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Image mining is an important task to discover interesting and meaningful patterns form large image dat-
abases. In this paper, we introduce the spatial co-orientation patterns in image databases. Spatial co-ori-
entation patterns refer to objects that frequently occur with the same spatial orientation, e.g. left, right,
below, etc. among images. For example, an object P is frequently left to an object Q among images. We
utilize the data structure, 2D string, to represent the spatial orientation of objects in an image. Two
approaches, Apriori-based and pattern-growth approaches, are proposed for mining co-orientation pat-
terns. An experimental evaluation with synthetic datasets shows the advantage and disadvantage
between these two algorithms.
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1. Introduction

Spatial data mining has attracted more and more attention, as the
advances of information technologies. Finding meaningful patterns
from spatial or image databases is important. There are three basic
types of spatial relationships: distance, topological, and directional
relationship (Ester, Frommelt, Kriegel, & Sander, 2000). Several stud-
ies have focused on mining spatial co-location patterns in which spa-
tial objects are locating together closely. The spatial co-orientation
pattern mining is concerned with the distance spatial relationship.
Little work has been done on directional spatial relationships among
the objects (Liu, Shekhar, & Chawla, 2000).

In this paper, we introduce the concept of spatial co-orientation
pattern mining. Spatial co-orientation patterns refer to the spatial
objects that occur frequently and collocate with the same orienta-
tion among each other. A typical but superstitious example of spa-
tial co-orientation pattern mining is the Chinese Geomancy. As
often as Asian design buildings or interior of home, the Chinese
Geomancy is employed. In Chinese Geomancy, the directional rela-
tionship is an important factor. For example, Chinese Geomancy
suggests the placement of a fish bowl in the north wall of a home
to ward off bad influences.

Fig. 1 shows an image databases consisting of four iconic
images. Each image contains several objects. Among three of these
images, object D is north-western to object A, object A is south-
western to object B, and object B is south-eastern to object D.
Therefore, object D, A, and B constitute a spatial co-orientation pat-
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tern. Fig. 2 shows some of the spatial co-orientation patterns with
occurrences no less than two.

Besides the concept of spatial co-orientation pattern mining, in
this paper, we propose two algorithms to discover the spatial co-
orientation patterns. Two algorithms, which are Apriori-based ap-
proach and pattern-growth approach, are proposed. In particular,
to capture the spatial relationships among objects in the images,
we employed the 2D string representation (Chang, Shi, & Yan,
1987) to represent symbolic pictures for Apriori-based approach
and pattern-growth approach. The rest of the paper is organized
as follows. Section 2 reviews the related work. In Section 3, we give
the definition of the spatial co-orientation mining problem and
present two algorithms for mining co-orientation patterns. The
performance of two proposed algorithms is analyzed in Section 4.
In Section 5, some applications of spatial co-orientation pattern
mining are presented. Section 6 concludes this paper.
2. Related work

Koperski et al. proposed spatial association rules in geographic
information databases. The work is finding the rules of topological
relationships from spatial databases and its detail is described in
Loperski and Han (1995). The main processes in this paper are fil-
tering and refining. But it is expensive to scan the spatial databases
to accomplish.

Spatial co-location mining (Huang, Shekhar, & Xiong, 2004; She-
khar & Huang, 2001; Yoo & Shekhar, 2004) is to discover frequent
object classes occur together closely from spatial databases and so
does (Morimoto, 2001). These researches focus on neighboring
relation without dealing with relative direction among objects.

Hsu, Dai, and Lee (2003) proposed viewpoint patterns mining to
find the relative distance and orientation invariant patterns. For
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Fig. 2. Spatial co-orientation patterns of Fig. 1.
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Fig. 1. An image database SDB of four symbolic pictures.
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example, given two images in Fig. 3, the discovered viewpoint pat-
tern is {A, B, C}.

In this Apriori-based approach, candidate (k + 1)-object pattern
is generated by concatenating two frequent k-object patterns.
However, in spatial cognition, human is more sensitive to the rel-
ative orientation than to distance. It is also useful to discover the
patterns by considering only spatial orientation. If the distances
between objects were not considered in viewpoint pattern mining,
their approach won’t work. This is because the transitive property
is not hold for the relationship of spatial orientation. For example,
in Fig. 3, the viewpoint pattern {A, B, D} will be discovered by their
approach while in fact the spatial relationships between A and D in
f1 and f2 are quite different. Moreover, in their work, each step of
generating k-object patterns must scan databases and record the
distance and orientation among all combinations of k objects. It
takes too much time.

3. Co-orientation pattern mining

3.1. Problem definition

Definition 1. A symbolic picture f is a relation from
f1;2; . . . ;mg � f1;2; . . . ;ng to V, where m, n is the size of the
picture, and V is the set of objects contained in this picture.

Definition 2. A relative direction Rd is a relation from V � V to S,
where V is the set of objects, S = {north, north-east, east, south-east,
south, south-west, west, north-west}.
Definition 3. A symbolic picture f0 is called a subpicture of a sym-
bolic picture f iff V0 # V, and 8o01; o

0
2 2 V 0; o1; o2 2 V , if o01 ¼ o1 and

o02 ¼ o2, then Rdðo01; o02Þ ¼ Rdðo1; o2Þ, where V0 and V are the sets of
objects in f0 and f, respectively. The symbolic picture f is said to
be the superpicture of the symbolic picture f0 and to contain the
symbolic picture f0.
D

A A

D C C

 B  B
f1 f2

Fig. 3. Example of viewpoint patterns.
Definition 4. Given an image database SDB = {f1, f2, . . . , fn} where
each fi is a symbolic picture. The support of a symbolic picture f
is the percentage of symbolic pictures in SDB that contain the sym-
bolic picture f. If the support of a symbolic picture f is greater than
or equal to a given minimum support threshold, minSup, f is the
spatial co-orientation pattern of SDB.

Example 1. Fig. 1 shows an image database of four symbolic pic-
tures. The symbolic picture p1, shown in Fig. 2, is a subpicture of
the symbolic pictures f1, f2, and f4, respectively. Therefore, the sup-
port of p1 is 75%. If the minimum support threshold minSup is 50%,
the symbolic pictures p1, p2, and p4 are the maximal spatial co-ori-
entation patterns.
3.2. 2D string representation

To discover the spatial co-orientation patterns from a database
of symbolic pictures, we employ the 2D string representation to
represent symbolic pictures. 2D string was originally proposed by
Chang et al. (1987) for iconic indexing of image retrieval. In the
2D string approach, first, for each object in an image, the ortho-
relation objects with respect to other objects are generated. The
ortho-relation objects are used to characterize the relative spatial
location with respect to other objects. Then, the reference points
which are the central points of each ortho-relation objects consti-
tute the symbolic picture. At last, the symbolic picture which pre-
serves the relative spatial relationship is encoded as a 2D string.

Definition 5. An 1D string S, over a set of objects O, is represented
as S = o1o2� � �om where oi 2 O for 1 6 i 6m, and m is the length of S.
S is contained in another 1D string S ¼ o01o02 � � � o0n if there exists
integers 1 6 i1 < i2 < � � � < im 6 n, n P m such that o1 ¼ o01; o2 ¼
o02; . . . ; om ¼ o0m (Chang et al., 1987).
Definition 6. Let V be a set of object symbols and R be the set {‘‘=”,
‘‘<”} which is used to specify the relative direction among objects.
The symbol ‘‘=” denotes the ‘‘at the same spatial location”, the sym-
bol ‘‘<” denotes the ‘‘left–right or below–above spatial relation-
ship.” A 2D string (Sx, Sy) over V is defined as (o1r1xo2r2x� � �
r(n�1)xon, op(1)r1yop(2)r2y� � �r(n�1)yop(n)), where o1o2� � �on and
op(1)op(2)� � �op(n) are 1D strings over V, p is a permutation function
from {1, . . . ,n} to {1, . . . ,n}, r1xr2x� � �r(n�1)x and r1yr2y� � �r(n�1)y are
both 1D strings over R and n is the length of (Sx, Sy). A 2D string
with n objects is called the size-n 2D string (Chang et al., 1987).

Example 2. The 2D string representations for the symbolic pic-
tures f1, f2, f3 and f4 in Fig. 1 are (S1x, S1y) = (D < A < B < E,
E < A < B < D), (S2x, S2y) = (D < C < A < B, A < B < D < C), (S3x,
S3y) = (D < A < B = C < E, D = B < C < A < E) and (S4x, S4y) = (C < D <
A < B, A < B < C < D), respectively.

Note that, to ensure the unique 2D string representation (Sx, Sy)
of a symbolic picture, if two objects oi, oj are at the same spatial
location along the vertical axis, the relative orders of oi, oj in Sy
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should be of the same as those in Sx. For example, rather than
(D < A < B = C < E, B = D < C < A < E), the symbolc picture f3 is repre-
sented as (D < A < B = C < E, D = B < C < A < E).

Definition 7. A string S0 is a 1D subsequence of a string S, if (1) S0 is
contained in S, and (2) if a0w0b0 is a substring of S0, a0 matches a in S
and b0 matches b in S, then r(b) � r(a) P r(b0) � r(a0) where r(x), the
rank of symbol x, is defined as one plus the number of ‘‘<”
preceding this symbol x (Chang et al., 1987).
Definition 8. A 2D string ðS0x; S
0
yÞ is a 2D subsequence of a 2D string

(Sx, Sy), denoted as ðS0x; S
0
yÞ# ðSx; SyÞ, if S0x is a 1D subsequence of Sx

and S0y is a 1D subsequence of Sy. The 2D string (Sx, Sy) is said to con-
tain the 2D string ðS0x; S

0
yÞ (Chang et al., 1987).

Definition 9. Given a 2D string database SDB2D = {(S1x, S1y), (S2x,
S2y), . . . , (Snx, Sny)}. The support of a 2D string ðS0x; S

0
yÞ is the percent-

age of the 2D strings in SDB2D that contain ðS0x; S
0
yÞ. ðS

0
x; S

0
yÞ is frequent

if its support is greater than or equal to a given minimum support
threshold minSup.

Example 3. Given the database of four 2D strings in Example 2, the
support of the 2D string (D < A < B, A < B < D) is 75%. It is a 2D sub-
sequence of the 2D strings (S1x, S1y), (S2x, S2y), and (S4x, S4y), while it
is not a 2D subsequence of the 2D string (S3x, S3y). If minSup equals
50%, then (D < A < B, A < B < D) is one of the frequent.2D strings.

Given a database of symbolic pictures, the problem of spatial
co-orientation pattern mining thus becomes the discovery of the
frequent 2D strings among a database of 2D strings. Each such fre-
quent 2D string is a spatial co-orientation pattern.

3.3. Apriori-based algorithm

In this section, we propose a Apriori-based algorithm to dis-
cover the spatial co-orientation patterns. The Apriori-based ap-
proach utilizes the downward closure property that every
subpattern of a frequent pattern must be frequent. This property
is a foundation for generation of correct and complete set of fre-
quent patterns.

Our proposed Apriori-based algorithm starts by finding all fre-
quent objects, i.e. size-1 2D strings. Then, it enters the main iteration
phase. In each iteration, namely, the kth iteration, the candidate size-
(k + 1) 2D strings are generated by joining two frequent size-k 2D
strings. Then for each candidate size-(k + 1) 2D string, the support
are counted and those candidates that satisfy the support constraint
are preserved as frequent size-(k + 1) 2D strings.

The above sketch of the proposed Apriori-based algorithm is
quite similar to that of frequent itemset or sequential pattern min-
ing. However, the joining operation of 2D strings is more compli-
cated. Especially, it is not as intuitive as joining of symbolic
pictures. The following definition gives the condition for joining
of two 2D strings.

Definition 10. Two size-k 2D strings (Sx, Sy) = (o1r1xo2r2x

� � �o(k�1)r(k�1)xok, op(1)r1yop(2)r2y� � �r(k�1)yop(k)) and ðS0x; S
0
yÞ ¼ ðo01r01xo02

r02x � � � o0ðk�1Þr
0
ðk�1Þxo0k; o

0
p0 ð1Þr

0
1yo0p0ð2Þr

0
2y � � � r0ðk�1Þyo0p0 ðkÞÞ are joinable if
(1) 8i;1 6 i 6 k� 1; oi ¼ o0i and 8i;1 6 i 6 k� 2rix ¼ r0ix.
(2) $ a monotonic function g from f1;2; . . . ; ng to f1;2; . . . ;ng

such that g(i) = j only if p(i) – n and p0(j) – n and op(i) = op0(j)

and rði�1Þy ¼ r0ðj�1Þy.

This definition states that two size-k 2D strings (o1r1xo2� � �o(k�1)

r(k�1)xok, op(1)r1yop(2)� � �r(k�1)yop(k)) and ðo01r01xo02 � � � o0ðk�1Þr
0
ðk�1Þx

o0k; o
0
p0 ð1Þr

0
ð1yÞo

0
p0ð2Þ � � � r0ðk�1Þyo0p0 ðkÞÞ are joinable if they share the same
prefix o1r1xo2r2x� � �o(k�1) along the horizontal axis and the relative
orders of the (k � 1) objects o1, o2, . . . , o(k�1) are of the same along
the vertical axis.

Example 4. The 2D strings (A < B < C < D, C < D < A < B) and
(A < B < C < E, C < A < E < B) are joinable. Both have the same size-
3 prefix ‘‘A < B < C” along the horizontal axis. Moreover, the relative
orders of objects, A, B, C are of the same along the vertical axis. In
other words, there exists a monotonic function such that g(1) = 1,
g(3) = 2, and g(4) = 4 where opð1Þ ¼ op0ð1Þ ¼ ‘C’; opð3Þ ¼ op0ð2Þ ¼ ‘A’,
and op(4) = op0(4) = ‘B’.

Different from the joining operation of frequent itemset mining
in which two frequent size-k itemsets produce a unique size-(k + 1)
itemset, the joining operation of two frequent size-k 2D strings
may produce more than one distinct size-(k + 1) candidate 2D
strings. For example, joining of two frequent 2D strings in Example
4 will generate three distinct size-5 candidate 2D strings which are
shown in Fig. 4(b).

The detailed algorithm for the candidate generation is shown in
Fig. 5. Given two joinable frequent size-k 2D strings (Sx, Sy) = (o1r1-

xo2� � �o(k�1)r(k�1)xok, op(1)r1yop(2)� � �r(k�1)yop(k)) and ðTx; TyÞ ¼ ðo1r1xo2

� � � oðk�1Þr0ðk�1Þxo0k; o
0
p0 ð1Þr

0
1yo0p0 ð2Þr

0
2y � � � r0ðk�1Þyo0p0ðkÞÞ the number of gener-

ated candidates depends on the spatial location of the two dis-
agreed objects ok and o0k. This algorithm first generates the
possible cases, by calling the function subGen_Candidate, along
the horizontal axis and the vertical axis, respectively. Then the
combinations of candidates are generated.

For the horizontal axis, if both r(k�1)x and r0ðk�1Þx are ‘<’, then
there are three possible cases. Otherwise, there is only one case.
Fig. 4(a) and (b) is an example of the former while Fig. 4(c) is that
of the latter. For the vertical axis, if these two unmatched objects,
ok and o0k, locate in the same location among the matched objects,
then there are three possible cases. Otherwise, there is only one
case. Fig. 4(a) is an example of the former while Fig. 4(b) and (c)
are those of the latter. In Fig. 4(a), along the vertical axis, objects
D and E both locate in the slot between objects C and A. Therefore,
there are three possible cases along the vertical axis. Finally, the
last step of the algorithm is to prune the exception if objects are
not allowed to be at the same cell. An example is the last candidate
of Fig. 4(a).

3.4. Pattern-growth algorithm

In this section, we propose another efficient algorithm, which is
based on the pattern-growth approach, for mining spatial co-orien-
tation patterns. Pei et al. (2004) have proposed the pattern-growth
based algorithm, PrefixSpan, for mining sequential patterns from a
set of customer sequences. In this approach, the database of cus-
tomer sequences is recursively projected into a set of projected
databases. The discovered sequential patterns are grown in each
projected database by exploring local frequent elements (Pei
et al., 2004). With the concept similar to PrefixSpan, we propose
the pattern-growth approach for mining frequent 2D strings.

Definition 11. Given a 2D string (Sx, Sy) = (o1r1xo2r2x� � �o(k�1)

r(k�1)xok, op(1)r1yop(2)r2y� � �r(k�1)yop(k)). A string S0 ¼ o01r01o02r02 � � �
�

o0ðh�1Þr
0
ðh�1Þo

0
hÞ;h 6 k, is called a X-prefix of (Sx, Sy), if and only if S0

is an 1D subsequence of Sx .
Definition 12. Given a 2D string (Sx, Sy) = (o1r1xo2r2x� � �o(k�1)

r(k�1)xok, op(1)r1yop(2)r2y� � �r(k�1)yop(k)). Let S0 = (o1r1xo2r2x� � �o(h�1)

r(h�1)xoh), h 6 k, be an X-prefix of (Sx, Sy). A string
S
00

= (rhxo(h+1)r(h+1)xo(h+2)r(h+2)x� � �o(k�1)r(k�1)xok) is called an X-suffix
of (Sx, Sy) with respect to X-prefix S0. A 2D string ðS0x; S

0
yÞ is called

a suffix of (Sx, Sy) with respect to X-prefix S0 if



Fig. 4. Examples of candidate generation.
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(1) S0x is a X-suffix of (Sx, Sy) with respect to S0 and
(2) S0y ¼ ðo0pð1Þr01yo0pð2Þr

0
2y � � � r0ðk�1Þyo0pðkÞÞ is a 1D subsequence of Sy

where o0pðiÞ appears in X-prefix or X-suffix.

Definition 13. Let (Sx, Sy) be a spatial co-orientation pattern in SDB.
The Sx-projected database collects all suffixes of 2D strings in SDB
with regards to an X-prefix Sx.

Example 5. Given an image database SDB in Fig. 1. Let minSup be
75%. (D,D), (A,A), (B,B) and (C,C) are size-1 spatial co-orientation
patterns. The D-projected databases are (<A < B, A < B < D),
(<C < A < B, A < B < D < C), (<A < B = C, D = B < C < A), and (<A < B,
A < B < D).

Fig. 6 shows the pattern-growth algorithm. In Fig. 6, the prepro-
cess function transforms symbolic picture databases to 2D string
databases SDB2D. We scan SDB2D to generate size-1 spatial co-ori-
entation patterns FP1. The build_projected_database function gen-
erates a projected database according to SDB2D and FP1. From step 4
to 11, we generate spatial co-orientation patterns with respect to
each pattern in FP1 and it is shown in Fig. 7. In Fig. 7, the Gen_Pat-
tern function generates 2D strings from a co-orientation pattern P
by scanning the projected database PDB and adding an object e
occurring in FP1 but not in P to P. The detail of Gen_Pattern is
shown in Fig. 8. From step 3 to 10, it is continuously recursive to
find co-orientation patterns with respect to each pattern s if s is
frequent. The process of update_projected_database in Fig. 7 scans
SDB2D to generate the projected database of s to PDB.

Example 6. Given 2D string database SDB2D in Fig. 1, Fig. 9 gives
the entire process of miming. The order of steps in Fig. 9 is 1, 2,
3 ,. . . , 6.

To implement the projection of database of 2D strings, similar
to the pattern-growth approach for sequential pattern mining,
we also use the concept of pseudo-projection without generating
large physical projected database. The pseudo-projection reduces
the size of projected database and it can fit in main memory. Our
algorithm adopts this technique to save both space and time. Sim-
ilarly, $ indicates the X-prefix occurs in the current 2D string but its
projected X-suffix is empty and ; indicates the X-prefix does not
occur in the current 2D string. Otherwise, the horizontal axis of
each pseudo-projection denotes the offset of the rightmost object
of X-prefix. But the vertical axis of each pseudo-projection denotes
the rank of each object of X-prefix orderly.

Example 7. Given a 2D string database SDB2D in Table 1. Let
minSup be 75%. The projected databases for X-prefixes (R), (P), (O),
(R < O), (R < P) and (O < P) are shown in Table 1. One of the pseudo-
projected databases with regard to the X-prefix, (R < O), is <4,3 2>,



Input: Two frequent size-k 2D strings, (Sx, Sy) and (Tx, Ty)
Output: A set of candidate size-(k+1) 2D strings 
1. Let (Sx, Sy)=(o1r1x o2r2x…o(k-1)r(k-1)x ok, op(1)r1yop(2)r2y…r(k-1)yop(k))
2.      (Tx, Ty)=(o’1r’1xo’2r’2x…o’(k-1)r’(k-1)xo’k, o’p’(1)r’1yo’p’(2) r’2y…r’(k-1)y o’p’(k)) 
3.   If (Sx, Sy) and (Tx, Ty) are joinable Then { 
4. i=k;   j=k; 
5. C(k+1)x = subGen_Candidate(Sx, Tx, i, j) 
6.      Let i, j, be the index such that P(i)=k, p’(j)=k
7.      C(k+1)y = subGen_Candidate(Sy, Ty, i, j) 
8. For each Cx in C(k+1)x

9.    For each Cy in C(k+1)y

10.          Insert (Cx, Cy) into C(k+1)

11.  Prune the exception            } 
12.Return C(k+1)

subGen_Candidate(S, T, i, j)
1. Let S=o1r1o2r2…o(k-1)r(k-1)ok, T=o’1r’1o’2r’2…o’(k-1)r’(k-1)o’k;
2. If (i = j) then { 
3.   switch (r(i-1),r’(j-1))  
4.     case (r(i-1) = ‘<’ and r’(j-1)= ’<’) then { 
5.           Insert (o1r1…<oi<o’j…r(k-1)ok) into C(k+1); 
6.           Insert (o1r1…<o’j<oi…r(k-1)ok) into C(k+1); 
7.           Insert (o1r1…<oi=o’j…r(k-1)ok) into C(k+1); } 
8.     case (r(i-1) = ‘=’ and r’(j-1)= ’<’) 
9.           Insert (o1r1…r(i-1)oir’(j-1)o’j…r(k-1)ok) into C(k+1); 
10.    case (r(i-1) = ‘<’ and r’(j-1)= ’=’) 
11.          Insert (o1r1…r’(j-1)o’jr(i-1)oi…r(k-1)ok)into C(k+1); 
12.    else Insert (o1r1…r(i-1)oir’(j-1)o’j…r(k-1)ok)into C(k+1); } 
13.else if (i < j)  
14.  Insert (o1r1…r(i-1)oi…r’(j-1) o’j…r(k-1)ok)into C(k+1); 
15.else if (i > j) 
16.  Insert (o1r1…r’(j-1)o’j…r(i-1)oi…r(k-1)ok); 
17.Return C(k+1); 

Fig. 5. Algorithm of candidate generation.

Fig. 6. Pattern-growth algorithm.
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where 4 is the offset of O in X-axis of 2D string, (R < B = O < P,
P < B = O < R), 3 is the rank of R in Y-axis of (R < B = O < P,
P < B = O < R) and 2 is the rank of O in Y-axis of (R < B = O < P,
P < B = O < R).
4. Experiment

We measure the efficiency of proposed two approaches by the
number of images, the total number of objects, average number
of objects in an image and the minimum support (Agrawal & Srik-
ant, 1994, 1995). First, we utilized the synthetic data generator
developed by IBM Almaden Research Center to generate transac-
tions, 1D sequence, and we regard each transaction as the horizon-
tal axis of a 2D string. For each generated item, the position along
the vertical axis is determined randomly. Then each transaction is
translated to a 2D string. We performed all experiments on IBM PC
with 256 MB main memory and 2.40 GHz CPU. The synthetic data
generation program takes the parameters shown in Table 2 and
generates all images by setting D � D = 6 � 6. Note that the con-
vention of T6kM8N10S50% means that the data set includes 6k
images, the average number of objects in an image is 8, the total
number of objects is 10 and the minimum support is 50%.

Fig. 10 illustrates the runtime of the Apriori-based algorithm in-
creases more rapidly than the pattern-growth algorithm as the
number of images increases. While the total number of objects



Fig. 7. subPGMiner function.

Fig. 8. Gen_Pattern function of Fig. 7.
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increase, the effect of that of each algorithm is not obvious. How-
ever, the pattern-growth algorithm is more efficient than the Apri-
ori-based algorithm in Fig. 11. As shown in Fig. 12, the Apriori-
based algorithm and the pattern-growth algorithm takes more
time as the average number of objects in an image increases.
Fig. 13 demonstrates that the runtime of the Apriori-based algo-
rithm scales up more and more rapidly than the pattern-growth
algorithm as minimum support decreases. When minimum sup-
ports are 22% and 18%, Apriori-based algorithm takes less time
than pattern-growth algorithm because the length of spatial co-
orientation patterns is shorter.
5. Applications

5.1. Mining painting color style

One application of spatial co-orientation pattern mining is min-
ing painting style from images (Shan, 2009). The painting style re-
lates to the painting techniques which the artist uses to create the
painting. In other words, the painting style concerns the common
properties of the artist’s works. We can mine the painting style
of artists to finding out the artists’ characteristics and then utilize
those to discriminate the artist’s works from others. Several fea-
tures can be extracted from images, such as color, shape, texture
and spatial relationship, to represent characteristics of artists’
works.

Especially, MPEG-7 color layout descriptor is one of the color
features to capture the spatial distribution of colors. To extract
MPEG-7 color layout descriptor, an images is divided into 8 � 8
grids, 64 blocks. Then, representative color detection from each
block, Discrete Cosine Transform (DCT) of these 64 blocks and non-
linear quantization of the zigzag-scanned coefficients are per-
formed to produce the color layout descriptor. We can use 2D
string to represent such 64 blocks, and then utilize spatial co-ori-
entation patterns to represent the painting style in terms of the
color layout.
5.2. Discovering interesting patterns in basketball games

Spatial co-orientation pattern mining is useful for discovering
interesting patterns in basketball game data. In basketball compe-
tition, basketball strategies, such as offense, defense and so on, are



Fig. 10. Performance of these two algorithms on data set M6N10S0.5%.

Fig. 11. Performance of these two algorithms on data set T6kM6S5%.

Fig. 12. Performance of these two algorithms on data set T3kN20S1%.

Fig. 9. Example of pattern-growth algorithm.

Table 1
String database SDB2D and parts of its pseudo-projected databases.

TID 2D string (R) (O) (P) (R < O) (R < P) (O < P) . . .

100 (R < O < P < G, G < P < O < R) <2,4> <3,3> <4,2> <3,4 3> <4,4 2> <4,3 2> . . .

200 (R < B = O < P, P < B = O < R) <2,3> <4,2> <$,1> <4,3 2> <$,3 1> <$,2 3> . . .

300 (B = R < P < I, I < R < B < P) <3,2> ; <4,4> ; <4,2 4> ; . . .

400 (Y < R < O < P, Y < P < O < R) <3,4> <4,3> <$,2> <4,4 3> <$,4 2> <$,3 2> . . .

Table 2
Parameters of experiment.

T Number of images
D � D Size of an image
M Average number of objects in an image
N Total number of objects
S Minimum support
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important. Coaches can detect opponent’s strategies from these
discovered patterns. To discover patterns from basketball videos,
we first segment videos into shots and select key-frames for mod-
eling. Then we annotate each object in key-frames by human and
transfer this information into 2D strings for mining.

For instance, the Triangle offense is a famous basketball offense
strategy. Chicago Bulls used this basketball offense strategy in the
past, and it is still useful for Los Angeles Lakers today. Fig. 14 shows
the pattern of the Triangle offense. In Fig. 14, No. 7 (Lamar Odom),
No. 8 (Kobe Bryant), No. 9 (Laron Profit), No. 18 (Sasha Vujacic) and
No. 31 (Chris Mihm) are NBA (National Basketball Association)
players, belonging to Los Angeles Lakers, and they are set in the Tri-
angle offense in this figure.



Fig. 13. Performance of these two algorithms on data set T1kM6N10%.

Fig. 14. Example of the Triangle offense. (The official site of the National Basketball
Association, http://www.nba.com/.)

Fig. 15. Example of a cognitive map.
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5.3. Analyzed tool for spatial cognitive development

Spatial co-orientation pattern mining can also be utilized as a
tool for analyzing students’ spatial cognitive development (Wei &
Shan, 2006). Spatial cognition concerns how human interpret spa-
tial complexity through spatial properties of objects, such as dis-
tance, direction and so on, in the world. Human construct the
individual mental image according to their own spatial cognition.
People commonly sketch the cognitive map, a graphical represen-
tation of spatial knowledge, to represent their mental image. In
geographic education, most studies utilize cognitive maps to ana-
lyze the development of students’ spatial cognitive ability. Some
studies have focused on the analysis of cognitive maps drawn by
students of different sexes, ages and so on, and finding out which
factors influence students’ spatial cognition. These studies provide
education authorities with reference in compiling the source mate-
rials for geography education.

For example, students were asked to point the directional rela-
tionship among 5 landmarks according the reference, ‘‘school,” and
Fig. 15 is a cognitive map drawn by someone. When we transfer
each cognitive map into symbolic picture, spatial co-orientation
patterns mean that most students construct such distribution.
According to these patterns, researchers interest in discussing
which factors induce this result.

6. Conclusions

In this paper we introduce the problem of mining spatial co-ori-
entation patterns in image databases. We utilize 2D string to rep-
resent the spatial orientation of objects in an image. We propose
two algorithms, Apriori-based algorithm and pattern-growth algo-
rithm, to solve this problem. Our experiments show the good scale-
up property of these two algorithms. Pattern-growth algorithm
performs more effectively than Apriori-based algorithm.
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