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It is well accepted that heart rate variability (HRV) is the result of
complex cardiorespiratory dynamics including heart rate, blood pressure,
and respiration rate. One well-known phenomenon of cardiorespiratory
interaction is respiratory sinus arrhythmia (RSA) [1]. In particular,
obstructive sleep apnea (SA), one of RSA-related disorders, is the
repeated, temporary cessation of breathing during sleep caused by
intermittent airway obstruction, and SA is considered an independent risk
factor for hypertension, ischemic heart attacks, and stroke [2–4]. The
physiological mechanisms leading to cardiovascular disease in SA are
complex and not fully understood. However, it is believed that changes in
the cardiac autonomic regulation should be involved in the development
of cardiovascular disease for SA patients [5]. Previous studies indicated
that changes in HRV are present in SA patients, and linear parameters of
HRV in time domain have beenproposed as a screening tool [6]. However,
in the study of Yang et al. [7] no significant differences in time-related
linear parameters of HRV were observed. Therefore, application of time-
domain HRV parameters for SA patients is still debatable.

It is known that previous time-domain analysis requires stationary
signals. This means that the mean value, standard deviation, and higher
order moments of the analyzed signal must remain the same for the
period investigated. However, SA with its highly dynamic pattern of HRV
is nonstationary and therefore the application of linear time-domain
analysis has been questioned before [8]. In this study, we report a novel
nonlinear method in time domain that can recognize SA from HRV
changes alone. Moreover, the underlying meaning of this proposed
method can well reflect the nonstationary physiologic process for SA
patients during sleep (see below).

Three groups of subjects were considered in this study. Apnea (class
A), borderline apnea (class B), and normal (control, or class C) subjects
were classified according to the total time duration of apnea and
hypopnea that happened during sleep. In clinical applications, the apnea–
hypopnea index (AHI) is often used to identify the severity of apnea
patients. In addition, disordered breathing (DB) is also a quantity which
counts the total time duration of apnea and hypopnea in overnight sleep.
Our analyzed data including 40 recordings in class A, 10 recordings in
class B, and 20 recordings in class C were obtained from the Apnea–ECG
Database [9], which has been publicly released in PhysioNet [10].

In order to characterize heart rate fluctuations, the logarithmic return
of heartbeat intervals R(i) is considered.

R ið Þ = ln
RR ið Þ

RR i−1ð Þ
� �

; ð1Þ

where RR(i) is the heartbeat interval at the beat number i. Moreover, the
normalized return Rnor(i) is defined as

Rnor ið Þ≡R ið Þ−μ
σ

: ð2Þ

where μ and σ are the mean and standard deviation of R(i) series,
respectively. Fig. 1 illustrates RR(i) and Rnor(i) of an SA patient as well as a
normal subject. It is clear to find that the average heart rate of the normal
subject is lower than that of the SA patient. In addition, the SA patient,
compared to the normal subject, exhibited the dramatic volatility in R-
(i) series. This dramatic volatility accompanied with cyclic variations is
more pronounced for the SA patient [14]. Relatively, the normal subject
displayed a uniform stochastic pattern in Rnor(i) series, but the nonuni-
form dynamic pattern is obvious for the SA patient. This nonuniformity is
strongly related to the clustering degree of large volatility in Rnor(i) series.
Therefore, the detection of the volatility clustering index Rl embedded in
heart rate fluctuations would be an intuitive idea to differentiate between
SA patients and normal subjects. The detailed mathematical procedure
for the Rl index is shown in Appendix A.

The last row in Fig. 1 illustrates the number of events with largest 40%
fluctuations within a 5-beat window for an SA patient (left) as well as for
a normal subject (right) (see Appendix A). It is obvious that volatility
clustering embedded in heart rate fluctuations is much more dominant
for the SA patient. Thus the Rl index of SA patients should be larger than
that of normal subjects. Fig. 2 demonstrates the statistical characteristics
of Rl for apnea, borderline apnea, and control subjects. As expected, the
apnea group has a higher Rl compared with that of the other two groups.
Statistical differences between these three groups were assessed by
Scheffe post hoc test. In Fig. 2 we can find that the Rl index provides
significant differentiations for the apnea and control groups (∗ ∗Pb0.01) as
well as for the apnea and borderline apnea groups (∗Pb0.05), however, no
significant differences between the borderline apnea and control groups.
In addition, based upon results shown in Fig. 2 the receiver operating
characteristic (ROC) curve for the apnea and control groups reflects both
high sensitivity and specificity (Fig. 3), where the AUC value can be up to
0.759.

In autonomic neuroscience, it is known that a series of changes in
autonomic functions can be found during sleep via fast Fourier transform
(FFT). For example, quiet sleep (QS) can be characterized by concurrent
vagal activation and sympathetic withdrawal. This kind of autonomic
alternations is totally different in the rapid eye movement stage [11,12].
Recently, Yang et al. used the short-term FFT to investigate the
relationship between depth of QS and HRV indices for normal subjects
and found that cardiac sympathetic regulation is negatively related to the
depth of sleep, but vagal regulation is not [13]. In Fig. 2 the Rl index for
normal subjects is larger than 1. It implies that normal sleep including a
series of changes of sleep stagesmay induce the phenomenon of volatility
clustering embedded in heart rate fluctuations. And the Rl index seems to
provide a different point of view on changes in the cardiac autonomic
regulation. In addition, it is also known that episodes of SA are
accompanied by a characteristic heart rate pattern, which consists of
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bradycardia during apnea followed by abrupt tachycardia on its cessation
[14]. Thus the dramatic volatility in heart rate can be expected for SA
patients. Based upon results shown in Figs. 2–3, the number of apnea
events has a significant influence on the clustering degree of large
volatility embedded in heart rate fluctuations.

AHI and DB are well-accepted indices to identify the severity of apnea
patients. Thus it can be expected that the high correlation (0.88, Pb0.01)
between AHI and DB can be observed in the analyzed database. The
correlations for Rl vs. AHI and Rl vs. DB are, respectively, equal to 0.33
(Pb0.01) and 0.36 (Pb0.01). It is not surprising that Rl has a low
correlationwith DB as well as with AHI. As mentioned above, the Rl index
is strongly related to a series of changes in sleep stages as well as the
number of apnea events during overnight sleep. Although there is an

intrinsic difference between Rl and AHI (or DB), the Rl index still provides
significant differentiations for apnea and control groups as well as for
apnea and borderline apnea groups (Fig. 2). However, it should be noted
that periodic leg movements (PLMs) during sleep could be seriously
related to the present study. The reason is PLM can make a similar heart
rate pattern as that of SA [15,16]. Inwell-controlled clinical settings people
found that the efficiency of automated SA detection will be strongly
reduced for subjects with a higher PLM index [17]. The open-access
databaseweused in this study did not provide the PLM information for all
analyzed groups. Therefore, it would be interesting to test the efficiency of
our apnea index Rl under controlled clinical settings for future studies.

Fig. 1. Illustrations of RR(i) (top), Rnor(i) (middle), and the number of events with largest 40% fluctuations within a 5-beat window (bottom) for an SA patient (left) as well as for a
normal subject (right).

Fig. 2. Boxplot for comparisons of Rl in between apnea, borderline apnea, and control
subjects. Boxes represent the 75th percentile, median, and 25th percentile. Whiskers
show the largest and the smallest observed values. Difference was assessed by Scheffe
post hoc test (∗∗Pb0.01 and ∗Pb0.05).

Fig. 3. The illustration of the ROC curve (solid) between the apnea and control groups,
where the AUC value can be up to 0.759. The diagonal (dashed) is used as a reference
line.
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Finally, we shall explain why we chose the 5-beat window size as
well as the largest 40% fluctuations in this study. In the rest status
heart rate for normal subjects is 60–100 bpm, then one heartbeat
needs 0.6–1.0 s and the time characteristic of a 5-beat window is 3.0–
5.0 s. If the average breathing frequency for normal subjects is 0.2 Hz,
then one breath needs 5.0 s. In addition, each single apnea must
be longer than 10.0 s in order to be counted [9]. Therefore, the 5-beat
window can measure the clustering degree of large volatility
embedded in HRV during one breath and during a single apnea
event. Concerning the largest 40% fluctuations, it is based upon the
characteristic of the Apnea–ECG Database, where the average
value of time spent in DB divided by the duration of the ECG
recording is around 36.8%. Therefore, the present used parameters
can detect apnea-induced volatility clustering embedded in heart
rate fluctuations.

To conclude, in this study we propose an apnea index Rl from the
time-domain HRV analysis. This index reflects the clustering degree of
large volatility embedded in HRV. In addition, the underlying meaning
of such an index should be strongly related to changes of the cardiac
autonomic functions, where a series of changes in sleep stages and
apnea events are the two main factors to influence this derived index.
Although Rl cannot replace the target indices AHI and DB, our results
suggest that this index provides significant differentiations for different
groups. Thus clinical applications can be expected under the considera-
tion of reduction of personal costs.

This work was partially supported by the National Science Council of
the Republic of China (Taiwan) under contract no. NSC 101-2112-M-004-
002-MY3.

Appendix A

Volatility clustering is a term that has been used to describe the
clustering of large fluctuations in financial markets. It has been noticed
for a long time that large fluctuations in financial time series tend to
cluster together. In [18], an index is introduced to quantitativelymeasure
the degree of clustering in a time series. This index has theoretical upper
and lower bounds and is defined to be equal to 1 if the fluctuations
cluster like a Gaussian noise sequence. This index can be used to
measure clustering of fluctuations in any time series. In this analysis, we
employ this index to measure the fluctuations in the normalized return
sequence Rnor(i). The absolute returns |Rnor(i)| are first sorted and the
largestp%fluctuations are identified.Wewouldwant to see if these large
fluctuations will have clustering behavior. To do so, the simplest way is
to replace the largest p% fluctuations of the |Rnor(i)| sequence by 1, and
the rest of the sequence by 0. Therefore, the |Rnor(i)| sequence will be
translated into a binary series, which contains only 0 and 1. We use the
so calledmovingwindowmethod tomeasure the clustering behavior of
the binary-type |Rnor(i)| series. Amovingwindowwith fixed size n-beat
is first chosen.We put thewindow on the first event of the binary series
and count the number of events with values equal to 1 within the
window. We then move the window to the second event and again do
the counting. We repeat the same procedure until we finish scanning
through thewhole binary sequence.Wewill then calculate the standard
deviation σl of the number of events within thewindow and compare it
with that of the Gaussian noise.

To obtain the clustering index of heart rate fluctuations, the statistic
property of Gaussian noise should be reminded for the following process.
In statistics, the mean value of Gaussian noise among the largest p%
fluctuations with a window size n is equal to p×n/100=Pn, where P
denotes p/100. The standard deviation of Gaussian noise also depends on
p% fluctuations and window size. In mathematics, the probability of

having m-beat largest p% fluctuations within an n-beat window can be
expressed as

n!
m! n−mð Þ! P

m 1−Pð Þn−m
: ð3Þ

The standard deviation is written as σ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−bxNð Þ2

q
. Next, we can

use Eq. (3) to rewrite the formula of standard deviation as

σG = ∑
n

m=0
m−Pnð Þ2Pm 1−Pð Þn−m

� �1=2
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nP 1−Pð Þ

p
: ð4Þ

By comparing the result of counting the binary-type |Rnor(i)| sequence
with that of the Gaussian noise sequence, one can define a clustering
index Rl of the largest p% fluctuations, which is the ratio of the standard
deviation of the largest p% fluctuations within the n-beat window
between the binary-type |Rnor(i)| data and Gaussian noise,

Rl≡
σl

σG
: ð5Þ

A clustering index much larger than one denotes that the behavior of
clustering is much stronger.
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