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IMPROVED CONTROLLABILITY TEST FOR DEPENDENT SIPHONS

IN S3PR BASED ON ELEMENTARY SIPHONS

Daniel Y. Chao

ABSTRACT

When siphons in a flexible manufacturing system (FMS) modeled by
an ordinary Petri net (OPN) become unmarked, the net gets deadlocked. To
prevent deadlocks, some control places and related arcs are added to strict
minimal siphons (SMS) so that no siphon can be emptied. For large systems,
it is infeasible to add a monitor to every SMS since the number of SMS
or control elements grows exponentially with respect to the size of a Petri
net. To tackle this problem, Li and Zhou propose to add control nodes and
arcs for only elementary siphons. The rest of siphons, called dependent ones,
may be controlled by adjusting control depth variables of elementary siphons
associated with a dependent siphon after the failure of two tests. First, they
test a Marking Linear Inequality (MLI); if it fails, then they perform a Linear
Integer Programming (LIP) test which is an NP-hard problem. This implies
that the MLI test is only sufficient, but not necessary. We propose a sufficient
and necessary test for adjusting control depth variables in an S3PR to avoid
the sufficient-only time-consuming linear integer programming (LIP) test (NP-
complete problem) required previously for some cases. We theoretically prove
the following: i) no need for LIP test for Type II siphons; and ii) Type I
strongly n-dependent (n>2) siphons being always marked. As a result, the
total time complexity to check controllability of all strongly dependent siphons
is no longer exponential but reduced to linear if all siphons are of Type I. The
total time complexity is O(|�E ||�D|) (order of the product of total number
of elementary siphons and total number of dependent siphons) if all siphons
are of Type II. A well-known S3PR example has been illustrated to show
the advantages.
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I. INTRODUCTION

A flexible manufacturing systems (FMS) consists
of a set of working processes (WP) competing for
resources. A WP models a sequence of operations to
manufacture a product. The circular wait for resources
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can bring the system into a deadlock [1–3] where some
WP can never finish.

A Petri net model is constructed for an FMS. The
analysis of this PNmodel is conducted and system prop-
erties are claimed. Liveness in Flexible Manufacturing
Systems (FMS) modeled by ordinary Petri nets (OPN)
is closely related to emptiable siphons. A siphon (resp.
trap) S is a set of places where tokens can leak out (resp.
inject in) into (resp. from) another set of places called
complementary set [S] of the siphon (resp. trap). Thus,
these tokens stay either in S or [S]. S and [S] together
form the support of a so-called P-invariant. The total
number of tokens S and [S] is conservative. Once an
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emptiable siphon is found, output transitions of places
in the siphon can never be fired. Hence the net is not
live and has deadlocks.

To prevent a siphon S from becoming empty of
tokens, we often add a control place VS and some
control arcs so that [S] plus VS form part of the support
of a new P-invariant. By controlling the initial number
of tokens [denoted by M0(VS)] in VS , we can limit the
maximal of tokens leaking from S into [S]. We say that
S is invariant-controlled.

The number of SMS or control elements grows in
general exponentially with respect to the size of a Petri
net. Hence for large systems, it is impractical to add a
monitor to each SMS. Unlike other techniques, Li and
Zhou [1–5] divide SMS into two kinds: elementary and
dependent. A T-vector g is associated with each SMS
S so that g(ti ) is the number of tokens gained or lost
from S by firing transition ti once. A dependent siphon
S0 depends on elementary siphons S1, S2, . . . , Sk if g0=
a1g1+a2g2+·· ·+akgk . If all ai (i=1,2,3, . . . ,k) are
positive, then S0 strongly depends on S1, S2, . . . , and Sk ,
otherwise if some ai are negative, then S0 is a weakly
dependent siphon. The T-vectors for elementary siphons
are mutually independent.

Li and Zhou [1, 4] add control nodes and arcs for
only elementary siphons greatly reducing the number of
control nodes and arcs. As a result, for complex systems,
it is essential to apply the concept of elementary siphons
to add monitors; the number of which is linear to the
size of the nets modeling the systems.

After the failure of two tests, control depth vari-
ables of elementary siphons associated with a depen-
dent siphon are adjusted to satisfy a Marking Linear
Inequality (MLI).

First, the above MLI is tested; if it fails, then a
Linear Integer Programming (LIP) test is performed,
which takes exponential time due to the LIP’s non-
polynomial complexity.

Thus, the MLI test is only a sufficient (rather than
a necessary) test. Li and Zhou [5–7] further improve
the above sufficient MLI test so that a dependent siphon
that previously failed the MLI test may now satisfy the
new sufficient test to avoid the LIP test.

We will develop a sufficient and necessary test,
better than that of Theorem 1 of [1], so that in some
cases where the test in Theorem 1 fails, the new test
succeeds, thus avoiding the time-consuming LIP. Once
it has failed, there is no need for the LIP test, as with
Li and Zhou’s new approaches in [5–7], since the new
test is necessary for the controllability.

We categorize siphons into two types and show
that type II dependent siphons need no LIP test. Further-
more, we will show that strongly type I dependent

siphons need no control if they depend on more than
two (i.e., n>2) elementary siphons. Thus, even the
above MLI test can be avoided. These results are the
first of their kind as explained below.

This is significant since the number of dependent
siphons is exponential to the size of the net, even though
that of elementary siphons is linear. Thus, the time to
verify against theMLI for all dependent siphons is expo-
nential as for previous approaches, however, the number
of dependent siphons with n<3 is polynomial. As a
result, the total time complexity is reduced from expo-
nential to polynomial.

Further, for an n=2 dependent siphon, a simple
algebraic test is both sufficient and necessary to
determine whether control depth variables need to
be adjusted. Thus, the time-consuming LIP test is
completely eliminated. Thus, among all strongly depen-
dent siphons, we need to apply the polynomial-time
new MLI test to only n=2 type I strongly dependent
siphons with no LIP test.

The rest of the paper is organized as follows:
Section II presents the basis (S3PR, elementary siphons,
and characteristic T-vectors) to understand the paper.
Section III motivates the reader by presenting some
simple examples. The results are proved and general-
ized in Section IV. A well-known S3PR example has
been illustrated to show the advantages in Section V.
Finally, Section VI concludes the paper.

II. PRELIMINARIES

Amarked Petri Net (PN) is defined by a quadruple
N=(P,T,F,M0), where P is the set of places, T is the
set of transitions,F :(P×T )∪(T×P)→ Z+ (the set of
nonnegative integers) is the flow relation, andM0 : P→
Z+ is the net initial marking assigned to each place p∈
P , M0(p) tokens. In the special case that the flow rela-
tion F maps onto {0,1}; the Petri net is said to be ordi-
nary (otherwise, general). The incidence matrix of N is
a matrix [N] : P×T→ Z (the set of integers) indexed by
P and T such that [N](p, t)=F(t, p)−F(p, t) where
F(p, t) is the weight of the arc from place p to its output
transition t , and F(t, p) is the weight of the arc from
transition t to its output place p.

The set of input (resp. output) transitions of a place
p is denoted by • p (resp. p•). Similarly, the set of input
(resp. output) places of a transition t is denoted by •t
(resp. t•). Finally, an ordinary PN such that (s.t.) ∀t ∈T ,
|t•|=|•t |=1, is called a State Machine (SM).

Given a marking M, a transition t is enabled if
∀p∈•t , M(p)≥F(p, t), and this is denoted by M[t>.
Firing an enabled transition t results in a new marking
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M1, which is obtained by removing F(p, t) tokens
from each place p∈•t , and placing F(t, p′) tokens in
each place p′ ∈ t• moving the system state from M0 to
M1. Repeating this process, it reaches M′ by firing a
sequence �= t1, t2, . . . , tk of transitions. M′ is said to
be reachable from M0; i.e., M0[r>M′].

A transition t ∈T is live under M0 iff ∀M∈
R(N ,M0), ∃M′ ∈ R(N ,M), t is firable under M′. A PN
is live under M0 iff ∀t ∈T , t is live under M0. A Petri
net is said to be deadlockfree, if at least one transition
is enabled at every reachable marking.

A P-vector is a column vector L : P→ Z indexed
by P and a T-vector is a column vector J :T→ Z
indexed by T , where Z is the set of integers. For
economy of space, we use

∑
L(p)p (resp.

∑
J(t)t) to

denote a P (resp. T )-vector.
P-vector I is a P-invariant I iff I 	=0 and IT ·[N]=

0T . ‖I‖={p∈ P|I(p) 	=0} is called the support of I.
A P-invariant is said to be minimal if its support is
not a strict superset of that of another, and the greatest
common divisor of its elements is one.

For a Petri net (N ,M0), a non-empty subset S
(resp. �) of places is called a siphon (resp. trap) if •S⊆
S• (resp. �•⊆•�), i.e., every transition having an output
(resp. input) place in S has an input (resp. output) place
in S (resp. �). A transition in S• is called a sink transi-
tions of S. S is called an empty siphon atM0 ifM0(S)=∑

p∈SM0(p)=0. A minimal siphon does not contain a
siphon as a proper subset. It is called a strict minimal
siphon (SMS), denoted by S, if it does not contain a
trap. A siphon is said to be controlled if it is always
marked.

Property 1 ([1]). If I is a P–invariant of N , then given
an initial marking M0, ∀M∈ R(N ,M0), I·M=I·M0.

An initially marked ‖I‖ can never become empty
of tokens. The union of a set of ‖I‖ forms another ‖I′‖.
An emptiable siphon (or SMS) S can be obtained by
deleting a complimentary set of places, denoted by [S],
from the union.

Property 2 (Property in [1]). For a given SMS S in an
S3PRN , S∪[S] is the support of a P-invariant of N .

Property 3 (Corollary 3 in [1]). Let S be a strict
redundant SMS w.r.t. elementary siphons S1, S2, . . . , Sn ,
and in an S3PR. We have [S0]=[S1]∪[S2]∪ . . .∪[Sn].
Definition 1. N ′ =(P ′,T ′,F′) is called a subnet of N
where P ′ ⊆ P , T ′ ⊆T , F′ =F∩((P ′×T ′)∪(T ′×P ′)).
A net N is strongly connected iff for every node pair
(ni ,n j ),ni ,n j ∈ P∪T , there is a directed path from
ni to n j . A subnet Ni =(Pi ,Ti ,Fi ) of N is generated

by X= Pi ∪Ti , if Fi=F∩(X×X). It is an I–subnet,
denoted by NI , of N if Ti=•Pi . NI is the I–subnet [the
subnet derived from (S,• S)] of an SMS S. Note that
S= P(NI ); S is the set of places in NI .

2.1 S3PR

The following definitions are adapted from [1].
The reader can refer to [1] for more details of the S3PR
model.

Definition 2 ([1]). A simple sequential process (S2P)

is a net N=(P∪{p0},T,F) where: (1) P 	=∅, p0 /∈ P
(p0 is called the process idle or initial or final operation
place); (2) N is strongly connected state machine (SM)
and (3) every circuit of N contains the place p0.

Transitions in p0• and • p0 are called source and
sink transitions respectively.

Definition 3 ([1]). A simple sequential process with
resources (S2PR), also called a working processes
(WP), is a net N=(P∪{p0}∪PR,T,F) so that (1) the
subnet generated by X= P∪{p0}∪T is an S2P; (2)
PR 	=∅ and P∪{p0}∩PR=∅; (3) ∀p∈ P , ∀t ∈• p, ∀t ′ ∈
p•, ∃rp∈ PR,•t∩PR= t ′•∩PR={rp}; (4) The two
following statements are verified: ∀r ∈ PR,a)••r∩P=
r••∩P 	=∅; b) •r∩r•=∅; (5) ••(p0)∩PR=(p0)••∩
PR=∅. ∀P ∈ P , p is called an operation place, ∀r ∈ PR ,
r is called a resource place, H(r)=•• r∩P denotes the
set of holders of r (operation places that use r ). Any
resource r is associated with a minimal P-invariant
whose support is denoted by �(r)={r}∪H(r).

Definition 4 ([1]). A system of S2PR(S3PR) is
defined recursively as follows: (1) An S2PR is defined
as an S3PR; (2) Let Ni =(Pi ∪P0

i ∪PRi ,Ti ,Fi ), i ∈
{1,2} be two S3PR so that (P1∪P0

1 )∩(P2∪P0
2 )=∅.

PR1∩PR2= PC ( 	=∅) and T1∩T2=∅. The net N=
(P∪P0∪PR,T,F) resulting from the composition
of N1 and N2 via PC (denoted by N1oN2) defined
as follows: (1) P= P1∪P2; (2) P0= P0

1 ∪P0
2 ; (3)

PR= PR1∪PR2; (4) T =T1∪T2 and (5) F=F1∪F2 is
also an S3PR. A path (resp. circuit, subnet) C (resp. c,
N′) in N is called a resource path (resp. circuit, subnet)
if ∀p∈�(c,N′),p∈PR.

An S3PR is composed of some state machines
(with choices) holding and releasing some common
resources. Fig. 1(a) shows an example of S3PR (solid
part) and its controlled model (including dashed part)
respectively. We construct an SMS based on the concept
of handles.

Roughly speaking, a “handle” is an alternate
disjoint path between two nodes. A PT-handle starts
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Fig. 1. (a) Example elementary-siphon approach and (b) example alternative approach.

with a place and ends with a transition while a TP-
handle starts with a transition and ends with a place.

A handle H to a subnet N ′ is a directed path from
a node ns in N ′ to a node ne in N ′; any other node in
H is not in N ′. In a XY-handle (X, Y =T or P), ns ∈ X
and ne∈Y . A virtual handle is a handle with only two
nodes. We [8] constructed an SMS using the following:

Property 4 ([8]). (1) NI is strongly connected. (2) A
subnet N ′ is an I subnet of a minimal siphon iff N ′
is maximal in the sense that each handle H in N ′ is a
PP- or TP- or virtual PT- handle and there are none of
PP-, TP-, and virtual PT- handles to N ′; (3) P(N ′) is an
SMS iff there is a nonvirtual PT-handle to N ′′, which
is a subnet of N ′ without any TP-handles.

There is a circuit in every NI since it is strongly
connected. Such a circuit c is called a core circuit
containing at least two resources since deadlock occurs
due to mutual waiting among resources.

The following procedure is based on this property:
Handle-Construction Procedure [8]. Given

a core circuit c: (1) add all PP’-handles (of the
form [r1t1 p1t2 p2. . .pn−1tnr2], pi an operation place,
i=1,2, . . . ,n−1, r1∈c and r2∈c) to c. The resulting
core circuit is called an expanded ce; (2) add all PP-
and TP handles [that are part of I -subnet of an �(r)]
to ce to form �; (3) P(�) is an SMS if it does not
contain an �(r)=H{r}∪{r),r ∈ P(�); 4) P(�′) (the set
of places in �’) is an SMS if it does not contain any
other minimal siphon.

Example. For the net in Fig. 1(a), first find core
circuit c1=[p9t6 p10t2 p9]. Second add TP-handles
(starting from a transition and ending at a place)
[t2 p3t3 p10] and [t6 p6t5 p9] to get �’ and S1= P(�′)=
S1={p9, p10, p3, p6}, S2={p10, p11, p4, p7} for c2=
[p10t7 p11t3 p10]. c1 and c2 form a compound circuit
(denoted by c1oc2), from which we can synthesize
a third S3={p4, p6, p9, p10, p11}, called a compound
siphon.

In [9], we propose a polynomial time algorithm
to find elementary siphons in a graphical fashion,
where we also show that an SMS can be synthesized
from a strongly connected resource subnet in an S3PR.
We further prove that each elementary siphon can be
synthesized from an elementary resource circuit, while
a strongly dependent siphon can be synthesized from a
compound resource circuit, which consists of a number
of elementary resource circuits c1,c2, . . . ,cn such that
ci ∩ci+1={ri }, ri ∈ PR (i.e., ci and ci+1 intersects at a
resource place ri ).

2.2 Elementary siphons and characteristic
T -vectors

This section defines elementary, dependent
siphons and characteristic T -vectors.

Definition 5 ([1]). Let �⊆ P be a subset of places of
N . P–vector �� is called the characteristic P-vector of
� iff ∀p∈�,��(p)=1; otherwise ��(p)=0. g is called
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the characteristic T -vector of �, if gT =�T�·[N], where[N] is the incidence matrix and ‘·’ means a vector or
matrix multiplication.

Physically, the firing of a transition t where
[g(t)>0,g(t)=0, and g(t)<0] increases, maintains and
decreases the number of tokens in S, respectively.

Definition 6 ([4]). Let N=(P,T,F) be a net with
|P|=m, which has k siphons S1, S2, . . . , Sk , m,
k∈ Z+, where Z+={0,1,2, . . .}. Define [�]k×m=
[�1|�2| · · · |�k]T and [g]k×n=[g1|g2| · · · |gk]T . [�]([g])
is called the characteristic P(T )-vector matrix
[�]([g]) of the siphons in N . Let gS�,gS�, . . . , and
gS	({�,�, . . . ,	}⊆{1,2, . . . ,k}) be a linear independent
maximal set of matrix [g]. Then �E={S�, S�, . . . , S	}
is called a set of elementary siphons. S /∈�E is called
a strongly dependent siphon if gS=

∑
Si∈�E aigSi

where ai ≥0. S /∈�E is called a weakly dependent
siphon if ∃ non-empty A, B⊂�E , such that A∩B=∅
and 
S=

∑
Si∈A aigSi−

∑
Sj∈B b jgSj where ai>0 and

b j>0.

In [1], a strongly dependent siphon is also called
a strict redundant one. Li and Zhou [1] propose to find
elementary siphons by constructing the characteristic
P-vector (resp. T -vector)-vector matrix [k] (resp.
[g]) of the siphons in N followed by finding linearly
independent vectors in [k] (resp. [g]). The siphons
corresponding to these independent vectors are the
elementary siphons in the net system.

Note that Definition 6 and the above calculation
of linearly independent vectors do not assume N to be
an S3PR and are applicable to arbitrary nets.

An example is shown in Fig. 1(a): S1={p9, p10,
p3, p6}, S2={p10, p11, p4, p7}, and S3={p9, p10, p6,
p11, p4}. g1=[−1 1 0 0 0 1 −1 0]T,
g2=[0 −1 1 0 0 0 1 −1]T, g3=[−1 0 1 0 0 1 0 −1]T.
It is easy to see that g3=g1+g2 (no negative term)
and S1 and S2 (resp. S3) are elementary (resp. strongly
dependent) siphons. Fig. 4(a) shows an example of
weakly dependent siphon. Its controlled model is shown
in Fig. 4(b). Table I below lists the four S and their g,
where g4=
1+
2−
3.

2.3 Control policy

This subsection explains the idea of the control
policy necessary to underlie the theory presented in
Section V. A control policy involves three factors: for
each monitor place VS , (1) its input and output arcs;
(2) its initial marking; and (3) the siphon it controls.
The following two lemmas are helpful to deal with
factor (1).

In Fig. 1(b), we add a control place VS1= p12 and
the associated arcs for S1 so that we can consider VS1 as
another shared resource since the structure involved is
similar. VS1 plus its holder set of places form the support
{VS1, p2, p7}={VS1}∪H(VS1) of a new P-invariant.
Comparing with the support S1∪[S1] of a P-invariant,
we define the controller region [VS1]=H(VS1).

Lemma 1. Let (N ,M0) be an ordinary Petri net (PN)
system, S an SMS, Monitor VS withM0(VS)=M0(S)−
1 is added to S such that VS and H(VS) form the support
of a new minimal P-invariant IS associated with S,
where ∀p∈‖IS‖, IS(p)=1; ∀p∈ P\‖IS‖, IS(p)=
0, and M∈ R(N ,M0). 1) M([S])+M(S)=M0(S).
2) M([VS])+M(VS)=M0(VS). 3) If S is never empty,
then M([S])≤M0(S)−1. 4) M([VS])≤M0(VS).

Proof. 1) S∪[S] is the support of a P-invariant IS . By
the assumption, ∀p∈‖IS‖, IS(p)=1; ∀p∈ P\‖IS‖,
IS(p)=0. Based on Property 1, ITS ·M=M0(S)⇒
M([S])+M(S)=M0(S). 2) The proof is similar to
that for 1). 3) S cannot be empty; hence, M(S)≥1⇒
M([S])≤M0(S)−1. 4) M([VS])=M0(VS)−M(VS)

from 2)⇒M([VS])≤M0(VS), since M(VS)≥0. �

Lemma 2. Let S be an SMS in amarked S3PR(N ,M0).
Monitor VS with M0(VS)=M0(S)−1 is added to S
such that VS and H(VS) form the support of a new
P-invariant. If siphon S is never empty, then [S]⊆[VS].
Proof. Assume [S]⊃[VS]⇒M([S])>M([VS])⇒Mmax
([S])>Mmax ([VS])=M0(VS)=M0(S)−1. It is possible
that M([S]\[VS])=1 when M([S])=Mmax ([S]). Thus,
Mmax ([S])=M([S]\[VS])+Mmax ([VS])=M0(S)⇒M
(S)=0 (empty siphon) — contradiction. �

Based on part 1 of Lemma 1 (or Lemma 1.1), we have

M0(S1)=M(S1)+M([S1]) (1)

Equation (1) implies that Mmax ([S1])=M0(S1)
that happens when M(S1)=0. To avoid unmarked
siphons, we setM(S1)≥1, implying thatMmax ([S1])=
M0(S1)−1 or M0(S1)−1≥M([S1]).

Based on part 2 of Lemma 1 (or Lemma 1.2) and
Lemma 2, we have

M0(VS1)=M(VS1)+M([VS1])=M(VS1)

+M([VS1]\[S1])+M([S1]), (2)

or equivalently,

M([S1])=M0(VS1)−M(VS1)−M([VS1]\[S1])
Mmax ([S1]) occurs when M(VS1)=M([VS1]\[S1])=0;
i.e., Mmax ([S1])=M0(VS1)=M0(S1)−1. To disturb
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Table I. Four SMS in Fig. 4(a) and their 
. 
4=
1+
2−
3.

S 
 Set of places

S1 +t2−t4+t8−t9 {p4, p12, p13, p14, p15}
S2 +t1−t3+t7−t10 {p5, p11, p14, p15, p16}
S3 +t2−t3−t4+t7 {p4, p11, p14, p15}
S4 +t1+t8−t9−t10 {p5, p12, p13, p14, p15, p1}

the controller region the least, we should allow
M([S1]) to reach its maximum; thus setting M0(VS1)=
M0(S1)−1. In general,M0(VS1)=M0(S1)−�S1, where
�S1≥1 is the control depth variable. �S1 is adjusted
to be greater than 1 if some dependent siphons are
not controlled. As a result, Mmax ([S1]) is less than
M0(S1)−1 and the controller region is more disturbed
causing more states lost.

In [9], M0 for each control place is set to
M0(p)=M0(S)−1; S is said to be limit controlled
since Mmin(S)=1 or �S=1.
Definition 5. S is said to reach its limit state when
M(S)=1; it is limit-controlled iff it is able to reach its
limit state but not able to reach unmarked state; i.e.,
�S=1 or Mmin(S)=1.

Based on Lemma 2, we should set [VS]=[S] to
keep the disturbed region as small as possible. To do
so, we have V •S =•[S]\[S]• and •VS=[S]•\•[S] where•[S]={•x |x ∈[S]} and [S]•={x•|x ∈[S]}.

Li and Zhou defined BS=[VS]\[S] in [8]; they
rearranged the output control arcs so that |BS|≥0.
Definition 7. Let (N ,M0) be a marked S3PR. N=(P∪
P0∪PR,T,F). It is a disturbanceless (resp. rearrange-
ment) control model if ∀VS , BS=∅ (resp. |BS|≥0). It
is an SMSless control model, if ∀VS , V •S ⊆ P•0 .

The disturbanceless model disturbs the original or
uncontrolled model less than the traditional (called the
SMSless approach) one in [1] where the support of the
new P-invariant associated with VS covers [S]∪{VS} as
a proper subset. Therefore, the disturbanceless model
may reach more states. However, it may create new
SMS while the traditional one does not. This paper is
mainly concerned with the SMSless approach in [1].

III. MOTIVATION

After the failure of two tests, Li & Zhou adjust
control depth variables �S of elementary siphons asso-
ciated with a dependent siphon to satisfy a Marking
Linear Inequality (MLI) as follows:

Theorem 1 (Theorem 1 in [1]). Let (N0,M0) be a net
system and S0, S1, S2, . . . , and Sn be its SMS. Assume
that S0 is a strict dependent SMS w.r.t. elementary
siphons S1, S2, . . . , and Sn where g0=

∑n
i=1(aigi ). S0

is controlled if 1) N0 is extended by n additional control
places VS0,VS1,VS2, . . . ,VSn such that S1, S2, . . . and
Sn are controlled and 2) if M0(S0)>

∑n
i=1(aiM0(Si )−

−ai�Si ) where �Si is the control depth variable for Si .

First, they test the above inequality; if it fails, then
they perform the following Linear Integer Programming
(LIP) test (NP-complete problem):

Theorem 2 (Theorem 5 in [1]). Let (N0,M0) be a
marked S3PR and S1, S2, . . . , Sn be the elementary
siphons of N0. By the method stated in Defini-
tion 8 in [1], add control places to make elemen-
tary siphons controlled. The extended net system
is denoted by (N1,M1). Let �={Ii |i=1,2, . . . ,m}
be the set of minimal P-invariants of N1 and S
be an SMS of N0. S can never be emptied if
M0(S)>max{∑p∈[S]M(p)|M∈ R(N1M01)} where
max{∑p∈[S]M(p)} is obtained by linear integer
programming (LIP)

max { ∑
p∈[S]

M(p)}

subject to

IT1 ·M=IT1 ·M0

IT2 ·M=IT2 ·M0

. . .. . .

ITm ·M=ITm ·M0

In [5], Li & Zhou further improve the test in
Theorem 1 by establishing more general conditions
under which a dependent siphon can be always marked.
It is based on a linear programming problem (LPP),
where the marking of a place can hold real (instead
of integer) numbers, thus avoiding the NP-complete
problem. However the improved condition is only suffi-
cient, but not necessary. That is, even if the condition
fails, the dependent siphon may remain unmarked. To
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decide whether to adjust control depth variables, the
LIP in Theorem 2 may still need to be performed.

We will develop a better (sufficient and necessary)
test than that in Theorem 1 so that one adjusts control
depth variables if and only if the new test fails. This
avoids the time-consuming integer programming test
completely whether the new test fails or not.

Definition 8. Let A be a set of operation places.
R(A)={r |p∈ A, p∈H(r)}, where H(r) denotes the
set of holders of r (operation places that use r ). Let B
be a set of resource places,M(B)=∑r∈BM(r). Let IV
(resp. IS) be the minimal P-invariant associated with
control place V (resp. siphon S). [V ]=‖IV ‖\{V } and
complementary siphon [S]=‖IS‖\S.

In Fig. 1(a), [S1]={p2, p7}, [S2]={p3, p8}, [S3]=
{p2, p3, p7, p8}, [VS1]={p2, p7, p8}, [VS2]={p2, p3, p8},
and the MLI: M0(S3)>M0(S1)−�S1+M0
(S2)−�S2. Let M0(p9)=a, M0(p10)=b, and M0 (p11)
=c. We say Si (i=1,2) reaches its limit state when
M(Si )=1; it is limit-controlled if it is able to reach its
limit state but not able to reach empty status. Note that
when [VSi ]=[Si ], Si is limit-controlled if �Si=1.

Note that output control arcs from monitors p12
and p13 end at source transitions [t1 and t8, respectively
in Fig. 1(a)] of the processes, rather than sink transitions
[t2∈ S•1 and t7∈ S•2 , respectively in Fig. 1(b)] of siphons
S1 and S2, respectively. This is to avoid new SMS gener-
ation [i.e., Sc={p12, p13, p3, p7} in Fig. 1(b)] that may
lead to deadlocks [i.e., when b=1 in Fig. 1(b)] if no
monitor is added.

Consider the case: b=M0(r2)=2. Note that
M0(VS1)=a+b−1,M0(VS2)=b+c−1, andM0(S3)=
a+b+c=M0(S1)−�S1+M0(S2)−�S2=((a+b)−1)+
((b+c)−1)(�S1=�S2=1, both S1 and S2 are limit-
controlled); thus S3 does not satisfy the MLI. Thus,
the time-consuming integer programming test must be
started when Li and Zhou’s method is used. However,
S3 is controlled and the net is live if M0(r2)<a+c+2.
This discrepancy arises from the fact that the MLI
in Theorem 1 assumes that [VSi ]=[Si ], while in [1],
[VSi ]⊃[Si ] (i=1,2).

To understand this, a theoretical analysis is
performed below. Set b=b1+b2, where b1=M(p3)
and b2=M(p7). First we explore the condition under
which S3 is emptied. In order to empty S3, all tokens
in p9 and p11 must go to p2 and p8, respectively, and
all tokens in p10 must distribute to p3 and p7. Thus,

M(p2) = a, M(p8)=c, M(VS1)=M(VS2)=0,
M0(VS1) = c+b2+a=a+b−�S1⇒b2=b−�S1−c

⇒ b1=c+�S1

M0(VS2) = c+b1+a=b+c−�S2⇒b1=b−�S2−a
⇒ b2=a+�S2

Adding the two equations, we haveM0(r2)=b=c+a+
�S1+�S2≥c+a+2 since �S1≥1 and �S2≥1. b=c+
a+2 is the condition to empty S3 when �S1=�S2=1,
and the condition for S3 to be marked (or controlled) is

b<c+a+2. (3)

Note that to empty S3, b=c+a+2, b1=c+1 and
b2=a+1 when [VS1]⊃[S1] (i=1,2), versus b=2,
b1=1 and b2=1 when [VS1]=[S1] (i=1,2). b is
increased by

c+a=M0(R([VS1]\[S1]))+M0(R([VS2]\[S2])).
Physically, [VSi ], i=1,2, covers more places than

[Si ] due to the movement of output nodes of control arcs
to output, called source, transitions of idle places. As a
result, when all tokens in [VSi ] (i=1,2) are used to trap
tokens, some of [VSi ] are in [VSi ]\[Si ] (i=1,2) and
fewer tokens are in [S3] than the case when [VSi ]=[Si ].

This reduces the number of tokens in VSi to trap
the tokens in S3. To compensate for this, we increase
M0(VSi ) via increasing b by �bi (called compensa-
tion factor); �b=�b1+�b2=�VS1+�VS2=c+a.
Thus b is increased to c+a+2 (from 2) to empty S3.
And neither S1 nor S2 can be limit-controlled since
M(S1)≥M(p3)=b1=c+1>1 and M(S2)≥M(p7)=
b2=a+1>1. Thus, it seems that the MLI can now be
modified to M0(S3)>(M0(S1)−(�S1+c))+(M0(S2)−
(�S2+a)).

To extend to more general cases, we should
consider M0(R(([VSi ]∩[S3])\[Si ])) rather than M0
(R([VSi ]\[Si ])). This is because in order to empty
S3, tokens in VSi may not need to be trapped in
[VSi ]\[S3]. For instance, in Fig. 2, set M0(p7)=a,
M0(p8)=b, M0(p9)=c, M0(p10)=d , and M0(p11)=
e. S1={p7, p8, p3, p′2}, S2={p8, p9, p4, p′3}, S3=
{p7, p8, p9, p4, p′2}, [S1]={p2, p′3}, [S2]={p3, p′4},
and [S3]={p2, p′3, p3, p′4}44. S1 and S2 (resp. S3) are
elementary (resp. dependent) siphons and g3=g1+g2.[VS1]={p2, p′3, p′4, p′5, p′6}, [VS2]={p2, p3, p′4, p′5, p′6},

M0(R(([VS1]∩[S3])\[S1]))=M0(R({p′4}))=M0
(p9)=c andM0(R(([VS2]∩[S3])\[S2]))=M0(R({p2}))
=M0(p7)=a. Thus, it remains that b=c+a+2 rather
than b=c+a+d+e+2. This is because when S3 is
empty, the markings of p10 and p11 may remain at
their initial ones.
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Fig. 2. Example 2.

Another example is shown in Fig. 3. Set
M0(p7)=a, M0(p9)=b, M0(p11)=c, M0(p8)=d ,
M0(p10)= f , M0(p12)=e, and M0(p13)=g. S1=
{p7, p8, p9, p12, p4, p′2}, [S1]={p2, p3, p′3, p′4}; S2=
{p9, p10, p11, p13,, p6, p′4}, [S2]={p4, p5, p′5, p′6};
S3={p7, p8, p9, p10, p11, p12, p13,, p6, p′2}, [S3]=
{p2, p3, p4, p5, p′3, p′4, p′5, p′6}. S1 and S2 (resp.
S3) are elementary (resp. dependent) siphons and
g3=g1+g2. [VS1]={p2, p3, p′3, p′4, p′5, p′6}, [VS2]=
{p2, p3, p4, p5, p′5, p′6}, M0(R(([VS1]∩[S3])\[S1]))=
M0(R({p′5, p′6))=M0(p11)+M0(p13)=c+g and
M0(R(([VS2] ∩ [S3])\[S2]))=M0(R({p2, p3}))= M0
(p7)+M0(p8)=a+d . Thus, b=c+a+d+g+2
rather than b=c+a+2. Note that, unlike that in Fig. 2,
each of S1 and S2 contains a resource place (p8 and
p10, respectively) that is not shared, but used by a
single WP.

In summary, we have the following:

Observation 1. Let (N0,M0) be a marked S3PR and
S3 a dependent siphon w.r.t. elementary siphons S1 and
S2 such that g3=g1+g2. By Definition 8 in [1], add
2 control places such that S1 and S2 are controlled
with control depth variables �S1 and �S2, respectively.
S3 can never be emptied if M0(S3)>(M0(S1)−
S1−
�S1)+(M0(S2)−
S2−�S2) where


S1 =M0(R(([VS1]∩[S3])\[S1])),
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Fig. 3. Example 3.


S2 =M0(R(([VS2]∩[S3])\[S2]))
and M0(Si )−
Si ≥�Si ≥1, i=1,2.

In order for M([S3]) to reach maximal, tokens
from S3 should all be trapped in [S3]; i.e., there
are no tokens trapped in places except for [S3];
hence M([VS3]\[S3])=0. However this cannot be
extended to S1 and S2 such that M([VS1]\[S1])=0
and M([VS2]\[S2])=0 (assumed in Theorem 1) since
some tokens in [S3] fall in [VS1]\[S1] and [VS2]\[S2],
respectively; i.e., M(([VS1]∩[S3])\[S1]) 	=0 and
M(([VS2]∩[S3])\[S2]) 	=0 and the controllability in
Theorem 1 must be modified considering these two
terms. We will prove and generalize this in Section IV.

Note that the presence of 
Si , if positive, makes
the MLI test in Theorem 1 inaccurate and hence induces
the subsequent LIP test in Theorem 2. 
Si>0, if S1 and
S2 are vertically stacked as shown in Figs. 1–3 (i.e.,
sink transitions of S1 and S2 are in the same processes).
Such a dependent siphon S3= S1oS2 is called a Type I
dependent siphon. On the other hand, 
Si=0, if S1 and
S2 are horizontally stacked when sink transitions of S1
and S2 are in different processes. In this case, there
is no need for LIP test since the MLI test is accurate.
Such a dependent siphon S3= S1oS2 is called a Type II
dependent siphon. In the sequel, we will assume all
dependent siphons belong to Type I.
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IV. THEORY

We first propose the basic theory below to decide
whether a siphon is dependent.

Definition 9. An n-dependent siphon is a dependent
siphon depending on n elementary siphons.

To further explore the controllability for an n-
dependent siphon, n>2, specific cases of n=3 and n=
4 will be presented. From which, a general theorem
is proposed to conclude that any n-dependent siphon,
n>2 is already controlled and needs no monitor if every
elementary siphon is limit-controlled.

Theorem 3. Let (N0,M0) be a net system and
S0 be a dependent SMS w.r.t. elementary siphons
S1, S2, . . . , Sn, Sn+1Sn+2, . . . , and Sn+m where

gS0=
n∑

i=1
(ai
Si )−

m∑
j=1

(bn+ j
Sn+ j
)

Then

(1) ∀S∈{S0, S1, S2, . . ., Sn, Sn+1Sn+2, . . . , Sn+m},

gS =−g[S] (characteristic T -vector of the

complementary set of siphon S equals

the negative of that of S).

(2) �[S0] =a1�[S1]+a2�[S2]+· · ·+an�[Sn]−bn+1
�[Sn+1]−bn+2�[Sn+2]−· · ·−bn+m�[Sn+m],
where ai ,b j ∈ R (set of real numbers), i ∈
{1,2, . . .,n} and j ∈[1,2, . . .m] (characteristic
P-vectors of the complementary sets of siphon
S0, S1, S2, . . ., Sn, Sn+1, Sn+2, . . . , Sn+m follow
the same equation as that of the corresponding
characteristic T -vectors).

(3) M([S0])=a1M([S1])+a2M([S2])+·· ·+anM
([Sn])−bn+1M([Sn+1])−bn+2M([Sn+2])−
·· ·−bn+mM([Sn+m]), M∈ R(N ,M0)

(total tokens in the complementary sets of

siphon S0, S1, S2, . . ., Sn, Sn+1Sn+2, . . . , Sn+m

follow the same equation as that of the

corresponding characteristic T-vectors). (4)

Proof.

(1) S∪[S]= SR∪(∪r∈SRH(r)) is the support of a
P-invariant I based on Property 2 and S∩[S]=∅.

Note that SR= S∩PR . ∀p∈ S∪[S], I(p)=1;
otherwise, I(p)=0. Thus,

I = �S+�[S]·IT ·[N]=�TS ·[N]+�T[S]·[N]=0
(By the definition of P-invariant)

⇒ gS=−g[S].
(2) Based on equations 
S0=

∑n
i=1(ai
Si )−

∑m
j=1

(bn+ j
Sn+ j
), the fact that gS=−g[S] and gTS =

�TS ·[N], we have
g[S0] = a1g[S1]+a2g[S2]+· · ·+ang[Sn]

−bn+1g[Sn+1]−bn+2g[Sn+2]−· · ·
−bn+mg[Sn+m]

⇒ �T[S0]·[N]=a1�T[S1]·[N]+a2�T[S2]·[N]+· · ·
+an�T[Sn]·[N]−bn+1�T[Sn+1]·[N]
−bn+2�T[Sn+2]·[N]−· · ·−bn+m�T[Sn+m]·[N]

⇒ (�[S0]−a1�[S1]−a2�[S2]−· · ·−an�[Sn]
+bn+1�[Sn+1]+bn+2�[Sn+2]+· · ·
+bn+m�[Sn+m])T ·[N ]=0 (a vector with

all components being 0).

If f=�[S0]−a1�[S1]−a2�[S2]−· · ·−an�[Sn]+
bn+1�[Sn+1]+bn+2�[Sn+2]+· · ·+bn+m�[Sn+m] 	=
0, then � is a P-invariant. However, all places in
[S0], [S1], [S2], . . ., and [Sn+m] are not marked
in the initial marking of N and hence the union
of [S0], [S1], [S2], . . ., and [Sn+m] cannot be the
support of a P-invariant. This implies that

f= 0⇒�[S0] =a1�[S1]+a2�[S2]+· · ·+an�[Sn]
−bn+1�[Sn+1]−bn+2�[Sn+2]
−· · ·−bn+m�[Sn+m].

(3) Multiplying both sides of the equation in (2) by
MT , we have

�[S0]·MT

=a1�[S1]·MT +a2�[S2]·MT +·· ·+an�[Sn]·MT

−bn+1�[Sn+1]·MT −bn+2�[Sn+2]·MT −·· ·
−bn+m�[Sn+m]·MT

⇒M([S0])=a1M([S1])+a2M([S2])+·· ·
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Fig. 4. (a) Example weakly dependent siphon [2] and (b) Controlled model of that in Fig. 4(a).

+anM([Sn])−bn+1M([Sn+1]
−bn+2M([Sn+2])−·· ·−bn+mM([Sn+m]).

�

For instance, in Fig. 4(a), M([S4])=M([S1])+
M([S2])−M([S3]). In the sequel, we will consider only
strongly dependent siphons. Furthermore, as indicated
in [1], when S0 is a strongly dependent siphon in an
S3PR, all ai=1. Note that in an S3PR, an SMS can be
synthesized from a strongly connected resource subnet
and any strongly dependent siphon corresponds to a
compound circuit where the intersection between any
two elementary circuits is at most a resource place [8].

We will derive the controllability for S0=
S1oS2o. . .oSn (denoting that S0 strongly depends on
S1, S2 . . . , and Sn). In order to compute the exact MLI
to avoid the subsequent linear integer programming
test, we need to find the exact Mmax ([S0]).
Lemma 3. Let S0= S1oS2o. . .oSn .

(1) M([S0])=M([S1])+M([S2])+·· ·+M([Sn]). (5)
(2) [S0]⊆[VS1]∪[VS2]∪ . . .∪[VSn]
(3) If Mmax ([S0]) occurs, then ∀Si , M([VSi ]\[S0])=

0; i.e., there are no tokens in places outside S0∪
[S0]

Proof.

(1) It follows from Theorem 3.3 and that all ai=1.
(2) From [1] or Property 3, we have

[S0]=[S1]∪[S2]∪ . . .∪[Sn],
since each place p appears in [S0] only once, there
is only one [S j ] among all [Si ] that contains p.
This equation together with the fact that [Si ]⊆
[VSi ] [Otherwise, it may be that M([Si ]\[VSi ])=
M0(Si ) and Si is empty] lead to

[S0]⊆[VS1]∪[VS2]∪ . . .∪[VSn]

(3) M([VS1]∪[VS2]∪ . . .∪[VSn])
=M(([VS1]∪[VS2]∪ . . .∪[VSn])\[S0])
+M([S0])
⇒M([S0])=M([VS1]∪[VS2]∪ . . .∪[VSn])
−M(([VS1]∪[VS2]∪ . . .∪[VSn])\[S0])
⇒Mmax ([S0])=Mmax ([VS1]∪[VS2]
∪. . .∪[VSn])−Mmin(([VS1]∪[VS2]
∪. . .∪[VSn])\[S0])
=Mmax ([VS1]∪[VS2]∪ . . .∪[VSn]),

where we have set

Mmin(([VS1]∪[VS2]∪ . . .∪[VSn])\[S0])=0,
which implies that

∀Si , M([VSi ]\[S0])=0.
Thus, in order to reachMmax ([S0]), it must be that ∀Si ,
M([VSi ]\[S0])=0. �

Theorem 4. Let S0= S1oS2o. . .oSn such that go=∑n
i=1(aigi ). Then
(1) Mmax ([S0])=∑n

i=1(M0(VSi )− 
Si )=
∑n

i=1M0
(VSi )−∑n

i=1
Si =
∑n

i=1(M0(Si )−(�Si+
Si ))

(maximum tokens of [S0] equals the sum of initial
marking of each Si minus the sum of compensa-
tion factors and control depth variables). For all
i,M0(VSi )−
Si should be greater than zero.

(2) S0 can never be emptied iff

M0(S0) >

n∑
i=1

(M0(Si )−(�Si+
Si ))

=
n∑

i=1
(M0(Si )−�Si )−

n∑
i=1


Si
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(initial marking of S0 is reduced by

the sum of compensation factors to

make S0 controlled). (6)

Proof. (1) Since [VSi ]⊇[Si ], the controller region [VSi ]
can be separated into two: [Si ] and [VSi ]\[Si ]. The
latter can be further divided into [VSi ]\[S0] and ([VSi ]∩
[S0])\[Si ]; i.e.,
[VSi ]=([VSi ]\[S0])∪(([VSi ]∩[S0])\[Si ])∪[Si ].

Similarly, the marking of the controller region [VSi ] is
the sum of that of the above three subregions:

M([VSi ])=M([VSi ]\[S0])
+M(([VSi ]∩[S0])\[Si ])+M([Si ])

Rearranging the terms, we have

M([Si ])=M([VSi ])−M([VSi ]\[S0])
−M(([VSi ]∩[S0])\[Si ]) (7)

Mmax ([Si ]) occurs when M([VSi ]\[S0])=
Mmin([VSi ]\[S0])=0 and M([VSi ])=Mmax ([VSi ])=
M0(VSi ). Thus,

Mmax ([Si ])=M0(VSi )−
Si

where we have set 
Si=M(([VSi ]∩[S0])\[Si ]) so
that the compensation effect occurs the most when
M([VSi ])=M0(VSi ) and M(R(S0))=0.

Substituting the above M([Si ]) into (5), we have

Mmax ([S0])=
n∑

i=1
(M0(VSi )−
Si )=

n∑
i=1

(M0(Si )

−(�Si+
Si )), (8)

We are now ready to prove 2):
(←) When Eq. (8) holds, M([S0])<M0(S0), which
implies M(S0)≥1 and S0 can never be emptied. (→)

Assume contrarily that M0(S0)≤∑n
i=1 ai (M0(Si )−

(�Si+
Si )). Then by (8), Mmax ([S0])≥M0(S0) and S0
is emptied — contradiction. �

This theorem clearly shows that S0 is easier to
be controlled in a Type I n-dependent siphon than a
Type II one by an amount of

∑n
i=1
Si . Note that n=2

in Observation 1 is a degenerate case of that in the above
theorem.

In the sequel, we will deal with special cases of
S0 being a 3-, and a 4-dependent siphon, respectively.
We will infer a general formula and show that S0 is
always controlled and needs no monitor for n>2. For

2-dependent siphon case, we will verify the result in (4)
and thus prove it theoretically.

In Fig. 2, let S1={p7, p8, p3, p′2}, S2={p8, p9, p4,
p′3}, and S3={p9, p10, p5, p′4}. For S0= S1oS2oS3,
apply the same method as the examples in Section III
(i.e., setting b=b1+b2, where b1=M(p3) and b2=
M(p′3) and c=c1+c2, where c1=M(p4), c2=M(p′4).
To empty S0, all tokens in p7 and p10 must go to p2
and p′5 respectively, all tokens in p8 must distribute to
p3 and p′3, and all tokens in p9 must distribute to p4
and p′4). Thus,


S1 = d+c2=M(p′5)+M(p′4),


S2 = d+a=M(p′5)+M(p2),


S3 = a+b1=M(p2)+M(p3).

Summing the above three equations, we have


S1+
S2+
S3=(a+d+b1+c2)+(d+a)

=M0(VS2)+(d+a)

where 
Si=M(([VSi ]∩[S0])\[Si ]), M(p2)=a, and
M(p′5)=d .

Similarly, for S0= S1oS2oS3oS4 (S1−S3 are
defined above and S4={p10, p11, p6, p′5})


S1 = e+c2+d2,

S2 = a+e+d2,

S3 = a+e+b1,

S4 = a+b1+c1,

Summing the above four equations, we have


S1+
S2+
S3+
S4

=(a+b1+c2+d2+e)+(a+b1+c1+d2+e)+(e+a)

=M0(VS2)+M0(VS3)+(e+a)

where 
Si=M(([VSi ]∩[S0])\[Si ]),M(p2)=a,M(p3)=
b1, M(p′3)=b2, M(p4)=c1, M(p′4)=c2, M(p5)=d1,
M(p′5)=d2, and M(p′6)=e.

In general, for S0= S1oS2. . .oSn−1oSn[R(S1)=
{r1,r2}, R(S2)={r2,r3}, . . .R(Sn)={rn,rn+1}], we
have, as will be proved in Theorem 5,


S1+
S2+·· ·+
Sn

=M0(VS2)+M0(VS3)+·· ·+M0(VSn−1)

+(M0(r1)+M0(rn+1)) (9)
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Substituting (9) into (6),

M0(S0) >
n∑

i=1
(M0(Si )−�Si )−

n∑
i=1


Si

=
n∑

i=1
(M0(Si )−�Si )−(M0(VS2)+M0(VS3)

+·· ·+M0(VSn−1)+(M0(r1)+M0(rn+1))

=
n∑

i=1
(M0(Si )−�Si )−(

n−1∑
i=2

(M0(Si )−�Si )

+M0(r1)+M0(rn+1))

= (M0(S1)−�S1)+(M0(Sn)−�Sn)

−(M0(r1)+M0(rn+1))

where we have set M0(VSi )=M0(Si )−�Si .
Rearranging the terms, we have

M0(S0)+(M0(r1)+M0(rn+1))+(�S1+�Sn)

>M0(S1)+M0(Sn) (10)

For n=2 and �S1=�Sn=1, (10) becomes

M0(S0)+(M0(r1)+M0(rn+1))+(1+1)
>M0(S1)+M0(S2).

Now making use of the fact that M0(S0)=a+b+c,
M0(r1)=a, M0(rn+1)=c, �S1=�Sn=1, M0(S1)=a+
b, M0(S2)=b+c, we have

a+b+c+a+c+2>a+b+b+c.
After algebraic simplification, we have c+a+2>b,
which is the same as (3).

When n>2, M(S0)≥M0(S1)+M0(Sn), and the
above inequality holds since (M0(r1)+M0(rn+1))+
(�S1+�Sn)>0. Thus, an n-dependent siphon S0 is
controlled if n>2 and needs no monitor.

Note that in the above, we have only N1 and
N2 so that b=b1+b2. Similarly, [VSi ]=([VSi ]∩
P1)∪([VSi ]∩P2); i.e., each of [VSi ] and 
Sj and can
be divided into two terms: one in the N1 side and
another in the N2 side; i.e., [VSi ]=[V 1

Si ]+[V 2
Si ] and


Sj=
1Sj+
2Sj . In general, we have Ni1, Ni2, . . .,Niq
and Nk1, Nk2, . . .,Nkv so that b=bi1+bi2+ . . .+biq+
bk1+bk2+ . . .+bkv . In the sequel, we derive (9) by
assuming that resources are shared between N1 and N2
and all siphons are Type I to simplify the presentation.
The above generalization case can be proved in a
similar manner.

Theorem 5. Let S0= S1oS2o. . .oSn such that g0=∑n
i=1 gi Then 
S1+
S2+ . . .+
Sn=M0(VS2)+

M0(VS3)+ . . .+M0(VSn)+(M0(r1)+M0(rn+1)).

Proof. Define [S j ]i=[S j ]∩Pi (places of [S j ] in Pi ),
Mi (S j )=M(S j ∩Pi ) (tokens in both Si and Pi ), and

iS j=M((([VSi ]∩Pi )∩[S0])\[Si ]) (portion of 
Sj that
are in Ni ), where Pi is the set of places in Ni defined
in Definition 4.

In order to empty S0, all tokens in r1 (resp. rn+1)
must distribute in [S1]2 (resp. [Sn]1) so that

M0(r1)=M2([S1]) [resp. M0(rn+1)=M1([Sn])].
We first compute 
1Sj , j=1,2, . . . ,n−1,


1S1 =M1([S2])+M1([S3])+·· ·+M1([Sn−1])
+M1([Sn])


1S2 =M1([S3])+M1([S4])+·· ·+M1([Sn])

1S3 =M1([S4])+·· ·+M1([Sn])

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


1Sn−1 =M1([Sn]).

1Sn = 0

Summing the above terms, we have

n∑
j=1


1Sj =M1([S2])+2M1([S3])+·· ·+(n−2)

×M1([Sn−1])+(n−1)M1([Sn]). (11)

Similarly, for the N2 side, we have

n∑
j=1


2Sj =M2([Sn−1])+2M2([Sn−2])+·· ·+(n−2)

×M2([S2])+(n−1)M2([S1]) (12)

Summing the terms in Eqs. (11) & (12), we have, after
rearranging the terms,(

n∑
j=1


1Sj+
n∑
j=1


2Sj

)

=[M2([S1])+M2([S2])+M1([S2])+M1([S3])
+M1([S4])+·· ·+M1([Sn])]+[M2([S1])
+M2([S2])+M2([S3])+M1([S3])+M1([S4])
+·· ·+M1([Sn])]+· · ·+[M2([S1])+M2([S2])

q 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society



D. Y. Chao: Improved Controllability Test for Dependent Siphons in S3PR Based on Elementary Siphons 389

+·· ·+M2([Sn−3])+M2([Sn−2])+M2([Sn−1])
+M1([Sn−1])+M1([Sn])]+M2([S1])
+M1([Sn])
=M([VS2])+M(VS3)+·· ·+M([VSn−1])
+M0(r1)+M0(rn+1)=M0(VS2)+M0(VS3)

+·· ·+M0(VSn−1)+M0(r1)+M0(rn+1),

where

M([VS2])=M0(VS2)=M2([S1])+M2([S2])
+M1([S2])+M1([S3])+M1([S4])
+·· ·+M1([Sn]),

M([VS3])=M0(VS3)=M2([S1])+M2([S2])
+M2([S3])+M1([S3])+M1([S4])
+·· ·+M1([Sn]),
. . . . . .

M([VSn−1])=M0(VSn−1)=M2([S1])+M2([S2])
+·· ·+M2([Sn−3])+M2([Sn−2])
+M1([Sn−1])+M2([Sn−1])+M1([Sn]),

M0(r1)=M2([S1]), and M0(rn+1)=M1([Sn]).
This proves (9). �

The reader may refer to the sentences from the
second paragraph behind the proof of Theorem 4 for the
specific cases of 3- and 4-dependent siphons to under-
stand the above the proof.

This theorem expresses the sum of compensation
factors in terms of known quantities (initial markings).
Note that this theorem holds only if a1=a2= . . .=an ,
or when the dependent siphon is a compound one.

Remarks. Note that (1) Theorem 5, like Theorem 4 for
n-dependent siphons n>2, holds only when all ai=1
and all b j=1. When 
Si=0 ∀i ∈[1,2, . . .n] and S0=
S1oS2o. . .oSn , there is no need for the time-consuming
integer programming test after we perform the MLI
test by adjusting control depth variables in an S3PR.
However, if some 
Si 	=0 for n>2, then the dependent
siphon is already controlled.

Total Time Complexity. Case (1): Only Type I
siphons exist. The worst total time complexity is O(n2)
since only 2-dependent siphon needs to check the new

MLI based on Theorem 4.2 and there are at worst
O(n2) 2-dependent siphons, where nis the total number
of resource places in the net (recall that each SMS in
an S3PR must contain at least two resource places). In
practice, Type I strongly 2-dependent occurs between
adjacent resource places shared between two processes
and there are linear number of 2-dependent siphons as
shown in [10]. As a result, the total time complexity to
check controllability of all strongly dependent siphons
is reduced from exponential to linear. Case (2): Only
Type II siphons exist. The time complexity to verify
the MLI of a dependent siphon is O(|�E |) since
there are O(|�E |) terms on the right hand side of
the MLI (see the inequality in Theorem (1). They
are |�D| dependent siphons. As a result, the total
time complexity is O(|�E ||�D|), where |�E | is total
number of elementary siphons and |�D| total number
of dependent siphons.

V. S3PR EXAMPLE

This section compares the proposed approach
with the LIP one in [1] based on the well-known S3PR
example. The layout [5] of the flexible manufacturing
cell is shown in Fig. 3 in [1] and the Petri net model of
the system is shown in Fig. 5.

The net system is an S3PR and contains dead-
locks. There are six corresponding elementary or basic
siphons synthesized from six resource circuits using the
handle-construction procedure and 12 strongly depen-
dent siphons as shown in Tables I and II in [8] respec-
tively. For example, S3is a dependent SMS w.r.t. to S4
and S18. To apply the elementary-siphon approach to
this net system, we first add six control places VS1,
VS4, VS10, VS16, VS17, and VS18which correspond to
six elementary siphons S1, S4, S10, S16, S17, and S18,
respectively.

Among the 12 dependent siphons, eight (S2, S3,
S7, S8, S9, S12, S14, S15) of them are n=2 dependent
siphons that need to do the new MLI test and only S15
does not satisfy the old MLI when the corresponding
control depth variables are 1.

Li and Zhou show that only S11, S13, and S15
(wasting time to check S11 and S13) do not meet
the old MLI and prove that the three SMSs can be
controlled through LIP test based on Theorem 2. Note
S11= S1oS16oS17, S13= S1oS16oS18 (n=3, 3 elemen-
tary siphons), and S15= S1oS16 (n=2, 2 elementary
siphons). Based on the discussion on (10), S11 and
S13 are already controlled and need no monitors since
n=3>2. For S15, S1∩S16={p26}, a=M0(p21)=1,
b=M0(p26)=2, and c=M0(p22)=1. S15 is already
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Fig. 5. An S3PR in [1] on the left and its elementary control model on the right.

controlled since b<c+a+2=4 by (3). This example
illustrates the advantage of our test by avoiding LIP or
LPP test.

Remarks. On reconsidering the six control places
computed for the well-known S3PR example, the
proposed method cannot deal with redundant control
places. Uzam [12] et al. propose a redundancy test (the
first of its kind) for the liveness enforcing supervisors
(LES) of an FMS. When the redundancy test [12] is
carried out for this particular example, BFT (back to
front; i.e., VS18,VS17,VS16,VS10,VS4, and VS1 in that
order) and FTB (front to back; i.e., VS1, VS4, VS10,
VS16, VS17, and VS18 in that order) tests indicate that the
control place VS17 shown in Fig. 5(b) is redundant (i.e.,
the system remains live after removing VS17). More-
over, when VS17 is removed from the controlled model
of Fig. 5(b), the controlled model can even reach more
good states than the one (6287) shown in Fig. 5(b).
In other words the controlled model obtained by the
control places VS1, VS4, VS10, VS16, and VS18 is live
and can reach 6331 good states. However, it requires
reachability analysis to test liveness which takes expo-
nential time complexity negating the advantage of the

proposed polynomial approach. It is interesting to find
polynomial approaches to remove redundant monitors.
Also it is still much less than the maximally permissive
one. This is due to the larger controller region (by
making control arcs to end at source transitions of
processes) causing the original uncontrolled model
to be more disturbed. As a matter of the fact, the
number of good states provided by a liveness-enforcing
supervisor is considered as a kind of quality measure
within the literature. A comparison for this benchmark
example among the different methods available within
the literature in this respect can be seen from [13]. This
is to say that it is also necessary to improve this quality
measure in addition to computational complexity. It
is interesting to extend the proposed approach to the
maximally permissive control policy.

VI. CONCLUSION

We have improved the sufficiency test in the
elementary siphon approach by Li & Zhou [1] for
the special case when 
3=
1+
2 so that if the
modified MLI is satisfied, there is no need for the
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ensuing time-consuming linear integer programming
test. We have further generalized it to the case where

0=
1+
2+·· ·+
n . The MLI needs to be modified
by adding a constant 
Si to each control depth variable
�Si as shown in Theorem 4.2. When 
Si=0, the MLI
is the same as that in [1, 4]; such siphons are called
type II ones and there is no need for LIP test.

In addition, we have derived a general formula to
show that S0 is always controlled and needs no monitor
for n>2. We have also extended the theory to weakly
dependent siphons (to be reported in a future paper)
and showed that weakly dependent siphons have similar
controllability for both n=2 and n>2 cases. As a result,
we need only verify controllability for n=2 based on
Theorem 4.2. Therefore, it takes linear time complexity
compared with the exponential one in [1].

This paper is both theoretically and practically
important. To control an FMS, it reduces the complexity
from exponential to polynomial since only n=2
strongly dependent type I (
Si 	=0) siphons need to be
verified against our new MLI test; the number of which
is polynomial. We further prove that our newMLI test is
both sufficient and necessary, much better than the only
sufficient MLI or LPP (linear programming problem)
in [1, 4–7]. This eliminates the LIP completely. Future
work should apply to very large systems to enjoy the
important theory developed in this paper.
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