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ABSTRACT
How to evaluate an appropriate correlation with fuzzy data is an important topic in the 
economics especially when the data illustrate uncertain, inconsistent and incomplete type. 
Traditionally, we use Pearson’s Correlation Coefficient to measure the correlation between 
data with real value. However, when the data are composed of  fuzzy numbers, it is not 
feasible to use such a traditional approach to determine the fuzzy correlation coefficient. This 
study proposes the calculation of  fuzzy correlation with of  fuzzy data: Interval, triangular 
and trapezoidal. Empirical studies are used to illustrate the application for evaluating 
fuzzy correlations. More related practical phenomena can be explained by this appropriate 
definition of  fuzzy correlation.
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1. Introduction

Traditional statistics reflects the results from a two-valued logic world, which 
often reduces the accuracy of  inferential procedures. To investigate the population, 
people’s opinions or the complexity of  a subjective event more accurately, fuzzy logic 
should be utilized to account for the full range of  possible values. Especially, when 
dealing with psychometric measures, fuzzy statistics provides a powerful research 
tool. Since Zadeh [11] developed fuzzy set theory, its applications have been extended 
to traditional statistical inferences and methods in social sciences, including medical 
diagnosis or stock investment systems. For example, a successive series of  studies 
demonstrated approximate reasoning methods for econometrics [3, 7-8] and a fuzzy 
time series model to overcome the bias of  stock markets was developed [9].
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Within the f ramework of  classical statistical theory, observations should 
follow a specific probability distribution. However, in practice, the observations are 
sometimes described by linguistic terms such as “V ery satisfactory,” “Satisfactory,” 
“Normal,” “Unsatisfactory,” “V ery unsatisfactory,” or are only approximately known, 
rather than equating with randomness. How to measure the correlation between two 
variables involving fuzziness is a challenge to the classical statistical theory. The 
number of  studies which focus on fuzzy correlation analysis and its application in 
the social science fields has been steadily increasing [1, 4, 6, 10]. For example, Hong 
and Hwang [5] and Yu [10] define a correlation formula to measure the interrelation 
of  intuitionist fuzzy sets. However, the range of  their defined correlation is from 
0 to 1, which contradicts with the conventional awareness of  correlation which 
should range from -1 to 1. In order to overcome this issue, Chiang and Lin [2] take 
random sample from the fuzzy sets and treat the membership grades as the crisp 
observations. Their derived coef f icient is between -1 and 1; however, the sense 
the fuzziness is gone. Liu and Kao [6] calculated the fuzzy correlation coefficient 
based on Zadeh’s [11] extension principles. They used a mathematical programming 
approach to derive f uzzy measures based on the classical def inition of  the 
correlation coefficient. Their derivation is quite promising, but in order to employ 
their approach, the mathematical programming is required.

In addition, most previous studies deal with the interval fuzzy data, their 
definitions cannot deal with triangle or trapezoid data. In addition, formulas in 
these studies are quite complicated or required some mathematical programming 
which really limited the access of  some researchers with no strong mathematical 
background. In this study, we give a simple solution of  a fuzzy correlation coefficient 
without programming or the aid of  computer resources. In addition, the provided 
solutions are based on the classical definition of  Pearson correlation which should 
quite easy and straightforward. The definitions provided in this study can also be 
used for interval-valued, triangular and trapezoid fuzzy data.

Traditionally, if  one wishes to understand the relationship between the 
variables x and y, the most direct and simple way is to draw a scatter plot, which 
can approximately illustrate the relationship between these variables: Positive 
correlation, negative correlation, or zero correlation. In this study, we have proposed 
three kinds of  fuzzy correlation which are based on the Neyman Person’s correlation 
as well as the extension principle Definition 1, Definition 2 and Definition 3, the 
advantages are that we can compute various samples with fuzzy type, such as 
interval, triangle and trapezoid the type for the continuous sample.

The issue at hand is how to measure the relationship in a rational way. 
Statistically, the simplest way to measure the linear relationship between two 
variables is using Pearson’s correlation coef f icient, which expresses both the 
magnitude and the direction of  the relationship between the two variables with a 
range of  values from 1 to -1. However, Pearson correlations can only be applied to 
variables that are real numbers and is not suitable for a fuzzy dataset.
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When considering the correlation f or f uzzy data, two aspects should be 
considered: Centroid and data shape. If  the two centroids of  the two fuzzy dataset 
are close, the correlation should be high. In addition, if  the data shape of  the two 
fuzzy sets is similar, the correlation should also be high. An approach to dealing 
with these two aspects simultaneously will be presented later in this study. Before 
illustrating the approach of  calculating fuzzy correlations, a review of  fuzzy theory 
and fuzzy datasets are presented in the next section.

2. Fuzzy correlation

The correlation coefficient is a commonly used statistics that presents a measure 
of  how two random variables are linearly related in a sample. The population 
correlation coefficient, which is generally denoted by the symbol ρ  is defined for two 
variables x and y by the formula:

  (1)

In this case, the more positive ρ  is, the more positive the association is. This also 
indicates that when ρ  is close to 1, an individual with a high value for one variable 
will likely have a high value for the other, and an individual with a lower value 
for one variable will likely to have a low value for the other. On the other hand, 
the more negative ρ  is, the more negative the association is, this also indicate that 
an individual with a high value for one variable will likely have a low value for 
the other when ρ  is close to -1 and conversely. When ρ  is close to 0, this means there 
is little linear association between two variables. In order to obtain the correlation 
coefficient, we need to obtain σ X

2, σY
2 and the covariance of  x and y. In practice, 

these parameters for the population are unknown or difficult to obtain. Thus, we 
usually use rxy, which can be obtained from a sample, to estimate the unknown 
population parameter. The sample correlation coefficient rxy is expressed as:

  (2)

where (xi, yi) is the ith pair observation value, i = 1, 2, 3,..., n. x̄, ȳ are sample mean 
for x and y respectively.
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Pearson correlation is a straightforward approach to evaluate the relationship 
between two variables. However, if  the variables considered are not real numbers, 
but fuzzy data, the formula above is problematic. For example, Mr. Smith is a new 
graduate from college; his expected annual income is 50,000 dollars. However, he can 
accept a lower salary if  there is a promising offer. In his case, the annual income is 
not a definite number but more like a range. Mr. Smith’s acceptable salary range 
is from 45,000 to 50,000. We can express his annual salary as an interval [45,000, 
50,000]. In addition, when Mr. Smith has a job interview, the manager may ask how 
many hours he can work per day. In this case, Mr. Smith may not be able to provide 
a definite number since his everyday schedule is different. However, Mr. Smith may 
tell the manger that his expected working hours per day is an interval [8, 10].

We know Mr. Smith’s expected salary ranges f rom [45,000, 50,000] and his 
expected working hours are [8, 10]. If  we collect this kind of  data from many new 
graduates, how can we use this data and calculate the correlation between expected 
salary and working hours? Suppose I x is the expected salary for each new graduate, 
I y is the working hours they desired, then the scatter plot for these two sets of  fuzzy 
interval numbers would approximate that shown in Figure 1.

For the interval valued fuzzy number, we need to take out samples f rom 
population X  and Y. Each fuzzy interval data for sample X  centroids has xi, and for 
sample Y  has centroids yi. For the interval data, we also have to consider whether 
the length of  interval fuzzy data are similar or not. In Mr. Smith’s example, if  the 
correlation between the expected salary and working hours are high, then we can 
expect two things: (1) the higher salary the new employee expects, the more working 
hours he can endure; (2) the wider the range of  the expected salary, the wider 
the range of  the working hours should be. However, how should one combine the 
information from both centroid and length? If  they are combined with equal weight, 
it is possible that the combined correlation would exceed the boundaries of  1 or -1. 
In addition, the effect of  length should not be greater than the impact of  centroids. 

Figure 1. Fuzzy correlation with interval data.
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In order to get the rational fuzzy correlations, we used natural logarithms to make 
some adjustments.

Let (X i = [ai, bi], Y i = [ci, di]; i = 1, 2,..., n) be a sequence of  paired trapezoid 
fuzzy sample on population Ω with its pair of  center (cxi, cyi) and pair of  area ||xi|| = 
area(xi), ||yi|| = area(yi). The ad just correlation f or the pair of  area will be

Definition 1
Let (X i = [ai, bi], Y i = [ci, di], ; i = 1, 2,..., n) be a sequence of  paired trapezoid 

fuzzy sample on population Ω with its pair of  center (cxi, cyi) and pair of  area ||xi|| = 
area(xi), ||yi|| = area(yi).

 (3)

Then fuzzy correlation is defined as as,

  (4)

We choose a pair of  (β1, β2) depend on the weight of  practical use. For instance, if  
we think the location correlation is much more important than that of  e scale, β1 = 0.7, 
β2 = 0.3 will be a good suggestion.

Example 1. Suppose we have the following data as shown in Table 1.

Table 1. Numerical example for interval-valued fuzzy data.

student
X Y

Data center length Data center length
A [23, 25] 24 2 [1, 2] 1.5 1
B [21, 26] 23.5 5 [0, 3] 1.5 3
C [29, 35] 32 6 [0, 1] 0.5 1
D [28, 30] 29 2 [1, 4] 2.5 3
E [26, 28] 27 2 [2, 3] 2.5 1

(fuzzy) mean 27.1 3.4 1.7 1.8
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In this case, the correlation between the two centers is

  (5)

and the correlation between the two length is

  (6)

Table 2 is a list of  conbinations for chosing β1, β2. The fuzzy correlation will be 
computed by crxy and arxy with 0 ≤ β1, β2 ≤ 1. Such as, when β1 = 0.7 and β2 = 0.3 then 
FC = 0.7 × (-0.26) + 0.3 × 0.05 = -0.17.

Table 2. Different conbinations of  β1, β2.

(1, 0) ( .9, .1) ( .8, .2) ( .7, .3) ( .6, 4) ( .5, .5) ( .4, .6) ( .3, .7) ( .2, .8) ( .1, .9) (0, 1)
FC -0.26 -0.23 -0.20 -0.17 -0.14 -0.11 -0.08 -0.05 -0.01 0.02 0.05

Considering the contribution of  (area) length correlation to the fuzzy correlation, 
the idea of  correlation interval is proposed. Suppose we f ix the (area) length 
correlation by the following adjusted values.

 ; where  (7)

since -1 ≤ arxy ≤ 1, the range of  λrxy will be 0 < λrxy < 0.3069. We will have the 
following definition for fuzzy correlation interval.
Definition 2

Let (X i = [ai, bi], Y i = [ci, di]; i = 1, 2,..., n) be a sequence of  paired trapezoid 
fuzzy sample on population Ω with its pair of  center (cxi, cyi) and pair of  area ||xi|| = 
area(xi), ||yi|| = area(yi).
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  (8)

 ; where  (9)

Then fuzzy correlation is defined as,
(i) When crxy ≥ 0, λarxy ≥ 0, fuzzy correlation = (crxy, min(1, crxy + λarxy)) 
(ii) When crxy ≥ 0, λarxy < 0, fuzzy correlation = (crxy, - λarxy, crxy)
(iii) When crxy < 0, λarxy ≥ 0, fuzzy correlation = (crxy, crxy+ λarxy)
(iv) When crxy < 0, λarxy < 0, fuzzy correlation = (max (-1, cxy - λarxy), crxy)
Example 2. Suppose we have the following data as shown in Table 3.

Table 3. Numerical example for interval-valued fuzzy data.

student
 X  Y

Data centroid Area (length) Data centroid Area (length)
A [23, 25] 24 2 [1, 2] 1.5 1
B [21, 26] 23.5 5 [0, 3] 1.5 3
C [29, 35] 32 6 [0, 1] 0.5 1
D [28, 30] 29 2 [1, 4] 2.5 3
E [26, 28] 27 2 [2, 3] 2.5 1

(fuzzy) mean 27.1 3.4 1.7 1.8

In this case, the correlation between the two centroids is

  (10)

Similarly, the correlation between two lengths is
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  (11)

Since the centers correlation arxy ≥ 0, and the area (length) correlation λarxy ≥ 
0, thus, fuzzy correlation = (r, r + λarxy) = (-0.26, - 0.26 + 0.02) = (-0.26, -0.24). This 
implied that the relationship between the X and Y are quite small.

Another interesting idea is taking all possible correlations into consideration. 
That is we calculate the correlations for all endpoints of  intervals. Then we take the 
mean of  all possible correlations as our center of  the fuzzy correlation. While the 

range is chosen by the three standard deviation, that is . Here we apply 

the idea of  three standard deviation from quality control.
Definition 3

Let X ji = [a1i, a2i] and Y ji = [b1i, b2i] be a sequence of  paired fuzzy sample on 
population Ω Let 

  j = 1, 2, k = 1, 2. (12)

Then fuzzy correlation is [rlow, rup] with rlow = r̄ - sr and rup = r̄ + sr, where 

  and  (13)

Example 3. Suppose we have the following data as shown in Table 4.
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Table 4. Numerical example for interval-valued fuzzy data.

student
X Y Correlation coefficient

[a1, a2] [b1, b2] ra1b1 ra1b2 ra2b1 ra2b2

A [23, 25] [1, 2] -0.07 -0.07 -0.32 -0.09 
B [21, 26] [0, 3]
C [32, 35] [0, 1]
D [28, 30] [1, 4]
E [26, 28] [2, 3]

interval r̄ = -0.14, sr = 0.12

Since the mean and Standard Deviation of  r jk are -0.14 and 0.12, thus, fuzzy 
correlation = (-0.26, -0.02). This implied that the relationship between the X and Y 
are small.

A correlation coefficient is a number between -1 and 1 which measures the degree 
to which two variables are linearly related. If  there is perfect linear relationship 
with positive slope between the two variables, we have a correlation coefficient of  1; 
if  there is positive correlation, whenever one variable has a high value. Thus, base 
on the measure of  evaluation, the degree of  the population correlation coefficient, we 
will be considered for the correlation of  fuzzy interval. As the correlation of  fuzzy 
interval, [rlow, rup], is computed then the value of  fuzzy correlation can be evaluated 
that is defined as,
(i) When [rlow, rup] ∈ [ -0.10, 0.10 ], the fuzzy correlation is not significant.
(ii) When [rlow, rup] ∈ [ -0.39, -0.11 ] or [0.11, 0.39 ], the fuzzy correlation is low value.
(iii) When [rlow, rup] ∈ [ -0.69, -0.40 ] or [0.40, 0.69 ], the fuzzy correlation is middle value.
(iv) When [rlow, rup] ∈ [ -0.99, -0.70 ] or [0.70, 0.99 ], the fuzzy correlation is high value.

3. Empirical studies

In this section, there are two empirical example will be considered to study the 
relationship with three schemes. In the first part, we employ the fuzzy interval data 
to investigate the relationship between climate and the price of  vegetable from 2009 
to 2011 in Taiwan. In the second part, we apply the exchange rate and the price of  
agriculture in Thailand.

3.1    Correlation between climate and agriculture price in Taiwan 

Having 33 samples are collected f rom the Central Weather Bureau and 
Agriculture and Food Agency Council of  Agriculture Executive Yuan in Taiwan. We 
want to study which factors will impact the relationship between climate (X) and 
the price of  vegetable (Y). The result presents the correlation for fuzzy data and in 
comparison with the price of  vegetable.
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Based on Table 5, we have the following findings. First, besides the correlation 
of  temperature and vegetable price is positive, this result present that the 
temperature is increasing, the price of  vegetable can be affected increasing. Second, 
the correlation coefficient of  both new method and length and center are close. This 
means there is almost middle relationship between temperature and vegetable price 
in Taiwan.

Table 5. Correlations interval based on temperature and the price of  vegetable in 
Taiwan.

Scheme Correlation coefficient
Fuzzy Correlation by Definition 1 .212
Fuzzy Interval by Definition 2 ( .339, .489)
Fuzzy Interval by Definition 3 ( .348, .480)

3.2   Correlation of  both pair agriculture price in Thailand

There are 17 samples are collected from Thailand bank and Agriculture and Food 
Agency Council in Thailand. The results show the correlation for the exchanges rate 
and various price of  agriculture with three approaches of  evaluation of  correlation 
coefficient. The results are listed in Table 6.

Table 6. Correlations interval based on temperature and the price of  Agriculture in 
Thailand.

Fuzzy correlation USD: THB Sugar Corn Wheat Rice

USD: THB -
-.3731

(-.540, -.532)2

(-.560, -.500)3

-.5511

(-.850, -.783)2

(-.868, -.815)3

-.5451

(-.893, -.780)2

(-.902, -.868)3

-.0131

(-.019, .083)2

( .015, .143)3

Sugar -
0.7501

( .684, .972)2

( .578, .705)3

0.5851

( .542, .781)2

( .468, .556)3

0.6591

( .648, .886)2

( .567, .663)3

Corn -
0.7971

( .829, 1.000)2

( .744, .833)3

0.7411

( .767, 1.000)2

( .683, .765)3

Wheat -
0.5181

( .561, .725)2

( .512, .554)3

Rice -
Note: 1 denote the value of  Definition 1 under β1 = 0.7, β2 = 0.3.

2 denote the value of  Definition 2.
3 denote the value of  Definition 3.
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In Table 6, we have the following f indings. First, besides the correlation of  
exchange rate and the price of  agriculture are negative and this result denotes 
that the exchange rate decreases then the price of  agriculture increase. Second, the 
correlation coefficient is high level for exchange rate and the price of  corn, wheat, 
this means the price of  corn and wheat have a lot of  effect to exchange rate. In 
addition, the price of  sugar will affect a little by exchange rate, and the price of  
race can not be influenced by exchange rate. Third, the any both price of  agriculture 
are positive, and there are at the least middle relationship for any pair price of  
agriculture. This result show that one price of  agriculture will affect other price of  
agriculture, such as the price of  wheat can be affected by the price of  rice.

4. Conclusions

Correlation between any two variables has wide applications in many 
applications. Previous studies have derived some solutions for calculating the 
correlation coefficient for fuzzy numbers. A common deficiency of  those studies is 
that the correlation coefficients calculated are crisp values, instead of  the intuitively 
believed fuzzy numbers. This paper uses a simple way to derive fuzzy measures 
based on the classical definition of  Pearson correlation coefficient which are easy 
and straightforward. Moreover, the range of  the calculated fuzzy coefficient is a 
fuzzy number with domain [-1, 1], which consist with the conventional range of  
Pearson correlation. In the formula we provided, when all observations are real 
numbers, the developed model becomes the classical Pearson correlation formula.

There are some suggestions for future studies. First, the main purpose of  this 
study is to provide the formula of  calculating fuzzy correlations. Only few samples 
are collected to illustrate how to employ the formula. Future interested researchers 
can use formula and collect a large-scale fuzzy questionnaires to make this formulas 
implement in practice. Second, when calculating the fuzzy correlation, we adopt 
λarxy to adjust the correlations, but researchers can set up their own λarxy values 
if  there are defensible reasons. However, it is suggested that the impact of  length 
correlation should not exceed the impact of  centroid correlation. Third, this study 
only considered the fuzzy correlation for continuous data. It would be interested to 
investigate the fuzzy correlation for discrete fuzzy data.

In practice, many applications are fuzzy in nature. We can absolutely ignore 
the fuzziness and make the existing methodology for crisp values. However, this 
will make the researcher over confident with their results. With the methodology 
developed in this paper, a more realistic correlation is obtained, which provides the 
decision maker with more knowledge and confident to make better decisions.
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