariant with components yi = Y(pi) satisfying 
the negative-property: ∀pk ∈ S, yk > 0 and ∀pi ∈ (P ∪ P0 ∪ PR)\S: yi ≤ 0, where (P ∪ P0 ∪ 
PR)\S = {x | x ∈ (P ∪ P0 ∪ PR), x ∉ S} and MS = [0 0 … 0 ay

*(r1) − 1 ay
*(r2) − 1 … ay

*(rK) 
− 1 0 0 … 0]T (ay

*(r) defined in Def. 2) a marking such that ∀ri ∈ SR, M(ri) = ay
*(ri) − 1, i 

= 1, 2, …, K and ∀p ∈ (P ∪ P0 ∪ PR)\SR, M(p) = 0. The weighted sum of tokens under 
MS(M0) is W(MS) = WS = MS

T • Y = ∑i(ay(ri) − 1) • yi (W(M0) = YT • M0). W(M(S)) = 
∑p∈SM(p) • Y(p) is the weighted sum of tokens in S under M. ΔW = W(M ) − W(M0). 
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When designing a system, one first selects a Y satisfying the negative-property and 
then assign an initial marking M0 such that W(M0) > WS for each SMS S to ensure that the 
system remains max*-controlled under all reachable markings as shown below. 

Lemma 1  Let (N, M0) be a net-system, (1) If W(M(S)) > WS, then S is max*-marked; 
(2) If W(M0) > WS, then S is max*-controlled, where S ⊆ (P ∪ PR) is an SMS of N, Y a 
P-invariant satisfying the negative-property. 

Proof: (1) Assume contrarily thqt ∀M ∈ R(N, M0), ∀p ∈ S, M(p) ≤ ay
*(p) − 1. One has 

W(M(S)) = ∑p∈SM(p) • Y(p) ≤ ∑p∈S(ay
*(p) − 1) • Y(p) = WS − contradiction; (2) By Prop-

erty 1, one has W(M0) = W(M) > WS where W(M) = W(M(S)) + W(M((P ∪ P0 ∪ PR)\S)) > 
WS. Now, W(M((P ∪ P0 ∪ PR)\S)) ≤ 0 due to the negative property; thus, W(M(S)) > WS − 
W(M((P ∪ P0 ∪ PR)\S)) ≥ WS, which leads to the inequality W(M(S)) > WS satisfying the 
assumption in (1). And S is max*-marked ∀M ∈ R(N, M0). Hence, S is max*-controlled 
by Def. 2.                                                               

By this lemma, if a siphon is initially max*-marked, it remains so for all reachable 
markings. This facilitates the verification of max*-controlled siphons. If N is ordinary, 
then WS = 0, the condition W(M0) > WS becomes the invariant-controlled one W(M0) > 0 
[5], the max*-controlled S is now also invariant-controlled. Similar to the invariant-con-   
trolled condition W(M0) > 0, the condition W(M0) = YT • M0 > WS in Lemma 1 is also only 
sufficient (not necessary) for deadlock-freeness. This implies that a WS3PR may be dead- 
lock-free or even live if W(M0) ≤ WS. 

Property 2 [6]  Let (N, M0) be a marked WS3PR, M ∈ R(N, M0) and t ∈ T be a dead 
transition under M. Then M0 ∉ R(N, M). 

Corollary 1  Let (N, M0) be a marked WS3PR, M ∈ R(N, M0) and t ∈ T a dead transition 
under M. Then there exist M′ ∈ R(N, M) and two subsets J ⊂ IN and H ⊂ IN such that IN = 
J ∪ H, IN = {1, 2, …, k}, J ∩ H = ∅, J ≠ ∅ and: (1) ∀h ∈ H, M′(ph

0) = M0(ph
0); (2) ∀j ∈ 

J, M′(pj
0) < M0(pj

0) and {p• | p ∈ P, and M′(p) > 0} is a set of dead transitions. 

The above lemma and corollary were taken from [3]. Property 2 states that if there 
exists a dead transition t, then M0 is not reachable. Otherwise, t is potentially firable and 
not dead − contradiction. Corollary 1 states that if there exists a dead transition t, then 
some WPs are blocked and cannot proceed to complete operations. If they can return to 
the initial idle state, then t is potentially firable and not dead − contradiction. 

Based on Corollary 1, the main property about siphon is now proved: If there is a 
dead transition t under M, then there exists a non-max*-marked siphon under M′ ∈ R(N, 
M). The basic idea behind the proof is the construction of a non-max*-marked siphon. It 
consists of two sets of places: (1) resource places r such that one of its output arcs is dis-
abled; (2) unmarked holders of these r. The proof is similar to that for S3PR with some 
differences due to the condition of “non-max*-marked” instead of “empty siphons”. 

Theorem 1  Let (N, M0) be a marked WS3PR, where N = (P ∪ P0 ∪ PR, T, F), and t′ ∈ 
T a dead transition under M. Then ∃M′ ∈ R(N, M), ∃S a siphon so that S is nonempty (i.e., 
not a null set) and non-max’-marked. 
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Proof: See the proof of Theorem 2 in [15].                                    

Corollary 2  Let (N, M0) be a marked WS3PR, where N = (P ∪ P0 ∪ PR, T, F), (N, M0) 
is live if every siphon is max*-controlled. 

Proof: See the proof of Theorem 3 in [15].                                    

We propose a deadlock prevention policy in the next section based on Theorem 1. 
Note that the net in Fig. 1 (a) remains live, unlike S3PR, even when M0(p1) is very large − 
no longer so if M(r1) increases from 2 to 4.  

3. ELEMENTARY SIPHONS AND CHARACTERISTIC VECTORS 
 

This section first redefines characteristic P-vector and others and illustrate a coun-  
ter-example with respect to the one in Li et al. It is desired that an S3PR and its weighted 
S3PR have the same set of elementary and dependent siphons and the same system of 
equations of characteristic T-vectors. To find elementary siphons, Li et al. [4] have to 
find all SMS; the number of which grows exponentially with the size of the net. Thus, Li 
et al. have to start all over for each new weighted S3PR − quite time consuming. 

One would get away with such troubles for a simple basic subclass of S3PR (called 
BS3PR in [13]), where the set of elementary and dependent siphons correspond to that 
synthesized from elementary and compound (i.e., multiple interconnected) resource cir-
cuits (containing only resource places) respectively. There is no need for the above du-
plicate computation for a weighted S3PR. 

Definitions of characteristic P-vector and characteristic T-vector, elementary and 
dependent siphons have been defined in [4]. We first formally redefine characteristic 
P-vector and characteristic T-vector followed by a counter example. 
 
Definition 5  Let Ω ⊆ P be a subset of places of N and Y a P-invariant with components 
yi = Y(pi) satisfying the negative-property: ∀pk ∈ Ω, yk > 0 and ∀pi ∈ P\Ω: yi ≤ 0, where 
P\Ω = {x | x ∈ P, x ∉ Ω}. P-vector λΩ is called the characteristic P-vector of Ω iff ∀p ∈ 
Ω, λΩ(p) = Y(p); otherwise λΩ(p) = 0. η is called the characteristic T-vector of Ω, if ηT = 
λΩT • [N] and Ω is an SMS S, where [N] is the incidence matrix. 

For economy of space and to avoid long vectors, ∑L(p)p(∑J(t)t) will be used to de-
note a P(T)-vector. The following definition helps to illustrate a counter example. 
 
Definition 6  Let Nw and Nr be a WS3PR and its reduced S3PR (with characteristic T- 
vectors ηw and η respectively) where (ηw)T = (λS

w)T • [Nw], λS
w(∀p ∈ S, λS(p) = Y(p); oth-

erwise λS(p) = 0; Y is a P-invariant) is the characteristic P-vector of an SMS S and [Nw] is 
the incidence matrix. 
 

However, a counter example is shown in Fig. 2 where Nw and Nr have the same set of 
SMS: S1 = {r1, r2, p3, p6}, S2 = {r2, r3, p4, p7}, and S3 = {r1, r2, r3, p4, p6}. η1 = [−1 1 0 0 0 1 
−1 0]T, η2 = [0 −1 1 0 0 0 1 −1]T, η3 = [−1 0 1 0 0 1 0 −1]T, η1

w = [−3 0 3 0 0 2 −2 0]T, 
η2

w = [0 −4 4 0 0 1 1 −2]T, andη3
w = [−3 −1 4 0 0 1 0 −2]T. It is easy to see, considering a 
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linear combination of characteristic T-vectors, that η3 = η1 + η2, η3
w ≠ η1

w + η2
w, and no 

a1, a2 ∈ R such that η3
w = a1η1

w + a2η2
w. Thus, if one follows the method in [5], there is 

no dependent siphon (defined in [6]).  
However, if one multiplies each component λS

w(p) of a characteristic P-vector λS in 
Nw by Y(p), the component of a minimal P-invariant Y = [Y(r1) Y(r2) Y(r3) Y(p1) Y(p2) … 
Y(p8)]T = [1 1 1 0 3 4 1 0 1 2 2]T, then η1

w = [−3 3 0 0 0 1 −2 0]T, η2
w = [0 −4 4 0 0 0 2 

−2]T, η3
w = [−3 −1 4 0 0 1 0 −2]T and η3

w = η1
w + η2

w − the same linear expression as that 
for Nr.  
  
Definition 7  An SMS S is said to be ξ-controlled iff Y satisfies the negative property 
and ∀M ∈ R(N, M0), W(M(S)) > WS + ξ, where ξ > 0 is called a control depth variable [4], 
W(M(S)) the sum of weighted token in S under M and WS defined in Def. 4. 
 

All elementary siphons must be ξ-controlled to keep all dependent siphons max*- 
controlled since only elementary siphons receive control places and arcs.  

4. CONTROL POLICY FOR DEADLOCK PREVENTION IN WS3PR 
 

This section extends the deadlock prevention technique for S3PR by Ezpeleta et al. 
to WS3PR. For each elementary siphon S, one adds a control place VS and control arcs as 
in [3, 4] (except the initial marking at VS and the weights of the control arcs). We show 
how to assign P-invariants to achieve the negative property defined in Def. 4. Based on 
Lemma 1.2, one can then determine the initial markings to make S max*-controlled. The 
following definitions help subsequent discussions. 

 
Definition 8  Let N = Oi=1

k Ni = (P ∪ P0 ∪ PR, T, F) be a WS3PR and ∏ be the set of 
SMS in N. Given S ∈ ∏, where S = SP ∪ SR, SR = S ∩ PR, SP = S\PR, the S’s complemen-
tary set [S] = (∪R∈SRH(r))\S denotes the set of holders of resources in S, which do not 
belong to S. [Si] = [S] ∩ Pi, i ∈ IN = {1, 2, …, k}. 
 
Definition 9  Let VS be the control place associated with elementary siphon S. YS is the 
P-invariant associated with S. YS: YS(pj) = 1, ∀pj ∈ SR, or YS(pj) = F(t, r), t ∈ pj

● ∩ ●r, ∀pj 
∈ H(r), r ∈ SR, and YS(pj) = 0 for all other pj. 
 

To disable transitions in an IS to move toward deadlocks, tokens in S should be 
moved to [S] (the complementary set) as many as possible via paths of the form [ri tij pij 
t′ij] or [tij pij t′ij]. Note that the operation place pij in H(ri) is in [S]. Tokens in ri can be 
trapped by firing tij. When the amount of tokens trapped in all pij from ri is larger than 
M0(ri) − ay(ri), ri will become non-max*-marked.  

Thus, one adds a circuit [VS tij pij t′ij VS] ([VS1 t1 p2 t2 VS1] or [VS1 t7 p7 t6 VS1] in Fig. 2) 
to prevent the above token trapping where F(VS, tij) = F(t′ij, VS) = F(r, tij) (= 3 or 2) ; i.e., 
identical arc weights. This results in a new P-invariant whose support covers [S] and VS 
only, while the approach in [3, 4] covers [S] and VS as a proper subset. The former is 
better than the latter in view of the fact that it disturbs less on the uncontrolled model. 
However, it may create new SMS while the latter does not.  
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We follow the approach in [3, 4] to construct control arcs first followed by assign-
ments of P-invariant YV and M0(VS).  

4.1 Control Arcs 
 
Definition 10  With [Si] defined in Def. 8, tα = •[Si]\[Si]• (resp. tβ = [Si]•\•[Si]) is a start 
(end) transition in •[Si] ([Si]•) such that •tα ∉ [Si] (tβ• ∉ [Si]). C(x, y) denotes the circuit 
containing nodes x and y and there exists a path in this from x to y (denoted by Γ(x, y)), x 
≠ y, and the path does not pass a p0 ∈ P0. Let t*1 ∈ P0•, PS(t) = {p | ∃C, s.t. C(t*1, p) & 
C(p, t)} (PS(t) is the set of places p such that t*1, p and t are in a circuit that contains a p0), 
PS = [VS] = ∪tα PS(tβ) (PS is the controller region or the set of places p in the region be-
tween VS

● and ●VS), Tγ(tα) = {t | t ∈ T\P0●, ∃Γ(t*1, tα), s.t. ●t ∩ P(Γ(t*1, tα)) ⊆ PS, t ∉ Γ′(t*1, 
tα), ∀Γ′(t*1, tα)} [P(Γ(t*1, tα) is the set of places on the path from t*1 to tα; ●t (resp. t) is 
(resp. not) on some (resp. any) path from t*1 to tα], and ymax = maxYS(p), p ∈ PS(tβ) where 
YS was defined in Def. 9. 
 

Note that Tγ(tα) is the set of transitions where tokens can leak out from [VS] (= PS, 
the controller region) if there is no control arc from t ∈ Tγ(tα) to VS. ymax is defined such 
that the P-invariant Y defined in Lemma 3 below will satisfy the negative property. 
 
Definition 11  ∀tα and its corresponding tβ, FA(VS, t*1) = FA(tβ, VS) = ymax = FA(tμ, VS), ∀tμ 
∈ Tγ(tα). 
 

In Fig. 2, for S2, tα(tβ) in [S2
1] = {p3}: t2(t3), t*1 = t1, PS(t2) = {p2}, PS(t3) = {p2, p3}, 

Tγ(t2) = ∅ ; and ymax = 4; tα(tβ) in [S2
2] = {p8}: t8(t7), PS(t7) = {p8}, Tγ(t8) = ∅; and ymax = 2. 

More examples will be shown in section 5. The control arcs (denoted by FA in Def. 11) 
are added exactly the same as in [4] except that they are weighted as shown in Table 3. 
Ideally, ●VS = [S]● and VS

● = ●[S] for less disturbance to the uncontrolled model. VS
● was 

set to a subset of P0• in [3, 5] to prevent new SMS generation. The support of YV includes 
a set of places (called PS(tβ) in Def. 10) on paths from transitions in VS

● to tβ. It contains 
[S] plus a set of places called PS(tα)) on paths from transitions in VS

● to tα. To avoid leak-
age of tokens from places pc ∈ PS(tα) (e.g. p6 in Fig. 3) which has more than one output 
transition, control arcs must be added from pc

● (called Tγ(tα)) to VS. The following obser-
vation is helpful for the proof of Lemma 5. 
 
Observation 1  If PS(tα) ≠ ∅, then moving tokens from VS into PS(tα) may not consume 
the tokens in S. Only tokens moving to PS(tβ) consume the tokens in S. 
 
4.2 Initial Markings of VS 
 

Based on the above P-invariant, one can determine the initial markings of VS (Lemma 
4) so that each elementary siphon S is ξ-controlled and every dependent siphon is max*- 
controlled. Afterwards one can define the final controlled model followed by the proof 
of its liveness.  

Lemma 2 (Lemma 3) is useful to prove Lemma 3 (Lemma 4). 
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Fig. 3. WS3PR, a weighted version of the S3PR in [3, 5]. 

 
Lemma 2  Let Y = Yπ + Yϕ be a P-invariant where Ω = π ∪ ϕ = ||Y||. (1) ηπ = − ηϕ; (2) 
ΔW = λΩT • M − λΩT • M0 = λΩT • ΔM = ηT • x where ΔM = M − M0; (3) Given a firing 
vector x, ΔWπ = − ΔWϕ = (ηπ)T • x, where Wπ = YT

π • M and Wϕ = YT
ϕ • M. 

Proof: (1) By the definition of P-invariant, one has [N]T • Y = 0 = [N]T • (Yπ + Yϕ). Using 
Ω = ||Y||, one has η = λΩT • [N] = YT • [N]; hence ηπ = −ηϕ; (2) Multiplying both sides of 
equation M = M0 + [N] • x by λΩT, one has λΩT • M = λΩT • M0 + λΩT • ([N] • x) = λΩT • 
M0 + (λΩT • [N]) • x = λΩT • M0 + ηT • x,λΩT • (M − M0) = λΩT • ΔM = ΔW = ηT • x; (3) 
From (1) and (2), one has ΔWπ = (ηπ)T • x = − (ηϕ)T • x = − ΔWϕ.                  

Based on Def. 11, one can assign P-invariant YV as follows. 

Definition 12  Let VS be the control place associated with elementary siphon S and YV 
the P-invariant associated with VS. YV: YV(pj) = − FA(tβ, VS) (Def. 11), ∀pj ∈ PS(tβ), YV(pj) 
= − 1, for pj = VS, and YV(pj) = 0 for all other pj. 

Lemma 3  (1) ∀S ∈ ∏E, Y = YS + YV
 satisfies the negative property where YS(YV) is de-

fined in Def. 9 (Def. 12); (2) For any firing vector x, − ΔWS ≤ ΔWV. 

Proof: (1) ∀pj ∈ S, YV(pj) = 0 and hence Y(pj) = YS(pj) + YV(pj) > 0. ∀pj ∈ PS(tβ), one has 
YV(pj) = − FA(tβ, VS) = − ymax = − maxYS(p), p ∈ PS(tβ) by Defs. 10 and 12 respectively. 
Thus,  

Y(pj) = YS(pj) + YV(pj) = YS(pj) − maxYS(p) ≤ 0.                            (1) 
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If pj = VS, then Y(pj) = YS(pj) + YV(pj) = − 1 < 0 since YS(pj) = 0. For all other pj, YV(pj) 
= YS(pj) = 0; thus Y(pj) = 0. In summary, ∀pj ∈ (P ∪ P0 ∪ PR ∪ PA)\S, Y(pj) ≤ 0 and Y 
satisfies the negative property; (2) Using Lemma 2.3, one has  

ΔWS = − ΔW[S] and ΔWV = − ΔW[V] where [V] = ||YV||\{VS} and V = {VS}.       (2) 

Because YS(pj) ≤ − YV(pj) due to the fact that Y(pj) ≤ 0 based on inequality (1) and 
M(pj) ≥ 0, ∀pj ∈ [V] ∪ [S], one has  

ΔW[S] ≤ − ΔW[V].                                                                                (3) 

Substituting inequality (3) back into (2), one has − ΔWS ≤ ΔWV.                

Lemma 4  Let Y = YS + YV with YS(YV) defined in Def. 9 (Def. 12) and M0(VS) = M0(S) – 
WS – ξS; (1) ∀S ∈ ∏E, it is ξ-controlled; (2) M0(S) – WS − δS ≥ ξS ≥ 1 where δS = maxF(VS, 
t), t ∈ T. 

Proof: (1) The maximal ΔWV occurs when M(VS) = 0 implying (ΔWV)max = – Y(VS) • 
M0(VS) = M0(VS) = M0(S) – WS – ξS. By Lemma 3.2, one has (ΔWS) ≤ (ΔWV)max = M0(VS) = 
M0(S) – WS – ξS ⇒ M0(S) – W(M(S)) ≤ M0(S) – WS – ξS, implying W(M(S)) ≥ WS + ξS, i.e., 
S is ξ-controlled by Def. 7, where ΔWS = (YS)T • ΔM = (YS)T • M – (YS)T • M0 = (YS)T • M – 
M0(S), and (YS)T • M0 = ∑R∈SYS(r)M0(r) = ∑R∈SM0(r) = M0(S). (2) Note that the above ξS 
is upper bounded by M0(S) – WS so that M0(VS) ≥ 1, which may cause some output transi-
tions of VS to become dead. To avoid this, one sets M0(VS) ≥ δS = maxF(VS, t), t ∈ T. This 
sets M0(S) – WS – δS ≥ ξS ≥ 1.                                               

ξS must be such that each dependent siphon is max*-controlled as in the following 
lemma. 

Lemma 5  Y and M0(VS) are defined as in Lemma 4 and λΩT = (YS)T for λΩ with Ω = S0 
and Def. 9 for YS. S0 is max*-controlled if the inequality M0(S0) > WS0 + ∑n

i=1ai(M0(Si) – 
WSi – ξSi) holds where each Si is an elementary siphon. 

Proof: Multiplying both sides of equation M = M0 + [N] • x by λS0
T, one has λS0

T • M = 
λS0

T • M0 + λS0
T • ([N] • x) = λS0

T • M0 + (λS0
T • [N]) • x = λS0

T • M0 + η0
T • x. 

Using the fact that λS0
T = (YS)T, λS0

T • M0 = ∑R∈SYS(r)M0(r) and η0 = ∑n
i=1(aiηi) – 

∑m
j=1(bjηj) (S0 is a weakly dependent siphon if each bj > 0), one has λS0

T • M = (YS)T • M = 
M0(S0) + ∑n

i=1(aiηi)T • x – ∑m
j=1(bjηj)T • x. 

Defining ΔWS0 = W(M(S0)) – W(M0(S0)) (Recall ΔW = W(M) – W(M0) in Def. 4.), one 
has 

ΔWS0 = W(M(S0)) – M0(S0) = ∑n
i=1(aiηi)T • x – ∑m

j=1(bjηj)T • x                (3) 

where W(M0(S0)) = ∑R∈S0Y(r)M0(r) = ∑R∈S0M0(r) = M0(S0) and Y(r) = 1, ∀r ∈ S0. 
To maximize |ΔWS0|, |∑n

i=1(aiηi)T • x| (|∑m
j=n+1(bjηj)T • x|), should be maximized 

(minimized). |(aiηi)T • x| (|(bjηj)T • x|) is the amount of weighted tokens trapped in [Si] 
([Sj]). In the presence of PS, the tokens in VSj(VSi) may be completely trapped in PSj\[Sj] 
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([Si]) rather than [Sj] (PSi\[Si]) to minimize |(bjηj)T • x| (maximize |(aiηi)T • x|). (Note that 
∀k ∈ IN = {1, 2, …, n}, [Sk] is a subset of PSk. The above thesis does not hold when [Sk] 
= PSk; however, no SMS depends on Sk and ak = 0.) 

Thus, |ΔWS0|max = |∑n
i=1(aiηi)T • x|max = ∑n

i=1ai|ΔWSi|max ≤ ∑n
i=1ai|ΔWVSi|max = ∑n

i=1a 
iM0(VSi) (Lemma 3.2). Now |ΔWS0| ≤ |ΔWS0|max; thus, ∑n

i=1aiM0(VSi) ≥ |ΔWS0| = M0(S0) – 
W(M(S0)) by Eq. (3) and one has M0(S0) – ∑n

i=1aiM0(VSi) ≤ W(M(S0)). With M0(VSi) = 
M0(Si) – WSi – ξSi and the assumption M0(S0) > WS0 + ∑n

i=1ai(M0(Si) – WSi – ξSi) of the 
lemma, one has WS0 < W(M(S0)) and S0 is max*-controlled.                       

Note that the bj terms do not show up in the inequality of Lemma 5. This is because 
the consumption of tokens in VSj tends to increase the tokens in S0 in the absence of PS(tα), 
which by Observation 1 may capture the above tokens resulting in no token increase in S0. 

Definition 13  ∀S ∈ ∏E, M0(VS) must be such that (1) ∑|ΠE|
i=1ξSi is minimized via inte-

ger programming, (2) M0(S) – WS – δS > ξS ≥ 1, and (3) For every dependent siphon S0, 
M0(S0) > WS0 + ∑n

i=1ai(M0(Si) – WSi – ξSi) as in Lemma 5. 

Definition 14  Let (N, M0) be a marked WS3PR (P ∪ P0 ∪ PR, T, F). The net (NA, M0A) 
= (P ∪ P0 ∪ PR ∪ PA, T, F ∪ FA, M0A) is the controlled system of (N, M0) iff (1) PA = {VS 
| S ∈ ∏E} is the set of places such that there exists a bijective mapping from ∏E into it; (2) 
FA is defined in Def. 11; (3) M0A is defined as follows: (a) ∀p ∈ P ∪ P0 ∪ PR, M0A(p) = 
M0(p); (b) ∀VS ∈ PA, M0A(VS) is determined in Def. 12. 

Theorem 2 [6]  Let (NA, M0A) be the controlled system of a marked WS3PR (N, M0). 
Then (NA, M0A) is live. 

5. FMS EXAMPLE 
 

The net system in Fig. 3 is a WS3PR and contains deadlocks. There are 6 elementary 
siphons and 12 dependent siphons as shown in Tables 1 and 2 respectively. For example, 
S3 is a dependent SMS w.r.t. to S4 and S18. Let us apply our deadlock prevention algorithm 
to this net system. First add 6 control places VS1, VS4, VS10, VS16, VS17, and VS18 which cor-
respond to six elementary siphons S1, S4, S10, S16, S17, and S18, respectively.  

Table 3 and Fig. 4 show the new places, arcs as well as M0(VSi), added using the 
control policy for the WS3PR in Fig. 3. Note that t15(3) in the 2nd column for S4 indicates 
that FA(VS, t15) = 3. For S4, there are two tα(tβ) in [S4

1]: t3(t5) and t8(t10), t*1 = t1, PS(t3) = {p6, 
p7}, and PS(t5) = {p6, p7, p8, p9}, Tγ(t3) = ∅ and ymax = 2. There is one tα(tβ) in [S4

2]: t11(t13), 
t*1 = t11, Tγ(t11) = ∅ and ymax = 1. There is one tα(tβ) in [S4

3]: t15(t17), t*1 = t15, Tγ(t15) = ∅ 
and ymax = 3. For S18, there is one tα(tβ) in [S18

1]: t7(t8), t*1 = t1, Tγ(t7) = {t2}, ymax = 1; one 
tα(tβ) in [S18

3]: t17(t18), t*1 = t15, Tγ(t17) = ∅, ymax = 1.  
Note that the method proposed in [3] is used to add a control place for each ele-

mentary siphon and no new SMS will be generated due to these new additional places. 
Note that all control arcs, e.g. FA(VS4, t15) = FA(t17, VS4) = 3, associated with the same 

(different) WP (may) carry the same (different, e.g. FA(VS4, t15) ≠ FA(VS4, t1)) weights. t15 
and t17(t1) are in the same (different) WP. This is the reason that one defines control arcs 
relative to each [Si] in Defs. 10 and 11. 
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Table 1. Elementary siphons, resource circuits, and ηw for the net in Fig. 3. 
Elem. 
siphons 

places c ηw 

S1 p10, p18, p22, p26 [p22 t10 p26 t16 p22] − t9 + t10 − t15 + t16 

S4 p4, p10, p17, p21, p22, p24, p26 [p21 t17 p26 t16 p22 t5 p24 t4 p21] 
− t3 + t5 − t8 + t10 − t11  
+ t13 − t15 − 2t16 + 3t17 

S10 p4, p9, p12, p17, p21, p24 [p21 t13 p24 t4 p21] − t3 + t4 − t11 + t13 
S16 p2, p4, p8, p13, p17, p21, p26 [p21 t17 p26 t9 p21] + t9 − t8 + 3t17 − 3t16 
S17 p2, p4, p8, p12, p15, p20, p21, p23, p25 [p21 t3 p23 t2 p20 t19 p25 t18 p21] − t1 + t3 + t8 − t17 − t19 
S18 p2, p4, p8, p12, p16, p21, p25 [p21 t8 p25 t18 p21] − t7 + t8 − t17 + t18 

Table 2. Dependent siphons, their ηw, M0(S), and WS for the net in Fig. 3. 
dependent 

siphons places ηw relationship M0(S) WS(Def. 4) 

S2 p4,p10,p15,p20,p21,p22,p23 ,p24,p25,p26 ηw
2 = ηw

4 +ηw
17 16 3 

S3 p4,p10,p16,p21,p22,p24,p25,p26 ηw
3 = ηw

4 + ηw
18 12 2 

S5 p4,p9,p13,p15,p20,p21,p23,p24,p25,p26 ηw
5 = ηw

10 + ηw
16 + ηw

17 15 1 
S6 p4,p9,p13,p16,p21,p24,p25,p26 ηw

6 = ηw
10 + ηw

16 + ηw
18 11 0 

S7 p4,p9,p13,p17,p21,p24,p26 ηw
7 = ηw

10 + ηw
16 9 0 

S8 p4,p9,p12,p15,p20,p21,p23,p24,p25 ηw
8 = ηw

10 + ηw
17 9 1 

S9 p4,p9,p12,p16,p21,p24,p25 ηw
9 = ηw

10 + ηw
18 5 0 

S11 p2,p4,p8,p10,p15,p20,p21,p22,p23,p25,p26 ηw
11 = ηw

1 + ηw
16 + ηw

17 14 3 
S12 p2,p4,p8,p13,p15,p20,p21,p23,p25,p26 ηw

12 = ηw
16 + ηw

17 13 1 
S13 p2,p4,p8,p10,p16,p21,p22,p25,p26 ηw

13 = ηw
1 + ηw

16 + ηw
18 10 2 

S14 p2,p4,p8,p13,p16,p21,p25,p26 ηw
14 = ηw

16 + ηw
18 9 0 

S15 p2,p4,p8,p10,p17,p21,p22,p26 ηw
15 = ηw

1 + ηw
16 8 2 

Table 3. Elementary siphons and the control model. 
Elementary siphons VS

• •VS M0(VS) WS(Def. 4) 
S1 {t1, t15} {t16, t10, t2} 4 2 
S4 {t1, t11, t15(3)} {t5, t10, t13, t17(3)} 7 2 
S10 {t1, t11} {t4, t7, t13} 2 0 
S16 {t1, t15(3)} {t2, t9, t17(3)} 6 0 
S17 {t1, t15} {t3, t8, t19} 5 1 
S18 {t1, t15} {t2, t8, t18} 2 0 

VS1 t15 
t1 

t2 t10 

t16 
1 

VS4 t11 
t1 

t5 t10 

t13 
7 

t15

3 

3 
t17 

VS10 t11 
t1 

t4 t7 

t13
2 

VS16 
t1 

t2 
t9 

6 
t15

3 

3 
t17

VS17 t15 
t1 

t3 t8 

t19 
5 

VS18 t15 
t1 

t2 t8 

t18 
2 

 
Fig. 4. Control model for the FMS in Fig. 3. 

 
Note that the controlled model in Fig. 4 is the same as that in [3, 4] except that some 

arcs are weighted.  
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Table 4. Marking relationships between dependent and elementary siphons for the net in Fig. 3. 
dependent 

siphons Initial marking relationships Controlled? 

S2 (M0(S2) − WS2 ) − (M0(S4) + M0(S17) − WS4 − WS17 − 2) = 1 yes 
S3 (M0(S3) − WS3) − (M0(S4) + M0(S18) − WS4 − WS18 − 2) = 1 yes 
S5 (M0(S5) − WS5) − (M0(S10) + M0(S16) + M0(S17) − WS10 − WS16 − WS17 − 3) = 1 yes 
S6 (M0(S6) − WS6) − (M0(S10) + M0(S16) + M0(S18) − WS10 − WS16 − WS18 − 3) = 1 yes 
S7 (M0(S7) − WS7) − (M0(S10) + M0(S16) − WS10 − WS16 − 2) = 1 yes 
S8 (M0(S8) − WS8) − (M0(S10) + M0(S17) − WS10 − WS17 − 2) = 1 yes 
S9 (M0(S9) − WS9) − (M0(S10) + M0(S18) − WS10 − WS18 − 2) = 1 yes 
S11 (M0(S11) − WS11) − (M0(S1) + M0(S16) + M0(S17) − WS1 − WS16 − WS17 − 3) = − 4 no 
S12 (M0(S12) − WS12) − ( M0(S16) + M0(S17) − WS16 − WS17 − 2) = 1 yes 
S13 (M0(S13) − WS13) − (M0(S1) + M0(S16) + M0(S18) − WS1 − WS16 − WS18 − 3) = − 4 no 
S14 (M0(S14) − WS14) − (M0(S16) + M0(S18) − WS16 − WS18 − 2) = 1 yes 
S15 (M0(S15) − WS15) − (M0(S1) + M0(S16) − WS1 − WS16 − 2) = − 4 no 

 
Consider the least restrictive case when ξSi = 1, i = 1, 4, 10, 16, 17, 18. One has 

M0(VS1) = 4, M0(VS4) = 7, M0(VS10) = 2, M0(VS16) = 6, M0(VS17) = 5, and M0(VS18) = 2. The 
dependent siphons, their elementary siphons, the initial marking relationships between 
dependent and elementary siphons and the controllability of dependent siphons due to 
Lemma 5 are shown in Table 4. 

Note that there are three “no” in Table 4 (three equalities with – 4 on the right-hand 
sides) and hence S11, S13, and S15 may not be controlled. The controllability can be met by 
setting ξS1 = 4 for the above three equalities to have values of one since M0(S1) appears 
only in the three associated initial marking relationships. The resulting controlled net 
reaches 3054 states out of the total 69536 states of the uncontrolled model using the INA 
(Integrated Net Analyzer). 

However, this does not mean that the controlled net with ξS1 = 1 is dead similar to 
that in [4]. Without adjusting any control depth variable, the controlled WS3PR reaches 
10304 states and is live. This is of great significance because one only adds six control 
places and 32 arcs − amazingly exactly the same as that in [4] − and the resultant Petri net 
is live. In [3], 18 control places and 106 arcs are added, which makes the final controller 
three times more complex than that of ours where the model is a weighted version and 
hence more complicated than the S3PR in [4].  

6. CONCLUSION 
 
We have improved the liveness condition of WS3PR.with max*-controlled siphons. 

Exploiting this, a better control technique for WS3PR has been pursued.  

The condition of max*-controlled siphons may be extended to more complicated 
models (e.g., multiple types of resources used at a job stage) where (1) Any SMS can be 
synthesized from strongly connected resource subnets, and (2) The weight of any output 
arc from an operation place is unity. 
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