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Abstract In recent times, data are generated as a form of continuous data streams in
many applications. Since handling data streams is necessary and discovering knowl-
edge behind data streams can often yield substantial benefits, mining over data streams
has become one of the most important issues. Many approaches for mining frequent
itemsets over data streams have been proposed. These approaches often consist of two
procedures including continuously maintaining synopses for data streams and finding
frequent itemsets from the synopses. However, most of the approaches assume that the
synopses of data streams can be saved in memory and ignore the fact that the informa-
tion of the non-frequent itemsets kept in the synopses may cause memory utilization
to be significantly degraded. In this paper, we consider compressing the information
of all the itemsets into a structure with a fixed size using a hash-based technique. This
hash-based approach skillfully summarizes the information of the whole data stream
by using a hash table, provides a novel technique to estimate the support counts of the
non-frequent itemsets, and keeps only the frequent itemsets for speeding up the mining
process. Therefore, the goal of optimizing memory space utilization can be achieved.
The correctness guarantee, error analysis, and parameter setting of this approach are
presented and a series of experiments is performed to show the effectiveness and the
efficiency of this approach.

Responsible editor: M.J. Zaki.

E. T. Wang
Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
e-mail: m9221009@em92.ndhu.edu.tw

A. L. P. Chen (B)
Department of Computer Science, National Chengchi University, Taipei, Taiwan, ROC
e-mail: alpchen@cs.nccu.edu.tw

123



A novel hash-based approach 133

Keywords Data stream · Data mining · Frequent itemset · Hash-based approach ·
False positive

1 Introduction

Rapid advances in network communications and software/hardware technologies bring
huge amounts of data in a form of continuous data streams. A data stream is an
unbounded sequence of data persistently generated at a high speed. For instance, net-
work traffic, web logs, data from sensor networks, and financial transactions are some
categories of data streams. As in traditional databases, techniques of data mining
can be applied to discover the underlying knowledge behind data streams. However,
data streams are naturally accompanied with several characteristics and restrictions,
increasing the degree of complexity of the mining.

First, it is impossible to store an entire data stream in memory even on disk because
data streams are unboundedly generated. Therefore, each element in a data stream
should be inspected at most once to establish a synopsis or sketch for the mining. A
synopsis or sketch is a structure used to summarize the data stream. Second, the utili-
zation of memory for the mining process such as the space for the synopsis or sketch
should be restricted in a reasonable amount. Third, since the past data cannot be saved
in memory, approximate results of the mining algorithms with accuracy guarantees are
necessary. Finally, since a data stream is continuously generated, both the processing
time of maintaining a synopsis or sketch for the data stream and the processing time of
the mining algorithm should be as transient as possible. In order to satisfy the above
requirements for mining over data streams, the traditional mining algorithms for large
databases cannot be directly applied.

In the past few years, the problems of mining frequent items or frequent item-
sets over data streams are actively studied. The original problem of mining frequent
itemsets attempts to discover associations among items within transactions stored
in a database (Agrawal and Srikant 1994). For instance, an itemset may be “milk,
bread, support = 10%,” meaning that 10% of the transactions in the database contain
both milk and bread. As displayed in the above example, support of an itemset is
a measure showing how much probability a transaction contains the itemset. Users
can give a minimum support threshold to exclude the itemsets with low probabilities.
If the support of an itemset equals or exceeds the minimum support threshold, it is
called a frequent itemset. As discussed in Lin et al. (2005), according to the degree of
importance of the recent data, three models of mining frequent item(set)s over data
streams are discussed, including thesliding window model, thetime-fading model, and
thelandmark model.

1.1 Related work

The approaches in the sliding window model (Cheng et al. 2006; Chi et al. 2004;
Golab et al. 2003; Jiang and Gruenwald 2006; Lin et al. 2005; Li et al. 2006; Leung
and Khan 2006; Lee and Ting 2006; Mozafari et al. 2008; Wang et al. 2007b) empha-
size the importance of the data contained in a sliding window. The approaches in
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Golab et al. (2003), Lee and Ting (2006) and Wang et al. (2007b) focus on finding
frequent items, while those in Cheng et al. (2006), Lin et al. (2005), Leung and Khan
(2006) and Mozafari et al. (2008) focus on finding frequent itemsets, and those in Chi
et al. (2004), Jiang and Gruenwald (2006) and Li et al. (2006) focus on finding closed
frequent itemsets. According to the characteristic of a sliding window, two categories,
the count-based and the time-based (Golab et al. 2003) windows, are discussed. In
the count-based window, the number of transactions in a window is fixed despite the
generating speeds of the transactions. On the other hand, in the time-based window,
the number of time units in a window is fixed, making the number of the transactions
generated in the window distinct. For both categories of windows, when a transaction
is out of the window due to window sliding, its contributions to the support counts of
the associated item(set)s are eliminated.

The approaches in the time-fading model (Chang and Lee 2003; Giannella et al.
2004; Lee and Lee 2005) emphasize the sensitivity of time, that is, the recent data are
weighted higher than the earlier data. A decay mechanism is introduced in Chang and
Lee (2003) and Lee and Lee (2005) to achieve the goal of the time-fading model. Users
can define how important the recent data are by giving a decay rate with a range from
0 to 1. When a transaction arrives, the new size of the data stream equals the original
size multiplied by the decay rate plus one as contributed by the current transaction.
In addition, the support counts of an itemset are computed similarly as computing the
size of the data stream. In addition to the decay mechanism, the tilted-time window
is also used to satisfy the requirements of the time-fading model. In the concept of
the tilted-time window, the current transaction is held by the current window with the
smallest time scale and the former transactions are held by the windows with larger
time scales. FP-stream (Giannella et al. 2004), which is a variant of FP-tree (Han
et al. 2000), is an algorithm to find frequent itemsets under a tilted-time window for
answering time-sensitive queries.

In the landmark model, users obtain frequent item(set)s from transactions between
the landmark, which is a particular time point designating the start of the system, and
the current time. The approaches based on the landmark model are roughly categorized
into false negative oriented (Yu et al. 2004) and false positive oriented types (Charikar
et al. 2002; Cormode and Muthukrishnan 2003; Demaine et al. 2002; Jin and Agrawal
2005; Jin et al. 2003; Karp et al. 2003; Li et al 2004; Manku and Motwani 2002; Wang
et al. 2007a). The false negative oriented approaches aim to yield mining results with
no false alarms, that is, all mining results are truly frequent item(set)s while some truly
frequent item(set)s may not be discovered. Yu et al. (2004) propose an ε-Decoupling
approach based on the concept of Chernoff bound for mining frequent itemsets. The
number of false negative frequent itemsets can be controlled by a given parameter δ

with a range from 0 to 1 and therefore, the recall rate (the percentage of truly frequent
itemsets returned) of the approach can be guaranteed.

Alternatively, the false positive oriented approaches aim to find all truly frequent
item(set)s. As a result, some non-frequent item(set)s may also be returned. Two
approaches extended from the majority algorithm (Fischer and Salzberg 1982) for
mining frequent items over data streams are proposed in Demaine et al. (2002) and
Karp et al. (2003). In these approaches, a certain number of counters are used to mon-
itor the items. When an item arrives, the counter monitoring it is increased by one. If
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the item is not monitored by any counters and some available counters exist, the item
is monitored by one of the available counters. Otherwise, all counters are decreased
by one and the items with their counts equaling zero are no longer monitored. Jin
and Agrawal (2005) develop an in-core algorithm, also extended from the majority
algorithm, to mine frequent itemsets. The principles of the majority algorithm are used
to maintain the itemsets with a length of two, and the Apriori property (Agrawal and
Srikant 1994) is employed in finding the itemsets with longer lengths. However, a
buffer with an unlimited size is used to store transactions for generating the frequent
itemsets with longer lengths, which is not suitable for online-mining over data streams.

Dang et al. propose the EStream algorithm operating in the online-processing mode
to find the frequent itemsets over data streams (Dang et al. 2008). In contrast to the
online-processing mode, the batch-processing mode adopted by such approaches as
(Manku and Motwani 2002; Yu et al. 2004) processes transactions in batches. Although
EStream is the first online-processing algorithm which provides an error guarantee for
the support counts of frequent itemsets, it is required setting the length of the longest
itemsets in advance. Without any background knowledge to the mining results, it is
difficult to set a proper length for the longest itemsets to find all the frequent itemsets.
Moreover, the EStream algorithm is neither a false negative oriented approach nor
a false positive oriented approach. That is, the set of the mining results provided by
EStream may contain the itemsets not truly frequent and may not contain all the truly
frequent itemsets.

The hash-based approaches for mining frequent items over data streams are
discussed in Charikar et al. (2002), Cormode and Muthukrishnan (2003), Jin et al.
(2003) and Wang et al. (2007a). In these approaches, several hash functions are used
to hash the items into their corresponding counters in the hash table, making an item
in the data stream associated with a set of counters. Notice that in these approaches,
several items may be associated with a common counter. The maintaining procedure
of the hash table in these hash-based approaches is that, when an item arrives in the
data stream, its associated counters are all increased by one. Consequently, the sup-
port counts of the items can be estimated by using the values saved in their associated
counters. However, the current hash-based approaches only provide solutions for min-
ing frequent items. In the hCount method proposed in Jin et al. (2003), when users
want to find frequent items, that is, at the mining stage, all items are hashed to obtain
their support counts, and then the received support counts are checked to see whether
they are no less than the minimum support threshold multiplied by the current size of
the stream. If we regard an itemset as an item, and apply the hCount method to mine
frequent itemsets, the processing time in the mining stage is enormous since there is
a huge number of candidate itemsets to be checked to see whether they are frequent.

Manku and Motwani (2002) develop the Lossy Counting algorithm operating in
the batch-processing mode for mining frequent itemsets over data streams. The prin-
ciple of Lossy Counting is to promptly prune the itemsets with low frequencies and to
keep only the itemsets with high frequencies. However, it needs to retain all itemsets
with their supports larger than ε to guarantee that the estimate support counts of an
itemset is less than its true support counts by at most ε × N , where ε is a predefined
error parameter and N is the current length of the stream. Since the error parame-
ter ε is often set much smaller than the minimum support threshold, the number of
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non-frequent itemsets with supports between ε and the minimum support threshold is
massive, causing the memory space needed to be huge. Based on the principle of the
Lossy Counting algorithm, Li et al. design an algorithm named DSM-FI (Li et al 2004)
for mining frequent itemsets over data streams. DSM-FI reduces the memory utiliza-
tion by keeping transactions and the sub-transactions projected from the transactions
in prefix tries. However, DSN-FI needs to enumerate the itemsets from the prefix tries
to check whether they are frequent, causing the processing time in the mining stage
to be huge. In addition, different from Lossy Counting, it only prunes the items with
their frequencies smaller than ε from the prefix tries, limiting the power of the pruning
strategy. This is because almost all of the items have high frequencies in most of the
cases.

Calders et al. propose a new measure named Max-frequency to define the frequen-
cies of item(set)s over data streams (Calders et al. 2006, 2007). The Max-frequency
measure different from the mentioned three models is described as follows. The cur-
rent time to any point in the past of the stream can be regarded as a window. An itemset
in each window has its corresponding frequency. The current frequency of an itemset
is defined as its maximal frequency over all possible windows in the stream. This
measure can avoid missing seasonal behavior which occurs as a result of the improper
window size set in the sliding window model.

In this paper, we study the problem of mining frequent itemsets over data streams
in the landmark model. Most of the approaches in this model operate in the batch-
processing mode. Different from that, our approach adopts the online-processing mode
discussed in Dang et al. (2008) and solves the problem of needing to set the maximal
length of the frequent itemsets to be found in advance as in Dang et al. (2008) for find-
ing all the frequent itemsets. In addition, different from most of the approaches which
are deterministic, our approach is probabilistic. This means, our approach guarantees
that the estimate support counts of an itemset possess an error no more than ε × N
with a confidence given by users.

1.2 Main contributions

We propose a novel hash-based approach which operates in the online-processing
mode in this paper. This hash-based approach combines the principles of hCount
(Jin et al. 2003) and Lossy Counting (Manku and Motwani 2002). By continuously
hashing all subsets contained in the current transaction, an entire data stream can be
compressed into a new synopsis consisting of a hash table and frequent itemsets. The
mining results can be yielded by processing the synopsis. In order to avoid the draw-
back of Lossy Counting, a hash table with a fixed size is used in the synopsis to store
the information of the support counts of all itemsets. According to the information
retained in the synopsis, the support counts of the non-frequent itemsets can be esti-
mated by a novel estimating technique, avoiding the need to keep the non-frequent
itemsets in memory. On the other hand, for extending the hCount method to mine
frequent itemsets, the frequent itemsets are kept in the synopsis to quickly output the
mining results. The merit of our approach lies on the fact that the disadvantages of
hCount and Lossy Counting can be complementary to their advantages.
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The contributions of this work are summarized as follows. First, a new synopsis
is designed by skillfully integrating the principles of Lossy Counting and hCount to
solve the problem of retaining the non-frequent itemsets, which wastes the memory
space. Second, based on the newly proposed synopsis, a novel technique for estimat-
ing the support counts of the non-frequent itemsets is developed, leading to a high
precision of the mining results. Third, the Chernoff bound is applied to decide the size
of the hash table used in the new synopsis, making the boundary of the size of the
hash table tight. Finally, a series of experiments is performed and the space-efficiency
of our approach revealed.

1.3 Roadmap

The remainder of this paper is organized as follows. Section 2 introduces the basic
concepts of this approach. The principal algorithms and its correctness guarantee are
described in Sect. 3. In Sect. 4, the parameter setting and accuracy guarantee analysis
of this approach are discussed. The experiment results are presented and analyzed in
Sect. 5 and finally, Sect. 6 concludes this work.

2 Preliminaries

The basic concepts of this hash-based approach are introduced in this section, includ-
ing the problem definition, the introductions to hCount and Lossy Counting, and the
concepts of the hash function used in this approach.

2.1 Problem definition

The problem we study in this paper is specified as follows. Let I = {i1, i2, . . . , iM }
be a set of literals called items. A data stream D = {t1, t2, t3,…}, is an unbounded
sequence of transactions, where each transaction ti is a set of items such that ti ⊆ I . In
addition, an i temset X is also a set of items such that X⊆I . We say that a transaction
t contains an itemset X , if X ⊆ t .

Definition 1 (landmark) The landmark of the data stream is a particular time point
at which the system starts. That is, from the landmark, the system starts to generate
transactions which form a data stream.

Definition 2 (true support counts of an itemset) The true support counts of an itemset
X equal the number of transactions containing X from the landmark to the current
time.

Let σ be a given parameter called minimum support threshold such that σ ∈ (0, 1],
and N be the current length (size) of the data stream if the newly arrived transaction
is tN .

Definition 3 (truly frequent itemset) An itemset is defined as a truly frequent itemset
in a data stream D with respect to N if and only if its true support counts are no less
than σ × N .
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Definition 4 (immediate subset) Let e be an itemset with a length denoted as |e|. The
immediate subset of e is a subset of e with a length |e| − 1.

For example, {1, 2, 3} is an immediate subset of {1, 2, 3, 4}.
Given a data stream D with a length of N and three user-defined parameters includ-

ing a minimum support threshold σ , an error parameter ε, and a level of confidence
(probability) ρ such that ε, ρ ∈ (0, 1), the goal of this paper is to design an algorithm
operating in the online-processing mode for finding all the frequent itemsets from D.
In addition, the returned mining results must satisfy the following constraints: (1) all
of the truly frequent itemsets of D with respect to N must be returned and (2) the true
support counts of an itemset are less than its estimate support counts provided by the
algorithm by at most ε × N with a confidence level of ρ.

2.2 Basic concepts of hCount and lossy counting

Our hash-based approach is designed by combining the principles of hCount (Jin et al.
2003) and Lossy Counting (Manku and Motwani 2002). These two approaches are
separately introduced in Subsects. 2.2.1 and 2.2.2.

2.2.1 Introduction to hCount

Jin et al. propose a hash-based approach named hCount (Jin et al. 2003) for finding
frequent items over data streams. A hash table S[r ][h] is used in hCount, having h
hash functions Hi (x), 1 ≤ i ≤ h, Hi (x) ∈ [0, r), where x is an item and r is a positive
integer. Each entry in the hash table is a counter. Accordingly, x is associated with h
counters {S[H1(x)][1], S[H2(x)][2], . . . , S[Hh(x)][h]} in the hash table. Notice that
how to set h and r is detailed in Jin et al. (2003). Initially, all counters in the hash table
are all zeros. When an item arrives, its associated counters are increased by one. If
users make a request for finding frequent items, the associated counters of each item
are retrieved, and the minimal value in these counters is viewed as its support counts
to check whether it is frequent. Maintaining the hash table as a sketch for a data stream
in hCount is very efficient but it may spend much time on the mining stage.

As mentioned in Sect. 1, the hCount method can be easily extended to mine frequent
itemsets over data streams, if each itemset is handled as a unique item. Moreover, the
Apriori property can also assist in pruning some candidate itemsets in the mining
stage to reduce the mining time. We extend the hCount method accordingly as shown
in Figs. 1 and 2. However, according to our implementation of the extended hCount
method, it takes hours to find the frequent itemsets. This is because the extended
hCount method takes a lot of time to check which itemsets are frequent. Obviously,
the extended hCount method is not suitable for mining frequent itemsets over data
streams.

2.2.2 Introduction to lossy counting

Manku and Motwani propose the Lossy Counting algorithm for finding frequent items
and itemsets over data streams in Manku and Motwani (2002). For finding frequent
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Fig. 1 Maintenance of the extended hCount method

Fig. 2 Finding frequent itemsets by the extended hCount method

items, the stream is conceptually divided into buckets with a size of �1/ε�. The buckets
are labeled with an ID number starting with 1, and the current bucket ID is bcurrent =
�εN�, where N is the current length of the data stream. The synopsis of Lossy Count-
ing for finding frequent items consists of entries with a form of (x, f,�), where x
is an item, f is the estimate support counts of x , and � is the maximum possible
error in f . When an item x arrives, we check whether x is stored in the synopsis
and increase its estimate support counts by one if it is. Otherwise, a new entry (x , 1,
bcurrent – 1) is created in the synopsis. In addition, an entry (x, f,�) will be deleted if
f +� ≤ bcurrent whenever N ≡ 0 mod �1/ε�. When users request the frequent items,
those items with their estimate support counts f ≥ (σ − ε) ×N are returned.

For finding frequent itemsets, the Lossy Counting algorithm operates in the batch-
processing mode, which is similar to that for finding frequent items. Let β be the
number of buckets in the current batch. For each entry (e, f,�) kept in the synopsis
of Lossy Counting for finding frequent itemsets, where e is an itemset, we update f
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by adding the number of occurrences of e in the current batch. In addition, if f plus
� of the updated entry is no more than bcurrent, it will be deleted. If an itemset e is not
kept in the synopsis and has the estimate support counts f ≥ β in the current batch, a
new entry (e, f, bcurrent −β) will be kept. Obviously, each itemset with its true support
counts exceeding ε × N must be kept in the synopsis of Lossy Counting, causing the
memory required to be huge.

2.2.3 Drawbacks of hCount and lossy counting

As discussed above, if the hCount method (Jin et al. 2003) is directly applied to mine
frequent itemsets over data streams, it will take a long time due to enormous amounts
of candidate itemsets to be checked to see if they are frequent. Therefore, if the frequent
itemsets are retained and updated during the maintaining process of the synopsis, only
the stored itemsets need to be checked at the mining stage, which greatly reduces
the mining time. On the other hand, since the Lossy Counting algorithm (Manku and
Motwani 2002) needs to keep all the itemsets with their true support counts exceeding
ε × N to provide a deterministic guarantee: the estimate support counts of an itemset
are less than the true support counts by at most ε × N . However, the non-frequent
itemsets with their true support counts between ε×N and σ ×N kept in the system will
substantially degrade the memory utilization. Therefore, if the non-frequent itemsets
kept in the system can be compressed into a structure with a fixed size, it may effec-
tively reduce the required memory space. The hash-based approach proposed in this
paper is encouraged by hCount and Lossy Counting, which combines their advantages
to overcome their drawbacks.

2.3 Basic concepts of the hash function

In this subsection, the hash function used in our approach is introduced. In this
approach, a transaction in the data stream is represented as a binary vector in which
each element represents a unique item. The length of the binary vector representing
a transaction is equal to the number of all possible items, M , appearing in the data
stream. To a binary vector V representing a transaction t , an element of V, Vi , equals
1 if item i is purchased in the transaction t , and 0 otherwise. The binary vector V
can be regarded as a unique number

∑M
i=1 2i−1 × Vi , expressed by the binary system.

Moreover, itemsets contained in transactions are also represented as the binary vectors.
Each itemset can also be identified by a number expressed by the binary system.

A hash function, H(x)= (a × x + b) mod m, is used in this hash-based approach,
where a, b are arbitrary integers and m is the number of entries in the hash table, deter-
mined according to a user’s confidence level and the error parameter, to be detailed in
Sect. 4. When a new transaction arrives, all subsets of the transaction will be regarded
as unique numbers and hashed into the entries of the hash table. That is, let e be one
of the subsets of the transaction. e is represented as a unique number ebv calculated
as discussed above. H(ebv) can be regarded as the identifying number of the entry in
the hash table, into which e is hashed.
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3 The mining approach: hMiner

The hash-based approach for online-mining frequent itemsets over data streams,
named hMiner, is introduced in this section. By continuously hashing all subsets of
a newly arrived transaction into certain entries, entire information of a data stream
can be compressed into a newly designed synopsis. The information stored in the
synopsis can be exploited to estimate the support counts for itemsets to identify the
frequent ones. If an itemset is recognized as frequent, it will be saved in the synopsis,
and deleted otherwise. What kind of information is saved in the synopsis and how
it assists in identifying frequent itemsets are detailed in the Subsects. 3.1 and 3.2.
In addition, the remainder of this section contains the algorithm for mining frequent
itemsets and the correctness guarantee of this approach.

3.1 Data structure of hSynopsis

The data structure used in the hMiner approach, named hSynopsis, is shown in Fig. 3.
It is composed of two components, a hash table and frequent nodes. The hash table is
employed in summarizing the whole data stream while the frequent nodes are used to
keep the information of the frequent itemsets.

The hash table has m entries, and each contains three fields including Total_Access,
Nlast_access and Link. These three fields are explained as follows. (1) The Total_Access
field is an accumulated counter maintaining the number of accesses to this correspond-
ing entry in the data stream. For example, as an itemset in the current transaction is
hashed into the entry b, the Total_Access field of b will be increased by one. (2) The
Nlast_access field keeps the length of the data stream, that is, the number of the transac-
tions in the stream, at the time when this corresponding entry was last accessed. For
example, suppose that the current length of the data stream is N . As an itemset in the
current transaction is hashed into the entry b, the value kept in the Nlast_access field of
b will be substituted by N . This is because when the last access to b in the data stream
occurred the length of the stream equals N . Finally, (3) the Link field of an entry links
to a list of frequent nodes.

A frequent node (f-node) consists of four fields including Itemset, True_Count,
Estimate_Count, and Node_Link. These four fields are explained as follows. (1) The
Itemset field in an f-node indicates the itemset this f-node identifies. Since we only
keep the information of frequent itemsets, we need to check whether a non-frequent

Fig. 3 The hSynopsis data
structure

Total_Access 
Nlast_access

Link
Itemset

Estimate_Count

True_Count 

Node_Link

Entry

… …

Frequent node Hash table 
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the landmark the current time 

an f-node is generated 
to identify the itemset  

true counts  estimate counts  

the support counts of the frequent itemset 

the data stream D

Fig. 4 The concepts of true counts and estimate counts

itemset will become a frequent itemset to generate an f-node to identify it. Since the
number of the occurrences of the non-frequent itemset is not recorded, we have to esti-
mate its number of the previous occurrences to decide whether it should be identified
by an f-node. As shown in Fig. 4, we can see that the support counts of a frequent item-
set identified by an f-node can be separated into true counts and estimate counts. The
demarcation of the two parts is at the time when the f-node is generated to identify the
itemset. (2) The True_Count field in an f-node is an accumulated counter maintaining
the true counts of the support counts of the itemset identified by the f-node. As an
f-node is newly generated, the default value of its True_Count is 1. The True_Count
field of an f-node will be increased by one if the current transaction contains the itemset
identified by the f-node. (3) In opposition to the True_Count field, the Estimate_Count
field keeps the estimate counts of the support counts of the itemset identified by this
f-node. Finally, (4) the Node_Link field links to the next f-node in the entry.

Overall, the information kept in an entry and its list of f-nodes help to estimate how
many itemsets are hashed into this entry and how many support counts these itemsets
have. From this estimation, whether an itemset is frequent can be determined. The
functions and designs of the fields introduced above are integrated into the mainte-
nance of hSynopsis, to be detailed in the following section.

In order to conveniently demonstrate and explain the algorithms of this approach,
several notations are introduced as follows. Let b be an identifier of an entry. Then, b.
Total_Access denotes the value of the Total_Access field of b, b.Nlast_access denotes
the value of the Nlast_access field of b, and b.Link denotes the list of f-nodes of b.
Let fn be an identifier of an f-node. Then, fn.Itemset denotes the itemset fn identifies,
fn.True_Count denotes the value of the True_Count field of fn, and fn.Estimate_Count
denotes the value of the Estimate_Count field of fn.

3.2 Maintenance of hSynopsis

Figure 5 shows a flowchart of the maintenance of hSynopsis. The number of the trans-
actions in the data stream from the landmark to the current time is denoted as N which
can be viewed as an accumulated counter. As can be seen, all subsets of a newly arrived
transaction will be hashed to update the corresponding entries in the hash table. The
kernel principle of hMiner is that, when an itemset e is hashed into an entry b in the
hash table, the information kept in b will help to determine whether e is frequent. If
e is determined to be frequent, an f-node identifying e will be generated and kept in
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Fig. 5 Flowchart of hSynopsis
maintenance

the list of b.Link. On the contrary, if e is determined to be non-frequent, no f-node
identifying e will be kept in b.Link.

The maintenance of hSynopsis can be decomposed into two phases: identifying
the frequent itemsets and removing the non-frequent itemsets. A complete example is
shown in Subsect. 3.2.3 following the description of the maintenance of hSynopsis in
Subsects. 3.2.1 and 3.2.2.

3.2.1 Phase I: identify the frequent itemsets

When a new transaction t arrives, the size of the data stream, N , is increased by one.
Moreover, all of the itemsets contained in t are enumerated, sorted into an increasing
order of length, and then sequentially processed (hashed).

Before explaining the operations on the maintenance of hSynopsis, we first introduce
a new term named working space. The working space W keeps the whole information
of the entries which are accessed in the current transaction but before the entries in the
hSynopsis are updated in the current transaction. In addition, W will release all the
entries retained in it after the operations to handle the current transaction complete.
For example, suppose that the itemsets contained in the current transaction are hashed
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into the entries a, b, and c. Then, the replicas of the entries a, b, and c in hSynopsis
will be kept in W before the information of the entries in hSynopsis is updated in
the current transaction. Since the Estimate_Count field records the estimate for the
pervious occurrences of an itemset, the information of the current transaction should
not be taken into account. W is therefore used to compute the value to be kept in the
Estimate_Count field. Moreover, W can also be used to recognize which entries in the
hash table are accessed for the current transaction.

After hashing an itemset e in the current transaction into an entry b, whether b is
retained in the working space W is checked. If the accessed entry b is not retained in
W , a replica of b, named bW , will be positioned in W . After confirming that bW is in
W, b. Total_Access in the hash table is increased by one. If e can be discovered in an
f-node fn in the list of b.Link, fn. True_Count is increased by one. Otherwise, the esti-
mate for the previous occurrences of e (Estimate_Count fore) needs to be computed
in one of the following two conditions: (1) all immediate subsets of e are identified by
the f-nodes linked by their corresponding entries in hSynopsis, and (2) |e| equals one.
According to the Apriori property (Agrawal and Srikant 1994), an itemset e with a
length |e| becomes a candidate itemset if all of the immediate subsets of e are frequent
itemsets. Therefore, if an itemset is not kept in the list of its corresponding entry, this
property is used to determine whether this itemset can be a candidate itemset. If it is a
candidate itemset, the Estimate_Count for it needs to be computed. On the other hand,
to an itemset e with a length of one, that is, |e| = 1, it has no immediate subsets. As a
result, if the itemset is not kept by an f-node, we need to compute Estimate_Count for
it. The detailed method to compute Estimate_Count for an itemset is shown in Fig. 6
and explained in the following.

Fig. 6 Computing Estimate_Count

123



A novel hash-based approach 145

Computing the estimate counts (Estimate_Count). Because the Estimate_Count
field in an f-node is used to record the estimate of the previous occurrences of an item-
set, and the information of b in hSynopsis is updated in the current transaction, the
information of bW in the working space W should be used to compute Estimate_Count
for e. Two variables n and c are introduced to assist in computing Estimate_Count for
an itemset e. The variable n is used to identify the number of different itemsets hashed
into bW but not in the list of bW .Link, that is, the non-frequent itemsets (at the time
when the length of the stream equals bW .Nlsat_access). On the other hand, the variable c
is used to denote the sum of the previous true support counts of all non-frequent item-
sets hashed into bW . c is used to divide among the non-frequent itemsets hashed into
bW to estimate a reasonable number of the previous occurrences for a non-frequent
itemset.

Since the real values of n and c cannot be determined according to the information
retained in an entry (in W ), we develop a mechanism to assist in discovering bound-
aries of c and n. Let clb, cub and nlb be the lower bound of c, the upper bound of c and
the lower bound of n, respectively, that is, clb ≤ c ≤ cub and nlb ≤ n. Assume that all
itemsets identified by the f-nodes in bW .Link was not contained in any transactions in
the stream before their related f-nodes were generated. In other words, their numbers
of the previous occurrences are all zeros. Therefore, cub can be obtained by

cub = bW .Total_Access −
∑

fn∈ bW .Link

fn.True_Count (1)

On the other hand, if the Estimate_Count fields in all f-nodes in the list of bW .Link
are estimated accurately, that is, the estimate counts are all equal to the previous true
support counts, clb can be obtained by

clb = Max(0, bW .Total_Access

−
∑

fn∈ bW .Link

(fn.True_Count + fn.Estimate_Count)) (2)

Moreover, if each itemset hashed into bW but not in the list of bW .Link has the maxi-
mum allowable counts, i.e. the maximal value less than σ × bW .Nlast_access, the lower
bound of n can be derived from

nlb = ⌈
clb/

(⌈
σ × bW .Nlast_access

⌉ − 1
)⌉

(3)

Since those itemsets was not kept in bW .Link at the time of the last access of bW ,
that is, bW .Nlast_access, the reasonable counts for them must be less than the minimum
support threshold σ multiplied by bW .Nlast_access, making the maximum allowable
counts to equal

⌈
σ × bW .Nlast_access

⌉ − 1.
After obtaining cub and nlb, Estimate_Count for e can be derived from distributing

the sum of true support counts of all non-frequent itemsets hashed into b, that is, c,
among the number of the different non-frequent itemsets hashed into b, that is, n. In
order to avoid missing any truly frequent itemsets, we adopt an over-distribution strat-
egy. The over-distribution strategy has two strong assumptions: (1) e must be one of the
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contributions to nlb and (2) to the other nlb −1 itemsets, each of them only contributes
one count to cub. In essence, by giving all the available counts to e, we can achieve the
goal of over-distribution. Therefore, Estimate_Count for e is equal to cub − (nlb − 1).
For example, if cub is 5 and nlb is 3, the distribution is that the estimate of the support
counts for e is 3 and the other two itemsets respectively have a count of one. Although
the over-distribution strategy attempts to make the estimate counts to equal or exceed
the previous true support counts of an itemset, Estimate_Count for e should never
exceed or equal σ × bW .Nlast_access. This is because e was non-frequent at the time of
the last access of bW , that is , bW .Nlast_access. Therefore, Estimate_Count for e should
be continuously decreased until it is smaller than σ ×bW .Nlast_access, if the result of the
over-distribution is no less than σ ×bW .Nlast_access. Notice that more than one itemset
in a transaction may be hashed into a common entry in the hash table. For example,
itemsets {1, 4} and {2, 3} in the transaction {1, 2, 3, 4} are both hashed into the entry
b. If both of them need to compute Estimate_Count, according to the over-distribution
strategy, itemsets {1, 4} and {2, 3} will have the same Estimate_Count.

If |e| equals one, the value calculated as above is the final Estimate_Count for e.
However, to e with a length more than one, the computed value is only a candidate
Estimate_Count. The Apriori property mentioned before is again considered. The sum
of the value kept in the True_Count field and the value kept in the Estimate_Count
field in the corresponding f-node should be calculated for all immediate subsets of e
by using the information in hSynopsis rather than W . The minimal sum minus one,
which is contributed by the current transaction, will be used to compare with the can-
didate Estimate_Count. The smaller one is selected to be the final Estimate_Count
for e. According to the over-distribution strategy, the candidate Estimate_Count must
exceed or equal the previous true support counts of e, and according to the Apriori
property, the previous support counts of the immediate subsets of e must also exceed
or equal the previous true support counts of e. Therefore, the smaller one is selected
to be the final Estimate_Count, making the estimate counts for e more accurate. If the
final Estimate_Count for e plus one, which is contributed by the current transaction,
exceeds or equalsσ×N , a new f-node (itemset = e, True_Count = 1, Estimate_Count =
the final Estimate_Count) is inserted into the list of b.Link.

3.2.2 Phase II: remove the non-frequent itemsets

Since the current size of the data stream N will be increased as time goes by, some
frequent itemsets may become non-frequent. Therefore, the f-nodes must be checked
to decide whether they should be kept in the lists of the entries. However, if all entries
in hSynopsis are checked, the processing time of the phase II for handing a transaction
will be enormous. Since some entries have been accessed in the current transaction,
these entries can be easily checked.

After hashing all subsets of the current transaction into hSynopsis, the entries
accessed in hSynopsis should be inspected to remove the f-nodes with the value kept
in the True_Count field plus the value kept in the Estimate_Count field smaller than
σ × N from their lists. Moreover, the Nlast_access fields of the corresponding entries in
hSynopsis should also be substituted by N . These operations in the phase II not only
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Fig. 7 Maintenance of hSynopsis

remove the non-frequent itemsets but also assist in deciding Estimate_Count for an
itemset in the phase I, since the Nlast_access field updated in the phase II can help to
compute the estimate counts of the non-frequent itemsets.

As can be seen, after the phase II terminates, the value kept in the True_Count field
plus the value kept in the Estimate_Count field of all f-nodes in the list of each entry in
hSynopsis exceeds or equals the value in the Nlast_access field of the entry multiplied by
the minimum support threshold. It means that the f-nodes kept in the lists of the entries
are related to the Nlast_access fields of their corresponding entries. This responds to the
procedure of computing Estimate_Count for an itemset. In essence, the phase I and
the phase II in the maintenance process of hSynopsis are rigidly related. The detailed
algorithm of the maintenance of hSynopsis is shown in Fig. 7.

3.2.3 An example for hSynopsis maintenance

An example of the maintenance process of hSynopsis is shown in Fig. 8a–e. Suppose
that the minimum support threshold is equal to 0.4, the itemsets including {1}, {2},
{5}, and {1, 5} are all hashed into the same entry b and all entries of hSynopsis are
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(b)

(a)

(c)

Initially

0
Null

Null

Null

… …
……

…
…

b

hSynopsis H

0

0 0

0 0

Fig. 8 a An example of the maintenance of the hSynopsis. b The current transaction is {1}. c The current
transaction is {2} . d The current transaction is {1, 5}. e The current transaction is {2}

initially set to zero or null as shown in Fig. 8a. Four transactions, explicitly, {1}, {2},
{1, 5}, and {2} are sequentially generated in the data stream. Figure 8b–e show the
status of entry b in hSynopsis and the status of entry bW in the working space W . As
shown in Fig. 8d, several itemsets contained in the current transaction may be hashed
into the same entry. This condition does not affect the correctness of this approach
since the previous information of an entry is retained in W and exploited to compute
Estimate_Count for an itemset.

3.3 Mining frequent itemsets

The algorithm of the mining process is shown in Fig. 9. By scanning the hash table in
hSynopsis and inspecting all f-nodes listed in each entry in the hash table, the frequent
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(d)

(e)

Fig. 8 continued

Fig. 9 Mining frequent itemsets

itemsets can be returned to users on demand. Before trying to inspect f-nodes listed
in an entry, checking the Nlast_access field in the entry can help to determine whether
the list of the entry should be inspected or not. Obviously, if the value kept in the
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Nlast_access field of an entry is smaller than σ × N , the f-node list of the entry does
not need to be checked. This is because the support counts of an itemset in the list of
the entry are at most equal to the value kept in the Nlast_access field which is smaller
than σ × N . To an f-node, if the value of its True_Count field plus the value of its
Estimate_Count field exceeds or equals σ × N , the itemset it identifies will be returned
to users. In the set of the mining results, all truly frequent itemsets will be contained
but there may be some false alarms.

3.4 Correctness guarantee

The correctness of hMiner is discussed in this subsection. By extending the following
lemma, we will show that the set of the mining results provided by hMiner has no
false dismissals, that is, all truly frequent itemsets in the data stream with respect to
the length of N are returned to users.

Lemma 1 Suppose that the minimum support threshold is σ , the current length of the
data stream is N, and an entry b in hSynopsis is accessed for handling the current
transaction. After the operations on handling the current transaction terminate, the
itemsets kept in all f-nodes in b.Link must form a set of frequent itemsets hashed into
b, with no false dismissals.

Proof When the operations on handling the current transaction terminate, the value
of the Estimate_Count field plus the value of the True_Count field ≥ σ × N must be
held for each f-node in b.Link. Therefore, if the true support counts of an itemset can
be proven to be smaller than or equal to Estimate_Count + True_Count (the value of
the Estimate_Count field plus the value of the True_Count field) of the corresponding
f-node, the itemsets kept in all f-nodes in b.Link forming a set of frequent itemsets
hashed into b, with no false dismissals can be guaranteed.

Suppose that there have been k transactions to access b and the current transaction
is the kth one. The above condition can be proven by induction on k. Basis: Initially,
b.Total_Access, b.Nlast_access, and b.Link are respectively set to 0, 0, and null. When
k = 1, 0 ≤ c ≤ 0 and 0 ≤ n, which implies that Estimate_Count = 0. Indeed, since
the transaction is the first transaction to access b in the data stream and there are no
previous transactions to access b, the previous true support counts of an itemset must
be 0. The induction basis is true.

Induction step: The induction hypothesis is to assume that when k = K , the above
condition is held, that is, the true support counts of the itemsets identified by all
the corresponding f-nodes in b.Link are smaller than or equal to Estimate_Count +
True_Count of the corresponding f-nodes. Let the value in the Nlast_access field of
b be NK , while k = K . According to the maintenance process of hSynopsis, Esti-
mate_Count + True_Count of all f-nodes in b.Link must exceed or equal σ × NK .
When k = K + 1, let the size of the data stream be NK+1. Two conditions are sep-
arately considered. One condition is that an itemset contained in the transaction and
hashed into b can be found to be identified by an f-node in b.Link. The value kept
in the True_Count field of the corresponding f-node is increased by one. Since its
True_Count + Estimate_Count ≥ the true support counts of the itemset identified by
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it when k = K , its True_Count + 1 + Estimate_Count must also ≥ the true support
counts of the itemset identified by it when k = K + 1. Although the f-node may
be removed as its True_Count + 1 + Estimate_Count < σ × NK+1, it still holds the
correlation between the true support counts and the estimate support counts.

Another condition is that an itemset contained in the transaction and hashed into
b cannot be found in b.Link. As previously discussed, the estimate of the pervious
true support counts (Estimate_Count) for the itemset is computed. The computation
of Estimate_Count can guarantee that the computed value of Estimate_Count for the
itemset is no less than its previous true support counts. Therefore, if an f-node identify-
ing the itemset is inserted in b.Link in the current transaction, its Estimate_Count + 1
is no less than σ × NK+1 and its true support counts equaling the previous true support
counts + 1 will be smaller than or equal to Estimate_Count + 1.

Consequently, by the principle of induction, the true support counts of the itemset
in the stream is smaller than or equal to Estimate_Count + True_Count of the corre-
sponding f-node in b, making the set of the itemsets identified by all f-nodes in b.Link
to have no false dismissals. �	
Corollary 1 Since all entries in hSynopsis can form their own sets of frequent itemsets
with no false dismissals, the itemsets in the union of their own sets of frequent item-
sets, with Estimate_Count + True_Count no less than the minimum support threshold
multiplied by the current length of the data stream must form the set of mining results
with no false dismissals.

4 Accuracy guarantee analyses

The accuracy guarantee of hMiner is discussed in this section. We concentrate on
analyzing the error provided by the hash table of hSynopsis in Sect. 4.1 and discuss
the accuracy guarantee of the whole approach in Sect. 4.2.

4.1 Parameter setting and error analysis of the hash table

The number of entries in the hash table, m, is decided according to a user’s confidence
level and an error parameter, which directly affects the error provided by hMiner.

Lemma 2 Suppose that ε is the error parameter, ρ is the level of confidence, N is the
current length of a data stream, and m is the number of entries in the hash table. ε and
ρ are both given by users such that ε, ρ ∈ (0, 1). The estimate support counts of each
itemset provided by hMiner possess an error no more than ε × N with a confidence
level at least ρ, if m is set to e/ε2 M×(eL − 1) ×ln((1 − 2M )/ln ρ) , where L is the
average length of the transactions in the data stream and M is the number of different
items appearing in the data stream.

Proof If the f-node part is excluded in hSynopsis, that is, only a hash table is contained
in hSynopsis, the hMiner approach is converted into a special case of hCount (Jin et al.
2003) with only a hash function. In the following discussion, the part of f-nodes is
excluded to simplify the error analysis.
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Let X be a random variable to denote the length of a transaction in the data stream
and let X1, X2, . . . , X M be a sequence of Poisson trials with Pr(Xi = 1)= pi ,∀i = 1
to M , where a random variable Xi denotes the appearing of item ii in a transaction.
Xi = 1 means ii is purchased and 0, otherwise. Obviously,

X =
M∑

i=1

Xi (4)

As a result, E[X ] = E
[∑M

i=1 Xi

]
= ∑M

i=1 E[Xi ] = ∑M
i=1 pi . Since the average

length of transactions is L , that is E[X ] = L , we can then obtain the following equation

L =
M∑

i=1

pi (5)

As we know, a transaction with a length of k may generate 2k − 1 accesses to the hash
table. We can then expect that E[2X − 1] hash accesses may occur in a transaction.

E[2X − 1] = E[2X ] − 1

= E
[
2
∑M

i=1 Xi
]

− 1

= E
[
2X1 × 2X2 × · · · × 2X M

]
− 1

= E[2X1 ]E[2X2 ] · · · E[2X M ] − 1 (6)

By definition of expectation of a random variable, E[2Xi ] can be computed.

E[2Xi ] = pi × 2 + (1 − pi ) = 1 + pi ≤ epi (7)

Thus, from Eqs. 6 and 7,

E[2X − 1] = E[2X1 ]E[2X2 ] · · · E[2X M ] − 1

≤ ep1 ep2 · · · epM − 1

= e
∑M

i=1 pi − 1

= eL − 1 (8)

Therefore, there is a total of (eL − 1)N hash accesses if the current length of the
data stream is equal to N .

If the hash function is universal, these hash accesses to a certain entry b can be
viewed as realizations of (eL − 1)N i.i.d. random variables Y1, Y2, Y3, . . . , Y(eL−1)N .
Each of them will follow a Bernoulli distribution, B(1, 1/m), where 1/m is attached
to Yi = 1 and (1 − 1/m) is attached to Yi = 0,∀i = 1 to (eL − 1)N . Let Y be a ran-
dom variable to denote the error for the true support counts of an itemset in hMiner.
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As can be seen, several itemsets may be hashed into the same entry, thus making Y
nonnegative. Moreover,

Y ≤
(eL−1)N∑

i=1

Yi (9)

Consider the worst case, all the hash accesses to a certain entry do not support a certain

itemset, thus causing Y = ∑(eL−1)N
i=1 Yi . Then, after the processing of N transactions

in the data stream terminates,

E[Y ] =
(eL−1)N∑

i=1

E[Yi ] =
(eL−1)N∑

i=1

1

m
= (eL − 1)N

m
(10)

Since Y1, Y2, Y3, . . . , Y(eL−1)N are Bernoulli trials with Pr(Yi ) = 1/m, the following
Chernoff bound holds: for any δ > 0,

Pr(Y ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)(1+δ)

)µ

(11)

where µ = E[Y ]. Further infer from Eq. 11 and substitute µ with (eL−1)N
m , the fol-

lowing formulas can be obtained.

Pr(Y − (1 + δ)µ < 0) > 1 −
(

eδ

(1 + δ)(1+δ)

)µ

(12)

Pr

(

Y − (1 + δ)
(eL − 1)N

m
< 0

)

> 1 −
(

eδ

(1 + δ)(1+δ)

) (eL −1)N
m

(13)

Let the error parameter ε be (1+δ)(eL−1)
m . We can obtain that

m = (1 + δ)(eL − 1)

ε
(14)

Consider the worst case, a transaction in the data stream contains all the items, thus
generating 2M − 1 itemsets. Let ρ be the probability with which the errors for all
itemsets satisfy Eq. 13. That is,

ρ =
⎛

⎝1 −
(

eδ

(1 + δ)(1+δ)

) (eL −1)N
m

⎞

⎠

2M −1

≈ exp

⎛

⎝
(

eδ

(1 + δ)(1+δ)

) (eL −1)N
m

× −(2M − 1)

⎞

⎠ (15)
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Inference of the formula for ρ is as follows.

ln ρ =
(

eδ

(1 + δ)(1+δ)

) (eL −1)N
m

× −(2M − 1)

⇒
(

eδ

(1 + δ)(1+δ)

)−
(

(eL −1)N
m

)

= −(2M − 1)

ln ρ

⇒ −
(

(eL − 1)N

m

)

ln

(
eδ

(1 + δ)(1+δ)

)

= ln

(−(2M − 1)

ln ρ

)

⇒ 1 =
ln

(−(2M −1)
ln ρ

)

−
(

(eL−1)N
m

)
ln

(
eδ

(1+δ)(1+δ)

) (16)

Multiplying the left-hand-sides and the right-hand-sides of Eqs. 14 and 16, respec-
tively, we can obtain that

m × 1 = (1 + δ)(eL − 1)

ε
×

ln
(−(2M −1)

ln ρ

)

(
− (eL−1)N

m

)
ln

(
eδ

(1+δ)(1+δ)

)

⇒ m = (1 + δ)(eL − 1)

ε
×

ln
(−(2M −1)

ln ρ

)

(

− (eL−1)N
(1+δ)(eL −1)

ε

)

ln
(

eδ

(1+δ)(1+δ)

)

⇒ m =
(eL − 1)ln

(−(2M −1)
ln ρ

)

ε2 N
× (1 + δ)2

−ln
(

eδ

(1+δ)(1+δ)

) (17)

Since N is much larger than M , by substituting N with M , we can obtain that

m ≤
(eL − 1)ln

(−(2M −1)
ln ρ

)

ε2 M
× (1 + δ)2

ln
(

(1+δ)(1+δ)

eδ

) (18)

In addition, by assuming δ  1, we can obtain the following formula.

ln
(

(1+δ)(1+δ)

eδ

)

(1 + δ)2 = ln(1 + δ)

(1 + δ)
− δ

(1 + δ)2 ≈ ln(1 + δ)

(1 + δ)
≈ e−1 (19)

⇒ (1 + δ)2

ln
(

(1+δ)(1+δ)

eδ

) ≈ e (20)
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From Eqs. 18 and 20, we can obtain that

m ≤ e

ε2 M
× (eL − 1)ln

(−(2M − 1)

ln ρ

)

(21)

Therefore, the estimate support counts of each itemset possess an error no more than ε×
N with a probability at least ρ, if m is set to e/ε2 M×(eL − 1) ×ln((1 − 2M )/ln ρ). �	

4.2 Discussion on accuracy guarantee of hMiner

From Lemma 1 and Corollary 1, all truly frequent itemsets must be produced as
answers by hMiner. That is because the estimate supports of itemsets provided by
hMiner must be no less than their true supports. In addition, from Lemma 2, the
estimate support counts of each itemset possess an error no more than ε × N with
a probability at least ρ, if m is properly set. In other words, Lemma 2 shows that
the estimate support counts of each itemset possess an error larger than ε × N with
a probability at most 1 − ρ. Lemma 1 demonstrates that hMiner is a false positive
oriented approach which returns all truly frequent itemsets while Lemma 2 indicates
that how much hMiner over-estimates for support counts.

In essence, hSynopsis consists of a hash table and f-nodes. The hash table provides
the error guarantee for supports of itemsets while the f-nodes speed up the mining
stage. In reality, the capability of the part of f-nodes in hSynopsis not only speeds up
the mining stage but also enhances the precision of hMiner.

Suppose that the part of f-nodes is excluded in hSynopsis, that is, hSynopsis
becomes a special case of the sketch of hCount, using only one hash function. In
addition, the Nlast_access field and the Link field of an entry in hSynopsis can also be
removed because their functions relate to f-nodes. In this case, the maintenance of this
“reduced” hSynopsis will become very easy. When an itemset is hashed into an entry
b, b. Total_Access is increased by one. In addition, the support counts of an itemset
are set to the value of the Total_Access field of which the itemset is hashed into. For
example, if an itemset e is hashed into the entry b, b.Total_Access is regarded as the
support counts of e. On the other hand, to a “normal” hSynopsis, in the over-distri-
bution strategy for computing Estimate_Count, cub used to be distributed among the
non-frequent itemsets is equal to bW .Total_Access − ∑

fn∈ bW .Link fn.True_Count. It
shows another capability of the part of f-nodes, which is helping to provide a more
precise estimate support counts, since the true counts for the itemsets in f-nodes are
directly kept. Therefore, although the error guarantee of hMiner is provided by the
hash table in hSynopsis, the part of f-nodes can further improve the precision of the
mining results.

5 Performance evaluation

In this section, the experiment results for evaluating hMiner are presented and ana-
lyzed.
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5.1 Performance criteria

According to the characteristics and restrictions of data streams discussed in Sect. 1,
several criteria related to the accuracy, execution time, and memory utilization of the
mining algorithms are proposed to evaluate the performances of this approach.

Criterion 1 (precision). Since hMiner is one of the false positive oriented approaches,
all frequent itemsets must be returned but several non-frequent itemsets may also be
outputted. Therefore, precision is introduced to be a measure of accuracy of mining
algorithms. Precision is measured by |Rapriori ∩ Rmethod|/|Rmethod|, where RX denotes
the set of results mined by the method X and |RX | denotes the number of the frequent
itemsets contained in RX .

Criterion 2 (recall). Since hMiner is compared with the other approaches which may
not find all the truly frequent itemsets, recall is introduced to be another measure of
accuracy of mining algorithms. Recall is measured by |Rapriori ∩ Rmethod|/|Rapriori|,
where RX denotes the set of results mined by the method X and |RX | denotes the
number of the frequent itemsets contained in RX . Obviously, as proven in Lemma 1,
the recall of hMiner must be 1.

Criterion 3 (memory). Data are generated promptly in data streams, making mem-
ory utilization for mining algorithms to be one of the most critical issues. Therefore,
the memory space for a mining algorithm to keep its synopsis or sketch should be
measured, which is denoted as memory.

Criterion 4 (mining-time). The processing time of mining frequent itemsets from a
synopsis or a sketch saved in memory is denoted as mining-time.

Criterion 5 (maintaining-time). The time of maintaining a synopsis or a sketch for
a mining algorithm is also considered to evaluate its efficiency. Therefore, the aver-
age processing time to handle a transaction for maintaining the synopsis or sketch is
introduced to be a measure, denoted as maintaining-time.

5.2 Experiment setup

The in-core algorithm proposed in Jin and Agrawal (2005) is an algorithm designed
for mining frequent itemsets over data streams. However, in that approach, the trans-
actions need to be kept in an unlimited buffer for multiple scanning to generate the
longer frequent itemsets, causing it unsuitable for the online-mining process in which
a transaction is inspected at most once. In addition, the DSM-FI approach proposed
in Li et al (2004) keeps the transactions and the sub-transactions projected from the
transactions in prefix tries, and enumerates the itemsets from the prefix tries to check
whether they are frequent, causing the processing time in the mining stage to be huge,
which is also unsuitable for the online-mining process. As EStream (Dang et al. 2008)
is the first online-processing algorithm which provides an error guarantee for the sup-
port counts of the frequent itemsets, and hMiner also operates in the online-processing
mode, hMiner is compared with EStream in the experiments. In addition, as Lossy
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Counting (Manku and Motwani 2002) is one of the false positive oriented approaches
and it is also the most representative algorithm for mining frequent item(set)s in the
landmark model of the data streams, comparing the performance of hMiner with Lossy
Counting is also performed in the experiments.

Buffer-Trie-SetGen (BTS) implementation discussed in Manku and Motwani (2002)
is utilized to implement the Lossy Counting algorithm in the experiments. As hMiner
and EStream both operate in the online-processing mode, which means that a newly
arrived transaction is immediately processed, Lossy Counting is then transformed into
operating in the online-processing mode in the experiments. The Buffer in the BTS
implementation transfers to keep only one transaction and the TRIE (the synopsis of
Lossy Counting) is changed to be saved in memory but not on disk. Since there is
only one transaction in the Buffer, it is easy for the SetGen to enumerate all subsets
contained in the transaction without needing a complex implementation of Heap. As
a result, the Lossy Counting algorithm for finding frequent itemsets operates in the
online-processing mode similarly as the Lossy Counting algorithm for finding fre-
quent items. That is, when a newly arrived transaction is received, it is immediately
processed and whenever N ≡ 0 mod �1/ε�, an entry (e, f,�) in the synopsis (TRIE)
will be deleted if f + � ≤ bcurrent, where e is an itemset, f is the estimate support
counts of e,� is the maximum possible error in f , and bcurrent is the current bucket ID.

All of the algorithms are implemented in C++ and all the experiments are performed
on a PC with the Intel Pentium 4 3.2GHz CPU, 3GB of main memory, and under the
Window XP operating system. Six datasets are tested in the experiments. One is a real
web log dataset named Calgary-HTTP (Arlitt and Williamson 1996) and the others
are generated by the IBM synthetic data generator (Agrawal and Srikant 1994). The
datasets used in the experiments are described in Table 1 (see Fig. 10). All factors
used in the experiments are summarized in Table 2.

According to Lemma 2, the estimate support counts of each itemset provided by
hMiner possess an error no more than ε × N with a confidence level at least ρ, if
m is set to e/ε2 M×(eL − 1) ×ln((1 − 2M )/ln ρ). Indeed, setting m as above can
satisfy the accuracy guarantee but in reality, the part of f-nodes is excluded and the
worst cases, i.e. assuming transactions containing all the distinct items and assum-
ing that all accesses to an entry are the error for the support counts of an itemset,
are considered in the proof of Lemma 2. Obviously, Lemma 2 provides a theoreti-
cal analysis but if m is set accordingly, it may waste the memory space because it
is almost impossible for a transaction to contain all the distinct items, which results
in generating all the possible 2M − 1 itemsets in the real applications and moreover,
the part of f-nodes also helps to reduce the error for support counts. Since most of
the users concern more on the number of the truly frequent itemsets found and the
number of the found itemsets which are true, providing the error guarantee as men-
tioned above turns into evaluating precision (Criterion 1) and recall (Criterion 2) in the
experiments. Therefore, under some given assumptions, a heuristic method of setting
m to τ × e/ε×(2L − 1) × ln

((M
L

)
(1 − 2L)/ln ρ

)
in the experiments is described as

follows, where τ is a coefficient and can be adjusted using historical data. As can be
seen, when εM is greater than 1, e/ε2 M×(eL −1) ×ln((1−2M )/ln ρ) is smaller than
e/ε×(eL − 1) ×ln((1 − 2M )/ln ρ). Then, by assuming that the variation of the lengths
of transactions is very small, that is, the lengths of all transactions are nearly equal
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Table 1 Test datasets
Dataset Description

T4.I4.D500K The default test dataset, which has an
average transaction size of 4 with
an average maximal itemset size of
4, and the number of distinct
items = 20,000

T4.I4.D200K An average transaction size of 4 with
an average maximal itemset size of
4, and the number of distinct
items = 10,000

T5.I4.D200K An average transaction size of 5 with
an average maximal itemset size of
4, and the number of distinct
items = 20,000

T6.I4.D200K An average transaction size of 6 with
an average maximal itemset size of
4 and the number of distinct
items = 25,000

T7.I4.D100K An average transaction size of 7 with
an average maximal itemset size of
4 and the number of distinct
items = 25,000

Calgary-HTTP A real dataset on tracing web logs,
with an average transaction size of
1.7. The distribution of this dataset
is shown in Fig. 10
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Fig. 10 The distribution of Calgary-HTTP

to L , a transaction may generate 2L − 1 accesses and the number of combinations of
itemsets 2M −1 is then transformed into

(M
L

)
(2L −1). Therefore, m is set to τ ×e/ε×

(2L − 1) ×ln
((M

L

)
(1 − 2L)/ln ρ

)
experimentally, which saves more memory space

than setting m theoretically. A proper τcan be found heuristically as follows. Collect
the transactions of a data stream for some period of time as its historical data and then
apply hMiner to the collected historical data and adjust τ to obtain a high precision
rate for the mining results found from the historical data. The relation between τ and
the precision of the mining results from the historical data of T4.I4.D500K is listed in
Table 3. Then, a proper τ equaling 0.1, which provides an acceptable precision, e.g.
>0.9, is used. For the other datasets, we use the same method to adjust τ and decide
the sizes of the hash tables.
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Table 2 Experiment factors

Factor Default Range

ρ 0.9 0.1–0.9 ρ: The confidence level

ε 0.0009 0.0001–0.0009 ε : The error parameter

σ 0.02/0.006 – σ : The minimum support threshold

N 500 K 500–2,000 K N : The size of the data stream

k 5/15 – k: The longest itemsets to be found in EStream

ρ, ε, σ , and k are given by users.

Table 3 relation between τ and precision (P) while using T4.I4.D500K

τ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4

P 0.54 0.86 0.54 0.86 0.94 0.80 0.91 0.95 0.88 0.96 0.96 0.98 0.98

5.3 Experiment results

The experiment results are presented and analyzed in this subsection.

5.3.1 Experiment results on a varying ρ

The first set of experiment results shown in Figs. 11, 12, 13, 14 describes the relation
between the performance criteria discussed in Sect. 5.1 and the confidence level ρ.
As ρ increases, the memory used in hMiner shown in Fig. 13 also increases. This is
because the number of entries in the hash table of hSynopsis is positively correlated to
ρ. However, since the effect of ρ is at the scale of logarithm, the memory used slowly
increases. In addition, since the mining-time of hMiner is highly related to the number
of entries in the hash table of hSynopsis, which is increased slowly as ρ increases, the
curves in Fig. 12 are almost stable. The curves in Fig. 11 are also almost stable due to
the same distribution of the test dataset.

Fig. 11 Relation between ρ and
maintaining-time
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Fig. 12 Relation between ρ and
mining-time
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Fig. 13 Relation between ρ and
memory
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precision
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From Figs. 11, 12, 13, 14, we find that the curve of “hM, σ = 0.006” is always
higher than that of “hM, σ = 0.02.” This is because under the condition of low
minimum support threshold, the number of f-nodes kept in hSynopsis is increased,
directly affecting the maintaining-time, mining-time, and memory used in hMiner.
Figure 14 shows the precision of hMiner. It is high (>0.9) in most of the cases. How-
ever, it deserves to be mentioned that when ρ is equal to 0.4, its precision falls and
its maintaining-time falls too. It may be caused by the chosen hash function. If the
hash is not universal and many itemsets fall into a common entry, the precision of
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hMiner is decreased. On the other hand, as the probability of collisions happening in
handling a transaction is increased due to the non-universal hash function, the main-
taining-time decreases. This is because whenever a collision occurs during processing
a transaction, the computed Estimate_Count can be shared among the itemsets in the
transaction hashed into the same entry, leading to a reduction of the maintaining-time.

5.3.2 Experiment results on a varying ε

The second set of experiment results shown in Figs. 15, 16, 17, 18, 19 describes the
relation between the performance criteria and the error parameter ε. As shown in
Fig. 15, the maintaining-time of Lossy Counting and that of hMiner increase as ε

decreases. To Lossy Counting, as ε decreases, more itemsets are kept in its synopsis,
increasing the processing time of adding the information of a transaction to the syn-
opsis of Lossy Counting. On the other hand, the size of the hash table in hSynopsis
becomes large as ε decreases, decreasing the probability of collisions happening in
handling a transaction. As a result, the maintaining-time of hMiner increases.

Fig. 15 Relation between ε and
maintaining-time
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Fig. 16 Relation between ε and
mining-time
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Fig. 17 Relation between ε and
memory
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Fig. 18 Relation between ε and
precision
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Fig. 19 Relation between ε and
recall
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Referring to Fig. 15, the maintaining-time of EStream with k = 15 is almost fixed
under various values of ε. In reality, whenever N ≡ 0 mod

⌈
2k−2/ε

⌉
, where k is

the parameter in EStream indicating the length of the longest itemset to be found,
the itemsets with low support counts are pruned from the synopsis of EStream. The
maintaining-time and the memory used in EStream indeed relate to ε. However, in
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Fig. 15, since the bucket size of EStream with k = 15 is at least nine millions, much
larger than the size of the test dataset, the effect of ε on the performance criteria does
not appear. While comparing to Lossy Counting, the bucket size of Lossy Counting is
at most ten thousands in the experiments, which is much smaller than that of EStream
with k = 15. It implies that since the term of

⌈
2k−2/ε

⌉
exponentially increases as k

increases, when k is set to a large value for finding all the frequent itemsets, the prun-
ing strategy is almost useless. That is, the pruning is done infrequently. To EStream
with k = 5, since its bucket size is at most eighty thousands, we can find that its
maintaining-time also increase as ε decreases.

Moreover, from Fig. 15, we find that the maintaining-time of EStream with k = 15
is less than those of Lossy Counting and hMiner. Although EStream attempts to pro-
cess all itemsets contained in a transaction, as an itemset in the transaction is not kept
in its synopsis, the supersets of the itemset do not need to be processed. In addition,
by setting the boundaries of support counts for itemsets in advance, EStream avoids
keeping the itemsets with low support counts in the synopsis, thus reducing the mem-
ory used as shown in Fig. 17 and decreasing the maintaining-time and mining-time as
respectively shown in Figs. 15 and 16.

In EStream, it sets a set of boundaries of support counts for distinct length of item-
sets. For example, suppose that k = 15, then we have Table 4 computed as follows.
J is an index factor to indicate the lengths of itemsets. Boundary[J ] is a boundary
of support counts corresponding to an itemset with a length of J . When J = 1,
Boundary[J ] is set to 0. Boundary[J ] = 2k−1(1 − 1/2J−1),∀J = 2 to k. All itemsets
with a length of one (items) are directly kept in the synopsis in EStream. Moreover,
an itemset e with a length |e| will be kept in its synopsis, if in the current bucket,
(1) the support counts of its immediate subsets just kept in the current bucket exceed
Boundary[|e|] minus Boundary[|e|−1] ( δboundary for |e| in short), and (2) the support
counts of its immediate subsets kept from the previous bucket exceed Boundary[|e|].
From the above equation, we know that the boundaries for the support counts of the
itemsets computed in EStream only relate to the parameter k despite the minimum
support threshold and the size of the current stream. When σ × N is small, e.g. smaller
than δboundary for |e| = two (i.e. 8192 − 0), many frequent itemsets cannot pass the
boundaries, resulting in a low recall as “ES, σ = 0.006, k = 15” shows in Fig. 19.
This situation may become worse while the minimum support threshold is set to a
smaller value or the parameter k is set to a larger value. However, without any back-
ground knowledge of the mining results, if we want to find all the frequent itemsets, k
is intuitively set to a large value. Therefore, a low recall becomes the main drawback
of EStream in practice. On the other hand, EStream will over-estimate the support
counts for those itemsets kept in it synopsis, thus resulting in a low precision as “ES,
σ = 0.006, k = 15” shows in Fig. 18.

Table 4 Boundaries for support counts of itemsets in EStream with k = 15

Length of
itemsets

1 2 3 4 5 6 7 8 … 14 15

Boundary 0 8,192 12,288 14,336 15,360 15,872 16,128 16,256 … 16,382 16,383
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Table 5 Boundaries for support counts of itemsets in EStream with k = 5

Length of itemsets 1 2 3 4 5

Boundary 0 8 12 14 15

EStream with k = 5 uses less memory than hMiner and still results in high precision
and recall. Since the boundaries of EStream with k = 5, as shown in Table 5, help to
refuse the itemsets with low supports to be kept in its synopsis, the memory used in
EStream is small. However, the goal is to find all the frequent itemsets rather than
finding the frequent itemsets with lengths up to 5. The itemsets with longer lengths
such as 6, 7, 8, and 9 in the test dataset cannot be found due to setting k = 5. The
high recall of EStream with k = 5 comes from the fact that the ratio of the number
of the frequent itemsets with lengths more than 5 to the number of total frequent
itemsets is small. If the ratio is high, the recall of EStream with k = 5 may become
low. The maintaining-time of EStream with k = 5 is higher than those of hMiner and
Lossy Counting. This is because for processing an itemset, it needs to check all of the
immediate subsets of the itemsets in the synopsis constructed by prefix tries. Although
hMiner needs to do this too, checking via hashing is more efficient than checking via
traversing tries.

As shown in Figs. 16 and 17, the mining-time and memory used in hMiner and Lossy
Counting increase as ε decreases. The number of the entries in hSynopsis increases as
ε decreases in hMiner, therefore increasing the memory space and the mining-time.
To Lossy Counting, more itemsets are kept in the synopsis as ε decreases, causing the
memory used and the mining-time to increase. Referring to Fig. 17, the synopsis of
Lossy Counting needs more memory space than that of hMiner because the itemsets
with the supports exceeding ε need to be saved in memory. However, retaining the
non-frequent itemsets with supports between ε and σ uses too much memory space.
On the other hand, to hMiner, the entire data stream is compressed and saved in hSyn-
opsis consisting of a hash table with a fixed size and the f-nodes retaining the frequent
itemsets. This fixed-sized structure used in hMiner limits the memory space for the
non-frequent itemsets which are kept in Lossy Counting.

Since the memory used in Lossy Counting is only affected by ε, the line of “LC,
σ = 0.02” and the line of “LC, σ = 0.006” in Fig. 17 are overlapped. So are those of
EStream. On the other hand, σ may also affect the memory used in hMiner since the
number of f-nodes is decided byσ . From Fig. 17, we also find that the line of “hM, σ =
0.02” and the line of “hM, σ = 0.006” are almost overlapped. This is because the
memory used by the hash table of hSynopsis is much more than that of the f-nodes,
making the effect of σ to be limited. Although hMiner uses less memory space, as
shown in Fig. 18, the precision of hMiner is almost the same as that of Lossy Counting.

5.3.3 Experiment results on scalability

The third set of experiment results shown in Figs. 20, 21, 22, 23, 24 describes the
effects of the number of transactions (scalability) on these approaches. Under the
same data distribution, the maintaining-time, the mining-time and the memory used
in hMiner are almost constant. The maintaining-time of Lossy Counting and that of
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Fig. 20 Relation between
scalability and maintaining-time
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Fig. 21 Relation between
scalability and mining-time
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Fig. 22 Relation between
scalability and memory
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EStream with k = 5 as shown in Fig. 20 are also almost fixed under different sizes of
the data. Different from Lossy Counting which only need to directly add the informa-
tion of the current transaction to the prefix tries, hMiner needs additional computation
on estimation, causing the maintaining-time of hMiner is a little higher than that of
Lossy Counting.
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Fig. 23 Relation between
scalability and precision
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Fig. 24 Relation between
scalability and recall
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From Fig. 20, it is also found that the maintaining-time of EStream with k = 15
increases as the size of data increases. As more transactions are generated, the sup-
port counts of more itemsets exceed the boundaries mentioned above in EStream with
k = 15, causing the maintaining-time and memory used to increase. For the same
reason, the recall of EStream shown in Fig. 24 gets higher as the number of trans-
actions becomes larger. Since the bucket size of EStream with k = 15 is near nine
millions, we expect that the maintaining-time and the memory used in EStream with
k = 15 must still increase as the size of dataset increases until the bucket is full. In
addition, since EStream uses the structure of prefix tries to keep the itemsets, checking
whether all immediate subsets of an itemset are kept in the synopsis may spend much
time. Therefore, although the memory used in EStream with k = 15 slowly increases
as the size of the dataset increases, the maintaining-time of EStream with k = 15
drastically increases.

As shown in Figs. 21 and 22, the curves of the mining-time and the memory used
in Lossy Counting change drastically. Obviously, the more itemsets are saved in the
synopsis of Lossy Counting, the more mining-time it needs. Theoretically, as the
stream size increases, the memory used in Lossy Counting also increases. Whenever
N ≡ 0 mod �1/ε�, the itemsets with small support counts are removed from the
synopsis of Lossy Counting, making the memory used to decrease. It is the reason
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why the curve of Lossy Counting in Fig. 22 drastically changes. Since the memory
used in Lossy Counting may drastically change, it is difficult to evaluate the maximum
required memory, causing an out of memory risk to exist. Moreover, the mining-time
of hMiner is much shorter than that for Lossy Counting because the current frequent
itemsets can be directly determined from the f-nodes kept in the hSynopsis of hMiner.

As shown in Fig. 23, the precision of hMiner and that of Lossy Counting are
almost equal to one. On the other hand, the precision of EStream with k = 15 under
σ = 0.006 seems to decrease as the stream size increases, and the precision of EStream
with k = 15 under σ = 0.02 seems to be low only in the case of 300 K. In addition, as
shown in Fig. 24, the recall of hMiner and that of Lossy Counting must equal one due
to the design principles. On the other hand, the recall of EStream with k = 15 seems
to increase as the stream size increases. In reality, all of the results on precision and
recall of EStream are strongly related to the boundaries for support counts of itemsets
as shown in Table 4. When the size of the stream is small e.g. 100 K, since the support
counts of all items are smaller than δboundary for |e| = two (i.e. 8192 − 0), only the
itemsets with a length of one are kept in the synopsis of EStream, leading to a high
precision but a very low recall. While σ = 0.02, as the size of stream increases (from
100 K to 300 K), the support counts of some items exceed δboundary for |e| = two and
then, the itemsets with longer lengths are kept in the synopsis. At the mining stage,
for an itemset e kept in the synopsis, e is reported as frequent if the support counts
of e are no less than σ × N minus the boundary for the itemsets with a length |e|. It
means that EStream attempts to over-estimate the support counts of the itemsets kept
in the synopsis, causing the precision to decrease. Therefore, the precision of “ES,
σ = 0.02, k = 15” is low in the case of 300 K. Notice that, the boundaries in Table 4
are set in advance, which are computed only according to the value of k rather than N
or σ . As a result, while σ × N < those boundaries, the recall of EStream will be low.
The values of σ × N in this experiment are listed in Table 6 for reference.

Setting the parameter k directly affects the memory used, the precision, and the
recall, even the maintaining-time of EStream. However, how to set a proper k to find
all frequent itemsets over data streams is difficult without any knowledge of the min-
ing results, and intuitively setting k to a large value may incur very low recall and
precision, making EStream not workable in practice.

5.3.4 Experiment results on testing distinct datasets

The experiment results of using distinct datasets to be the test data are shown in Figs. 25,
26, 27. All the parameters are set as the default values except testing Calgary-HTTP.
While testing Calgary-HTTP, the minimum support threshold used is 0.1% and the

Table 6 Values of the minimum
support threshold multiplied by
the stream size N

Number of 100 300 500 700 1, 000
transaction (K):

σ = 0.02 1,635 6,673 10,000 13,341 20,000

σ = 0.006 491 2,002 3,000 4,003 6,000
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Fig. 26 Relation between distinct datasets and precision

error parameters ε are set to 0.01% and 0.005%. Under these settings, the maximal
length of the truly frequent itemsets found is 5. As mentioned above, since the bound-
aries for support counts of itemsets computed in EStream do not relate to the size of
the data stream and the minimum support threshold, the recall of EStream with k = 15
shown in Fig. 27 is still very low. Although EStream uses less memory space than
hMiner, its precision and recall are not acceptable.

EStream with k = 5 has high precision and recall in Figs. 26 and 27. However, since
the goal is to find all the frequent itemsets rather than finding the frequent itemsets
with lengths up to 5, that is, the goal of EStream, reporting only the frequent itemsets
with lengths up to 5 is unacceptable. If the ratio of the number of frequent itemsets
with lengths longer than 5 to the total number of frequent itemsets increases, the recall
of EStream with k = 5 must become low. When the test dataset used is Calgary-HTTP,
under the condition of setting the minimum support threshold to 0.1%, the maximal
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Fig. 27 Relation between distinct datasets and recall

length of the truly frequent itemsets found is 5, which exactly matches k set to 5 in
EStream, resulting in high precision and recall. It is lucky. However, in fact, EStream
is not designed to find all frequent itemsets. How to set a proper k without any back-
ground knowledge to the mining results is the most difficult part for applying EStream
to find all frequent itemsets because k will directly affect the precision and recall of
EStream. A small k limits EStream to find the truly frequent itmesets with lengths
longer than k while a large k even results in very low precision and recall.

From Fig. 26, it can be found that the precision of hMiner is almost the same as
that of Lossy Counting. Since Lossy Counting is a deterministic algorithm, that is, it
guarantees that the errors of the supports of all itemsets are no more than ε with 100%
confidence, its precision is a little higher than that of hMiner. However, the memory
used in hMiner is much less than that of Lossy Counting as shown in Fig. 25.

According to the effect of the data distribution of Calgary-HTTP, many itemsets
have supports between σ − ε and σ . Therefore, the precisions of Lossy Counting and
hMiner are around 40% under ε = 0.01% while the test data used is Calgary-HTTP.
However, when ε is set to 0.005% the precision of hMiner becomes higher. To Lossy
Counting, since its required memory space cannot be satisfied due to too many nodes
in TRIE under ε = 0.005%, causing the system to crash. Therefore, no experiment
results of Lossy Counting with ε = 0.005% are shown for Calgary-HTTP in Figs. 25,
26, 27.

5.3.5 Discussion on the limitations of hMiner

From the experiment results, the limitations of hMiner are summarized as follows. (1)
Different from the other approaches which are only affected by ε, the maintaining-
time and memory used in hMiner is also affected by σ . As σ decreases, the number
of f-nodes kept may become larger, thus resulting in using more memory space. The
processing time on checking whether an itemset is kept in f-nodes and that on com-
puting Estimate_Count also increase, causing the increase of the maintaining-time.
In addition, as f-nodes are used to keep frequent itemsets, they may be frequently
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inserted, deleted, and reinserted if the status of the frequent changes drastically. How-
ever, while Lossy Counting works in the online-processing mode, the nodes kept in the
synopsis also need to face similar problems. They need to be inserted as transactions
arrive, deleted as the conceptual bucket is full, and reinserted as the new transactions
arrive. (2) As the lengths of transactions increase, the maintaining-time of hMiner
also increases because hMiner needs to process all subsets of transactions. However,
the memory used in hMiner is less than that used in Lossy Counting since a few
long transactions may incur a huge number of subsets needing to be kept. (3) hMiner
compresses the information of a whole data stream into a hash table with a fixed size
and additionally keeps f-nodes to indicate the frequent itemsets. In order to speed up
the maintaining procedure of hSynopsis, only the f-nodes kept in the entries accessed
by the current transaction are checked. Therefore, some out-of-date frequent itemsets
may be kept in the f-nodes. We can periodically scan the whole hSynopsis, set all the
Nlast_access fields to N which is the current size of the data stream, and remove the
f-nodes with the sum of the value kept in its True_Count field and the value kept in
its Estimate_Count field being smaller than σ × N (these f-nodes correspond to the
out-of-date frequent itemsets). If all truly frequent itemsets cannot be kept in main
memory, the above procedure is useless, and hMiner becomes inefficient. However,
the performance of the other approaches will get even worse under this condition as
they need to keep the non-frequent itemsets.

6 Conclusions

In this paper, we propose the first hash-based approach, hMiner, operating in the online-
processing mode for mining frequent itemsets over data streams. A newly designed
data structure, hSynopsis, based on the principles of the Lossy Counting algorithm
and the hCount method is used in hMiner. The entire information of the data stream
can be compressed and saved in hSynopsis by hashing all the subsets of the current
transaction. Moreover, the current frequent itemsets can be quickly determined from
the f-nodes of hSynopsis. Rooted in hSynopsis, a novel technique is provided to esti-
mate the support counts of the non-frequent itemsets, which makes a high precision
of hMiner. From the experiments, it can be seen that EStream may result in a very
low recall due to an improper parameter setting, which indicates the longest itemsets
to be found. However, how to set a proper parameter in EStream for finding all the
frequent itemsets is difficult without any background knowledge of the mining results.
Moreover, the experiment results reveal that under almost the same precision, hMiner
needs less memory space than Lossy Counting to maintain the synopses. In hMiner,
the information of the non-frequent itemsets is compressed into the hash table. On the
contrary, the memory space to save the information of the itemsets in Lossy Counting
may drastically change. In summary, when the memory space of the environment is
viewed as an important factor, hMiner is a better choice.

In this paper, we only consider to discover frequent itemsets from a single stream.
However, in many applications such as analyzing the transactions from a chain of
retail stores, or monitoring a large scale network with multiple routers, it may involve
multiple streams. It implies that mining over multiple streams can discover useful
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knowledge. A naïve method to achieve the goal of mining over multiple streams is
to collect all the data and process them in a central server (i.e., handling the multiple
streams as a single stream). However, the enormous amounts of data can bring exten-
sive computation, causing the processing time to be unacceptable. Therefore, we are
currently extending hMiner to discover the global frequent itemsets from multiple
streams in a distributed manner.
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