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A Bayesian Edgeworth expansion by Stein’s
Identity

Ruby C. Weng∗

Abstract. The Edgeworth expansion is a series that approximates a probability
distribution in terms of its cumulants. One can derive it by first expanding the
probability distribution in Hermite orthogonal functions and then collecting terms
in powers of the sample size. This paper derives an expansion for posterior dis-
tributions which possesses these features of an Edgeworth series. The techniques
used are a version of Stein’s Identity and properties of Hermite polynomials. Two
examples are provided to illustrate the accuracy of our series.
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1 Introduction

The Edgeworth expansion, named after F. Y. Edgeworth (1845-1926), is an expansion
that approximates a probability distribution in terms of its cumulants. It is over a
century old and it provides an improvement to the central limit theorem. In the past
decades it has received a revival of interest in statistics; for example, see Hall (1992)
on how Edgeworth expansion and bootstrap methods can help explain each other. The
Edgeworth expansion has been applied to other areas as well; for example, Blinnikov and
Moessner (1998) compared Gram-Charlier, Gauss-Hermite and Edgeworth expansions
in problems of astrophysics, and Filho and Rosenfeld (2004) considered the problem of
testing option pricing with Edgeworth expansion, among others. Actually, Blinnikov
and Moessner (1998) gave a simple algorithm to calculate higher-order terms of Edge-
worth expansion, and they obtained the cumulants up to 10th order in the application
to peculiar velocities from cosmic strings.

Wallace (1958, Section 3) and Blinnikov and Moessner (1998) provided reviews on
early developments of the series. Let F be the distribution to be approximated and
{κr} its cumulants; let γr be the cumulants of a standard normal distribution and D
the differential operator representing differentiation with respect to x; let Φ and φ be
the cdf and pdf of a standard normal variable. Chebyshev and Charlier considered the
identity

F (x) = exp
∞∑

r=1

(κr − γr)
(−D)r

r!
Φ(x)

and proceeded by expanding and collecting terms according to the order of the deriva-
tives. The resulting expansion is commonly known as the Gram-Charlier series (of type
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A) and it turned out to be identical with the expansion of F in Hermite orthogonal
functions; or equivalently, for a pdf p(x),

p(x) =
∞∑

k=0

ckqk(x)φ(x), (1)

where qk are Hermite polynomials and, by the orthogonal property (29) below,

ck =
1
k!

∫ ∞

−∞
p(x)qk(x)dx. (2)

Blinnikov and Moessner (1998, Section 4) also showed that the Gram-Charlier series
(1) is just a Fourier expansion of p(x)/φ(x) in Hermite polynomials. Note that the
sample size plays no role in this expansion, and it is known that this expansion has poor
convergence properties; see Cramér (1957). Edgeworth considered the standardized sum
of n independent and identically distributed random variables, and developed a similar
expansion. Actually, the Edgeworth series can be obtained by collecting terms in the
Gram-Charlier series according to powers of n.

The most basic result of Edgeworth expansion is for independent and identically
distributed random variables X1, ..., Xn with mean θ0 and finite variance σ2. Let θ̂n

be the sample mean of Xi’s. Under regularity conditions, the distribution function of
Y ≡ n1/2(θ̂n − θ0) may be expanded as

P (
n1/2(θ̂n − θ0)

σ
≤ x) = Φ(x) + n−1/2p1(x)φ(x) + · · ·+ n−j/2pj(x)φ(x) + · · · . (3)

Formula (3) is termed an Edgeworth expansion. The functions pj are polynomials with
coefficients depending on cumulants of θ̂n − θ0. In particular, pj is a polynomial of
degree at most 3j − 1 and is an odd or even function according to whether j is even or
odd.

Many researchers have derived Edgeworth expansions in non-iid contexts; for ex-
ample, Bickel and Ghosh (1990) considered the signed-root transformation, and Jing
and Wang (2003) obtained expansions for U -statistics. There are also studies from a
Bayesian perspective. Let g be a smooth function of the parameter θ. The usual ap-
proach to asymptotic posterior expansions starts from writing the posterior mean of
g(θ) as a ratio of two integrals,

Eξ[g(θ)|xt] =
∫

g(θ)exp(`t(θ))ξ(θ)dθ∫
exp(`t(θ))ξ(θ)dθ

,

where `t is the loglikelihood function and ξ the prior density, next takes a Taylor series
expansion at the maximum likelihood estimator and develops expansions on both the nu-
merator and denominator, and then obtains an approximation of the posterior mean by
formal division of the two series. Johnson (1967, 1970) provides a careful account of this
approach. There are other papers that apply Laplace method to both numerator and
denominator and then take the ratio; see, for example, Lindley (1961, 1980), Mosteller
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and Wallace (1964), Tierney and Kadane (1986), and references therein. However, these
asymptotic expansions for posterior distributions are not in terms of the cumulants or
moments.

Recently Weng (2003) and Weng and Tsai (2008) applied a version of Stein’s Iden-
tity, established by Woodroofe (1989, 1992) for integrable expansions for posterior dis-
tributions, to asymptotic posterior normality; and Weng and Lin (2010) applied it for
Bayesian online ranking. The idea of this identity originated from the famous Stein’s
lemma (Stein 1981, 1987), but the latter considers the expectations of normal distribu-
tions, while the former the expectations of distributions which are “nearly” normal (in
the sense of (4) below). The application of this identity to posterior normality starts
by writing the posterior density of a normalized maximum likelihood estimator Zt in
a form close to normal, next applies Stein’s Identity to obtain an expansion for pos-
terior expectations of h(Zt), and then analyzes the remainder term in the expansion.
The present paper takes one step further to show that by repeatedly employing Stein’s
Identity, together with some properties of Hermite polynomials, one can expand the
marginal posterior distribution in the form of (1); then, we proceed to obtain the orders
of the ck terms (2) and form an asymptotic series. Note that our expansion resembles
the classic Edgeworth expansion in that both are directly connected to the cumulants
or moments, and both can be viewed as an expansion of the probability distribution
in Hermite orthogonal functions together with rearrangement of terms in powers of the
sample size. These two properties are lost in existing posterior expansions in the liter-
ature. The advantage of expressing a distribution in terms of the moments is that the
information about the distribution can be efficiently stored.

This paper is organized as the following. The next section introduces Stein’s Identity
and the model. Section 3 starts with reviews of Hermite polynomials, and then develops
a Bayesian Edgeworth expansion. Section 4 provides detailed comparisons with Johnson
(1970). Section 5 presents two examples for illustration. Section 6 gives concluding
remarks. Appendices contain some proofs.

2 Stein’s Identity and the Model

2.1 Stein’s Identity

Let Φp denote the standard p-variate normal distribution and φp the density; let Φ be
the abbreviation of Φ1, and similarly for φ. Write

Φph =
∫

hdΦp

for functions h for which the integral is finite. Next let Γ denote a finite signed measure
of the form

dΓ = fdΦp, (4)

where f is a real-valued function defined on <p satisfying Φp|f | < ∞. For s > 0, denote
Hs as the collection of all measurable functions h : <p → < for which |h(z)|/b ≤ 1+‖z‖s
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for some b > 0. Given h ∈ Hs, let h0 = Φph, hp = h,

hk(y1, ..., yk) =
∫

<p−k

h(y1, ..., yk, w)Φp−k(dw), (5)

gk(y1, ..., yp) = e
1
2 y2

k

∫ ∞

yk

[hk(y1, ..., yk−1, w)− hk−1(y1, ..., yk−1)]e−
1
2 w2

dw, (6)

for −∞ < y1, ..., yp < ∞ and k = 1, ..., p. Then let Uh = (g1, ..., gp)T and V h =
(U2h + U2hT )/2, where U2h is the p × p matrix whose k-th column is Ugk and gk is
as in (6). For example, for z ∈ <p, if h(z) = z1, then Uh(z) = (1, 0, ..., 0)T and if
h(z) = ‖z‖2, then Uh(z) = z. Simple calculations by taking f(z) in Lemma 1 below as
zi and zizj yield

Φp(Uh) =
∫

<p

zh(z)Φp(dz), (7)

Φp(U2h) =
∫

<p

1
2
(zzT − 1)h(z)Φp(dz). (8)

Lemma 1. (Stein′s Identity) Let r be a nonnegative integer. Suppose that dΓ = fdΦp

as above, where f is a differentiable function on <p, and that

∫

<p

|f(z)|Φp(dz) +
∫

<p

(1 + ‖z‖r)‖∇f(z)‖Φp(dz) < ∞. (9)

Then

Γh = Γ1 · Φph +
∫

<p

(Uh(z))T∇f(z)Φp(dz), (10)

for all h ∈ Hr. If ∂f/∂zj , j = 1, ..., p, are differentiable, and

∫

<p

(1 + ‖z‖r)‖∇2f(z)‖Φp(dz) < ∞, (11)

then

Γh = Γf · Φph + (ΦpUh)T

∫

<p

∇f(z)Φp(dz) +
∫

<p

tr[(V h(z))∇2f(z)]Φp(dz), (12)

for all h ∈ Hr.

The proof of Lemma 1 is in Woodroofe (1989, Proposition 1); see also Weng and
Woodroofe (2000, Lemma 1). Here we sketch the proof as it will be used in Proposition
2 in Section 3. For (10), it follows from an application of the interchange of orders of
integration; below we borrow a few lines from Woodroofe (1989). Take p = 1 and let ′

denote the differentiation. By assumptions in Lemma 1, we have f(x) =
∫ x

−∞ f ′(y)dy
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and

Γh− Γ1 · Φh = Φ(fh)− Φf · Φh

=
∫

<

{ ∫ x

−∞
f ′(y)dy

}
φ(x)[h(x)− Φh]dx

=
∫

<

{ ∫ ∞

y

φ(x)[h(x)− Φh]dx
}

f ′(y)dy

=
∫

<
Uh(y)f ′(y)φ(y)dy,

where the interchange of orders of integration is justified by assumed integrability con-
ditions. For (12), it follows by writing

(Uh(z))′∇f(z) =
p∑

i=1

gi(z)
∂f(z)
∂zi

, (13)

and then applying (10) with h and f replacing by gi and ∂f/∂zi.

The following lemma will be used later. The proof is in Woodroofe and Coad (1997,
Proposition 1); see also Weng and Woodroofe (2000, Lemma 8).

Lemma 2. If h(z) ∈ H0, then Uh ∈ H0. Further, if h(z) = ‖z‖p, where p ≥ 1, then

‖Uh(z)‖ ≤ C{1 + ‖z‖p−1}.

2.2 The model

Let Xt be a random vector distributed according to a family of probability densities
pt(xt|θ), where t is a discrete or continuous parameter and θ ∈ Θ, an open subset in <p.
Assume that the log-likelihood function `t(θ) is twice differentiable with respect to θ.
Assume also that the maximum likelihood estimator θ̂t exists and satisfies ∇`t(θ̂t) = 0
and that −∇2`t(θ̂t) is positive definite, where ∇ indicates differentiation with respect
to θ. Define Σt and Zt as

ΣT
t Σt = −∇2`t(θ̂t), (14)

Zt = Σt(θ − θ̂t). (15)

Consider a Bayesian model in which θ has a prior density ξ. Then the posterior density
of θ given data xt is ξt(θ) ∝ exp(`t(θ))ξ(θ), and the posterior density of Zt is

ζt(z) ∝ ξt(θ(z)) ∝ exp[`t(θ)− `t(θ̂t)]ξ(θ), (16)

where the relation of θ and z is given in (15). Now define

ut(θ) = `t(θ)− `t(θ̂t) +
1
2
‖zt‖2. (17)
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So, (16) can be rewritten as
ζt(z) ∝ φp(z)ft(z), (18)

where ft(z) = ξ(θ(z))exp[ut(θ)].

Observe that the posterior distribution of Zt in (18) is of a form suitable for Stein’s
Identity. If ξ is twice differentiable on <p and vanishes off of Θ, then so does ft(z)(=
ξ(θ(z))exp[ut(θ)]). Moreover, if (9) and (11) hold, then by Lemma 1 we have

Et
ξ{h(Zt)} = Φph + Et

ξ

{
[Uh(Zt)]T

∇ft(Zt)
ft(Zt)

}
, (19)

Et
ξ{h(Zt)} = Φph + (ΦpUh)T Et

ξ

[∇ft(Zt)
ft(Zt)

]
+ Et

ξ

{
tr

[
V h(Zt)

∇2ft(Zt)
ft(Zt)

]}
. (20)

In particular, if h(z) = zi, Uh(z) = ei; and if h(z) = zizj and i < j, Uh(z) = ziej . So,
(19) and (20) give

Et
ξZt = Et

ξ

(∇ft(Zt)
ft(Zt)

)
and Et

ξ(ZtiZtj) = δij + Et
ξ

[∇2ft(Zt)
ft(Zt)

]
ij

. (21)

Throughout ∇ξ and ∇2ξ denote the gradient and Hessian of ξ with respect to θ,
∇f and ∇2f the gradient and Hessian of f with respect to Z, and Et

ξ the posterior
expectation given data xt. Some calculations are useful for later reference.

∇ft(Zt)
ft(Zt)

= (ΣT
t )−1

[∇ξ(θ)
ξ(θ)

+∇ut(θ)
]
, (22)

∇2ft(Zt)
ft(Zt)

= (ΣT
t )−1

[∇2ξ

ξ
+
∇ξ

ξ
∇uT

t +∇ut
∇ξT

ξ
+∇2ut +∇ut∇uT

t

]
Σ−1

t , (23)

where by (17) we can derive

∇ut(θ) = ∇`t(θ)−∇2`t(θ̂t)(θ − θ̂t), (24)

∇2ut(θ) = ∇2`t(θ)−∇2`t(θ̂t). (25)

3 Edgeworth expansions

3.1 Hermite polynomials

We shall review Hermite polynomials as they are closely related to the Edgeworth
expansion. Let qk denote Hermite polynomials, given by

qk(z)φ(z) =
(
− d

dz

)k

φ(z). (26)

For instance, for k = 0, 1, ..., 5 we have q0(z) = 1, q1(z) = z, q2(z) = z2 − 1, q3(z) =
z3 − 3z, q4(z) = z4 − 6z2 + 3, and q5(z) = z5 − 10z3 + 15z. These polynomials are
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an orthogonal polynomial sequence in the sense of (29) below. The one in (26) is the
probabilist’s version, while the physicist’s version is defined by

qphy
k (z)e−z2

=
(
− d

dz

)k

e−z2
.

It is easily seen that these two versions differ in just the scaling: qphy
k (z) = 2n/2qk(

√
2z).

Courant and Hilbert (1953, Section 9) provided several properties of qphy
k . In fact, Her-

mite polynomials are solutions of the simple harmonic oscillator of quantum mechanics
(see Boas (2006, Section 22) and Weber and Arfken (2004, Chapter 13)) and they are
integral parts of mathematical physics. We review three properties, numbered (27)-(29)
below, for later use. Let q′k(z) denote the differentiation with respect to z. Then,

q′k(z) = kqk−1(z), (27)

qk+1(z) = zqk(z)− kqk−1(z), (28)

∫
qk(z)qj(z)dΦ(z) =

{
0 if k 6= j,

k! if k = j.
(29)

For the sake of being self-contained, we outline the proofs of (27)-(29). First, define a
generating function

ψ(z, t) = e−
t2
2 +tz = e

z2
2 − (t−z)2

2 =
∞∑

n=0

qn(z)
n!

tn.

From this equation it follows that

qn(z) =
(∂ψ(z, t)

∂tn

)∣∣∣
t=0

= (−1)nez2/2 dne−z2/2

dzn
, (30)

which is equivalent to (26). Next, the relation ∂ψ(z, t)/∂z = tψ(z, t) gives (27); and
from the relation ∂ψ(z, t)/∂t + (t− z)ψ(z, t) = 0 we obtain the recursive relation (28).
Finally, the orthogonal property (29) can be derived from

∫ ∞

−∞
qm(z)qn(z)e−

z2
2 dz = (−1)n

∫ ∞

−∞
qm(z)

dne−z2/2

dzn
dz

= · · · = (−1)n−mm!
∫ ∞

−∞
q0(z)

dn−me−z2/2

dzn−m
dz = 0

for n > m by repeated partial integration, keeping in mind equation (30) and the fact
that e−z2/2 and all its derivatives vanish for infinite z.

With (27) and (28) we can prove the following proposition, which is needed in Section
3.2. We defer the proof to Appendix 6. Define Ck

i = k!/(i!(k − i)!).
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Proposition 1. Let Z denote a standard normal random variable. Then, for k = 1, 2, ...

qk(x) = xk −
k−1∑

i=0

Ck
i qi(x)E(Zk−i). (31)

3.2 Bayesian Edgeworth expansion

Recall that Uh = (g1, ..., gp)T is defined following (6). In the lemma below, we write
gl = (Uh)l.

Lemma 3. Suppose that h ∈ Hr and that h(z) = h∗(zi), where i ∈ {1, ..., p} and
h∗ : < → <. Then, (Uh)l = 0 if l 6= i and (Uh)i(z) = (Uh)i(zi) = Uh∗(zi), depending
only on zi.

Proof. Since h(z) = h∗(zi), from (5) it is not difficult to see that hl = Φph for l =
0, ..., i−1 and that hl(z) = h(zi) for l = i, ..., p. Then, by (6), the desired results follow.
2

The following result follows from Lemma 3 and Lemma 1. It is useful for developing
marginal posterior distributions.

Proposition 2. Let r and s be nonnegative integers. Suppose that dΓ = fdΦp, where f
is a differentiable function on <p. Suppose also that h ∈ Hr, that h(z) = h∗(zi), where
i ∈ {1, ..., p} and h∗ : < → <, and that

∫

<p

|f(z)|Φp(dz) +
∫

<p

(1 + |zi|r)
∥∥∥∂kf(z)

∂zk
i

∥∥∥Φp(dz) < ∞, (32)

for k ≤ s. Then,

Γh = Γ1 · Φh∗ +
s−1∑

j=1

(ΦU jh∗)
∫

<p

∂jf(z)
∂zj

i

Φp(dz) +
∫

<p

Ush∗(zi)
∂sf(z)

∂zs
i

Φp(dz). (33)

Proof. If h(z) = h∗(zi), then by Lemma 3 and (13) we can write (10) as

Γh = Γh∗ = Γ1 · Φh∗ +
∫

<p

Uh∗(zi)
∂f(z)
∂zi

Φp(dz). (34)

Next applying (34) with h∗ and f replaced by Uh∗ and ∂f/∂zi yields

Γh = Γh∗ = Γ1 · Φh∗ + ΦUh∗(zi)
∫

<p

∂f(z)
∂zi

Φp(dz) +
∫

<p

U2h∗(zi)
∂2f(z)

∂z2
i

Φp(dz).

Repeatedly applying (34) with h∗ and f replaced by U jh∗ and ∂jf/∂zj
i gives (33). 2

To apply this proposition to the posterior distribution of Zt, we need the integrability
condition (32), which involves ∂kft(z)/∂zk

i . For k = 1, 2, ∂kft(z)/∂zk
i can be obtained
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from (22) and (23). For k ≥ 3, the forms are complicated; however, for the purpose
of verifying (32), it suffices to use a 1-dimensional notation. For any function g(θ),
let g(k) denote the kth derivative with respect to θ. Recall from (18) that ft(z) =
ξ(θ(z))exp[ut(θ)]. Straightforward calculations give

dkft(z)
dzk

=
(dθ

dz

)k

ft(z)Gk(θ), (35)

where

G1 =
ξ(1)

ξ
+ u

(1)
t and Gk = G1Gk−1 + G

(1)
k−1. (36)

For example,

G1(θ) = u
(1)
t +

ξ(1)

ξ
,

G2(θ) = [u(1)
t ]2 + u

(2)
t + 2u

(1)
t

ξ(1)

ξ
−

(ξ(1)

ξ

)2

,

G3(θ) = [u(1)
t ]3 + 3u

(1)
t u

(2)
t + u

(3)
t + 3[u(1)

t ]2
ξ(1)

ξ
+ 3u

(2)
t

ξ(1)

ξ
− u

(1)
t

(ξ(1)

ξ

)2

+ 2u
(1)
t

ξ(2)

ξ
+

(ξ(1)

ξ

)3

− 2
(ξ(1)

ξ

)(ξ(2)

ξ

)
,

where G1 and G2 are 1-dimensional versions of (22) and (23). In general, we can show
that Gk has the form:

Gk(θ) =
∑

l

ckl

{( k∏

i=1

[u(i)
t ]rki

)[ k∏

j=1

(ξ(j)

ξ

)skj
]}

, (37)

where rki and skj satisfy
k∑

i=1

(irki) +
k∑

j=1

(jskj) = k. (38)

Note that rki and skj depend on l, but we suppressed the dependence in the notation.
The proofs of (36)-(38) are in Appendix 6.

To ensure (32), the conditions below are required.

(A1) For each r > 0, Et
ξ(‖Zt‖r) = O(1).

(A2) For any k ≥ 3, `
(k)
t (θ)/t is uniformly bounded in t and in θ ∈ Θ.

(A3) ‖ξ(k)‖/ξ ≤ b(1 + ‖θ‖s) for some b > 0 and s > 0.

Here O(1) means convergence of a sequence of real numbers as t → ∞. Note that
condition (A3) holds for a wide class of distributions, and it implies that ‖ξ(k)‖/ξ ≤
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b(1 + ‖θ̂t + Σ−1
t zt‖s) ≤ bt(1 + ‖zt‖s) for some 0 < bt < ∞, where bt may depend on the

data xt.

Now we can verify (32) using the 1-dimensional notation. First, since ζt in (18) is a
posterior density, the integral

∫ |ft|Φp(dz) is finite and we denote it as Ct. Next from
the expression (35) we have

∫
(1 + |z|r)

∣∣∣d
kft(z)
dzk

∣∣∣Φ(dz)

=
∫

(1 + |z|r)
∣∣∣
(dθ

dz

)k

ft(z)Gk(θ)
∣∣∣Φ(dz)

= Ct

(dθ

dz

)k

Et
ξ

(
(1 + |Zt|r)|Gk(θ)|

)

≤ b∗t Ct

(dθ

dz

)k

Et
ξ

(
(1 + |Zt|r)(1 + |Zt|s)(

k∏

i=1

[u(i)
t ]ri)

)
, (39)

where 0 < b∗t < ∞ and the last line follows from (37) and condition (A3); moreover,
from (24) and (25) and the Mean Value Theorem it follows that

u
(1)
t (θ) =

1
2
`
(3)
t (ηt)δ2

t , u
(2)
t (θ) = `

(3)
t (ωt)δt, u

(3)
t (θ) = `

(3)
t (θ), (40)

where ηt and ωt lie between θ and θ̂t. Then, by (A1) and (A2) the right hand side of
(39) is finite. Therefore, we have the following theorem.

Theorem 1. Suppose that ξ(θ) and `t(θ) are s times differentiable and that conditions
(A1)-(A3) hold. Then, for k ≤ s

∫

<p

|ft(z)|Φp(dz) +
∫

<p

(1 + |zi|r)
∥∥∥∂kft(z)

∂zk
i

∥∥∥Φp(dz) < ∞;

and hence, for h∗ as in Proposition 2 we have

Et
ξ(h

∗(Zti)) = Φh∗ +
s−1∑

j=1

(ΦU jh∗)Et
ξ

[∂jft/∂zj
ti

ft
(Zt)

]
+ Et

ξ

{
[Ush∗(Zti)]

∂sft/∂zs
ti

ft
(Zt)

}
.

(41)

The next two propositions connect the posterior expansion (41) with Hermite poly-
nomials qk (26) and the moments of Zti.

Proposition 3. Let h∗ : < → < be a measurable function. Then, for k = 1, 2, ...

Φ(Ukh∗) =
1
k!

∫

<
qk(z)h∗(z)Φ(dz). (42)

Proof. We shall prove it by induction. For k = 1, 2, (42) yields exactly (7) and (8).
Now suppose that (42) holds for k = 1, ..., n− 1. In Proposition 2, take s = n + 1 and
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f(z) = zn
i , noting that (32) holds for this f and ∂n+1f/∂zn+1

i = 0. With this f and
using (42) for k = 1, ..., n− 1, (33) becomes

ΦUnh∗ =
1
n!

∫

<

[
zn −

n−1∑

i=1

Cn
i qi(z)E(Zn−i)

]
h∗(z)dΦ(z),

where Z denotes the standard normal variate. Then, by Proposition 1 the right hand
side of the above line is (1/n!)

∫
< qn(z)h∗(z)Φ(dz). So, (42) holds for k = n. 2

Proposition 4. Suppose that Et
ξ(Z

k
ti) < ∞. Then,

Et
ξ

(∂kft/∂zk
ti

ft
(Zt)

)
= Et

ξ(qk(Zti)).

Proof. First, in (41) take h∗(z) = qk(z) and s = k; therefore, Φh∗ = 0, Ukh∗(z) = 1,
and

Et
ξ(qk(Zti)) =

k−1∑

j=1

(ΦU jh∗)Et
ξ

(∂jft/∂zj
ti

ft
(Zt)

)
+ Et

ξ

(∂kft/∂zk
ti

ft
(Zt)

)
,

where from Proposition 3 and the orthogonality property (29) we have

ΦU jh∗ =
1
j!

∫
qj(z)h∗(z)dΦ =

1
j!

∫
qj(z)qk(z)dΦ = 0 for j 6= k.

So, the desired result follows. 2

Note that when k = 1, 2 the above proposition gives the 1-dimensional version of
(21). Take h∗ in (41) as the indicator function 1(zti ≤ w), where w ∈ <. Then,
Propositions 3 and 4 and the relation

∫ w

−∞
qk(z)φ(z)dz = −qk−1(w)φ(w) (43)

together suggests that the marginal posterior density of Zti has the form

ζt(zi) =
∞∑

k=0

ckqk(zi)φ(zi), (44)

where

ck =
1
k!

∫ ∞

−∞
ζt(zi)qk(zi)dzi =

1
k!

Et
ξ(qk(Zti)).

Equation (44) is essentially (1).

Our next theorem concerns the orders of terms in (41). By (40) and (A1)-(A3) we
have that in (37) the terms associated with |u(i)

t |ri , i ≥ 3, contribute O(tri) to Et
ξ[Gk(θ)],
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while |u(1)
t |r1 contributes O(1) and |u(2)

t |r2 contributes O(tr2/2); for example, by (40)

Et
ξ

{
[u(1)

t ]2[u(3)
t ]3

(ξ(1)

ξ

)2}
= Et

ξ

{[1
2
`
(3)
t (ηt)δ2

t

]2

[ˆ̀(3)t ]3
(ξ(1)

ξ

)2}

≤ Ct3Et
ξ

(ξ(1)

ξ

)2

= O(t3),

where the second line follows from (A1) and (A2), and the last line from (A1) and (A3).
Together with the constraint (38), it is not difficult to see that the highest order of Gk

is bk/3c, the greatest integer not exceeding k/3. Furthermore, if −∇2 ˆ̀
t = O(t), then

Et
ξ

(dkft(z)/dzk

ft

)
= Et

ξ

[(dθ

dz

)k

Gk(θ)
]

= O(t−
k
2 +b k

3 c) = O(t−
i
2 ) if k ∈ Ji, (45)

where J1 = {1, 3} and Ji = {3i − 4, 3i − 2, 3i} for i > 1; for example, J2 = {2, 4, 6},
J3 = {5, 7, 9}, J4 = {8, 10, 12}. So, if h ∈ Hr and h(z) = h∗(zp), then by Lemma 2 it
follows that Ush∗ is in Hr−s if r > s and in H0 if r ≤ s; hence,

sup
h∈Hr

∣∣∣Et
ξ

{
[Ush∗(Zti)]

∂sft/∂zs
ti

ft
(Zt)

}∣∣∣ = O(t−
s
2+b s

3 c).

The above arguments lead to the following theorem.

Theorem 2. Suppose that ξ(θ) and `t(θ) are (3s+1) times differentiable, that conditions
(A1)-(A3) hold, and that −∇2 ˆ̀

t = O(t). Then,

sup
h∈Hr

∣∣∣Et
ξ(h

∗(Zti))−Φh∗−
∑

k∈{1,...,3s}
k 6=3s−1

(ΦUkh∗)Et
ξ

[∂kft/∂zk
ti

ft
(Zt)

]∣∣∣ = O(t−
3s+1

2 +s). (46)

Note that in (46) the summation excludes k = 3s− 1 because by (45) this term has
the same order as the remainder term. Note also that Proposition 4 and (45) together
imply that

Et
ξ(qk(Zti)) = O(t−

j
2 ) for k ∈ Jj . (47)

Now suppose that Σt in (14) is obtained by a Cholesky decomposition. So, it is upper
triangular and Ztp has a simpler form:

Ztp = [Σt]pp(θp − θ̂tp). (48)

Corollary 1. Let Σt in (14) be upper triangular so that Ztp has the form (48). Take
h∗ in (41) as the indicator function 1(ztp ≤ w), where w ∈ <. Then, the marginal
posterior distribution for the individual parameter θp is P t

ξ (θp ≤ a) = P t
ξ (Ztp ≤ w) and

sup
w∈<

∣∣∣P t
ξ (Ztp ≤ w)− Φ(w)−

∑

i∈{1,...,3s}
i6=3s−1

1
i!

qi−1(w)φ(w)Et
ξ(qi(Ztp))

∣∣∣ = O(t−
3s+1

2 +s), (49)
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where w = [Σt]pp(a− θ̂tp). Moreover, the marginal posterior density for θp is

ξt
p(a) = [Σt]pp{φ(w) +

∑

i∈{1,...,3s}
i 6=3s−1

1
i!

qi(w)φ(w)Et
ξ(qi(Ztp)) + O(t−

3s+1
2 +s)}. (50)

Proof. Equation (49) follows from (46), Propositions 3 and 4, and the relation (43).
Equation (50) follows by taking derivative of (49) with respect to a and using the fact
that, by (26), (d/dw)[qi−1(w)φ(w)] = −qi(w)φ(w). 2

We can rearrange (49) to be

P t
ξ (Ztp ≤ w) = Φ(w) +

m∑

i=1

Ri(w)φ(w) + O(t−
m+1

2 ), (51)

where

Ri(w) =
∑

j∈Ji

1
j!

qj−1(w)φ(w)Et
ξ(qj(Ztp)) = O(t−

i
2 )

by (47). Moreover, the function Ri is a polynomial of degree at most 3i − 1 and is
an odd or even function according to whether i is even or odd; and the coefficients
of this polynomial depend on moments of Ztp. So, (51) also has the properties of the
Edgeworth expansion in (3), and hence we term it a Bayesian Edgeworth expansion.

Similarly, we can rearrange (50) to be

ξt
p(a) = [Σt]pp{φ(w) +

m∑

i=1

Qi(w)φ(w) + O(t−
m+1

2 )}, (52)

where
Qi(w) =

∑

j∈Ji

1
j!

qj(w)φ(w)Et
ξ(qj(Ztp)) = O(t−

i
2 ).

In particular if j = 2, the approximations (51) and (52) are accurate to O(t−3/2), which
is often called a second order approximation.

4 Some comparisons

Johnson (1970) showed that the centered and scaled posterior distribution possesses an
asymptotic expansion in powers of t−1/2 (where t is the sample size) having the standard
normal as a leading term. Let ψ denote the centered and scaled variable (see his Eq.
(2.1), p. 853) defined by

ψ = (θ − θ̂t)b(θ̂t), (53)

where

b(θ̂t) =
[
− 1

t

t∑

i=1

∂2

∂θ2
logf(xi, θ)|θ=θ̂t

]1/2

.
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Denote the posterior cdf of t1/2ψ by Ft. Then, his Theorem 2.1 gives the expansion for
posterior distribution Ft:

|Ft(w)− Φ(w)−
K∑

j=1

γj(w, x)t−j/2| ≤ D1t
− 1

2 (K+1), (54)

and his Proposition 2.1 shows that each γj(w, x) is a polynomial in w having coefficients
bounded in x multiplied by the standard normal density. In particular, the forms of γ1

and γ2 are given in his Section 2.4 (see Eq. (2.25) and (2.26), p.858):

γ1(w, x) = −φ(w)c−1
00 [c10(w2 + 2) + c01], (55)

γ2(w, x) = −φ(w)c−1
00 [c20w

5 + (5c20 + c11)w3 + (15c20 + 3c11 + c02)w], (56)

where the clm can be expressed in terms of the prior ξ and the likelihood together with
their derivatives (ξ(1), a3t, a4t):

c00 = ξ(θ̂t); c01 = b−1ξ(1)(θ̂t); c02 = b−2ξ(2)(θ̂t);

c10 = b−3a3t(θ̂t)ξ(θ̂t); c11 = b−4a4t(θ̂t)ξ(θ̂t) + b−4a3t(θ̂t)ξ(1)(θ̂t);

c20 = 2−1b−6a2
3t(θ̂t)ξ(θ̂t).

Since our normalized quantity Zt in (15) is the multivariate version of ψ (53), it is of
interest to compare his expansion with ours. First, we observe some similarities: terms
with i = 1, 3 in (49) are of order t−1/2, corresponding to Hermite polynomials q0 and
q2, which agrees with the degrees of the polynomials in γ1 (55); terms with i = 2, 4, 6
in (49) are of order t−1, corresponding to Hermite polynomials q1, q3, q5, which agrees
with the degrees of the polynomials in γ2 (56). In fact in our (49), if we substitute
the posterior moments by asymptotic moment approximations to suitable orders, it will
lead to Johnson’s formula.

The main difference between these two expansions is that our expansion is in terms
of moments, while Johnson’s is in terms of prior and likelihood together with their
derivatives (the expressions for higher order terms of γj may be complicated). Such
difference in expression may be due to using different approaches: theirs is based on
Taylor expansion, but ours is based on Stein’s identity.

Ghosh et al. (1982) have also studied the expansions of the posterior distribution.
Their expansion is the same as Johnson (1970), but while Johnson (1970) considers
valid posterior expansions under Pθ0 , they study the expansion under Pξ, where ξ is the
prior.

5 Examples

We provide two examples to show that the expansion (50) has the ability to capture
the shape of the posterior distribution even if it is skewed or is not unimodal; in these
cases, approximations correct to O(t−3/2) do not provide good estimates.
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Remember that, with a Fourier series, one can store a function by part of its Fourier
coefficients. The same thing applies to an Edgeworth expansion. For instance, in our
example 5.1, we can suitably recover the posterior density by a few posterior moments.

All computations here are done in R (R Development Core Team 2009) and available
at http://www3.nccu.edu.tw/~chweng/publication.htm

5.1 Binomial model

Consider a binomial variable X ∼ Bin(t, θ), where the prior of θ is assumed to be
Beta(a, b). Suppose that a = 0.5, b = 4, t = 5, x = 2. Thus, the sample size is small and
the posterior distribution of θ, Beta(2.5,7), is skewed.

Figure 1 presents the true posterior density of θ and the estimates using (50) with
s = 2 and 13 (corresponding to orders O(t−3/2) and O(t−7), respectively). Here the
moments in (50) are approximated by numerical integration. The figure suggests that
an approximation to order O(t−3/2) is not satisfactory. Further, information about
this density can be stored by θ̂t, Σt, and these moments. Also included is Johnson’s
approximation to O(t−1), obtained by taking K = 1 in (54); that is,

pt(w) ≡ dFt(w)
dw

= φ(w) +
dγj(w, x)

dw
t−1/2 + O(t−1).

Perhaps due to small sample size, this density approximation takes negative values
around θ = 0.7; and the approximation to O(t−1) by taking K = 2 in (54) is no better
and not shown here.

Figure 2 gives the approximate posterior density of θ using (50) with 5, 6, 7, 8, 9,
10, 20, 40 moments of Ztp. As expected, the curves get closer to the true density when
more moments are used.

We also try a large sample case to assess Johnson’s result. We take t = 50 and x = 20,
and keep a and b unchanged. Figure 3 gives the exact density, normal approximation,
and Johnson’s approximation to O(t−1). The figure shows that Johnson’s approximation
has improved upon normal approximation. The results using (50) are pretty good and
omitted.

5.2 Bivariate normal model

In Section 2, θ̂t is defined to be the maximum likelihood estimate. It is, however, not
assumed to be the unique MLE. To assess the performance of (50) when multiple MLEs
exist, we consider the posterior distribution of the correlation coefficient in the bivariate
normal data given by Murray (1977); see also Tanner and Wong (1987). The data set
is in Table 1, where 12 observations are assumed to come from the bivariate normal
distribution with µ1 = µ2 = 0, the correlation coefficient ρ, and variances σ2

1 and σ2
2 . In

this data, 2 pairs have correlation 1, 2 pairs have correlation -1, and there are 8 missing
values. Denote the covariance matrix as Γ. As in Tanner and Wong (1987), we suppose

http://www3.nccu.edu.tw/~chweng/publication.htm�
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Figure 1: Bin(5,θ), x = 2. Marginal posterior pdf of θ. Solid: Exact distribution;
Dashed: Approximation to O(t−3/2); Dashed-Dotted: Approximation to O(t−7); Dotted
line: Johnson’s approximation to O(t−1).
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Figure 2: Bin(5,θ), x = 2. Marginal posterior pdf of θ. Dashed-Dotted: 5 moments;
Solid: 6, 7, 8, 9, 10 moments; Dashed: 20 moments; Dotted: 40 moments.

that the prior of Γ is
ξ(Γ) ∝ |Γ|−(k+1)/2,

where k is the dimension of the multivariate normal distribution.

The two MLEs of θ = (σ2
1 , σ2

2 , ρ) are (2.67,2.67,-0.5) and (2.67,2.67,0.5). We use the
former as the θ̂t in our Zt (15). In Figure 4 we plot the estimated posterior densities of
ρ using (50) with s = 2 and 33 (the latter corresponds to about 100 moments of Ztp,
approximated by numerical integration). We also plot the true posterior density of ρ,
which is proportional to (1 − ρ2)4.5/(1.25 − ρ2)8. The results show that the estimate
using tens of moments performs nicely around the two modes, while an approximation
to order O(t−3/2) does not.

Finally, we tried approximations using (50) with 20, 40, 60, 80 moments of Ztp. We
found that the magnitude of oscillation decreases when more moments were used. The
results are in Figure 5.
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Figure 3: Bin(50,θ), x = 20. Marginal posterior pdf of θ. Solid: Exact distribution;
Dashed: Normal approximation; Dotted: John’s approximation to O(t−1).

1 1 -1 -1 2 2 -2 -2 * * * *
1 -1 1 -1 * * * * 2 2 -2 -2

Table 1: Data from Bivariate Normal Distribution. (* indicates value not observed)

6 Concluding Remarks

We have obtained an Edgeworth expansion for marginal posterior densities. We have
shown two examples where the incorporation of our expansion and numerical integration
(for moments of Ztp) produce reasonable approximations when the sample size is small
or multiple modes are present.

It is worth mentioning that Zt may be defined in different ways. For example, if Zt is
the signed-root transformation as in Bickel and Ghosh (1990), under certain regularity
conditions the representation of the posterior expectation in (41) still holds. Then,
together with Propositions 3 and 4 we can also obtain the expansion in the Hermite
polynomials; that is, (44). However, with this new Zt, the ft in (18) will be different
and the order of Et

ξ(qk(Zti)) needs to be re-examined.

Several questions deserve further study. First, the nonparametric density estimation
has been a popular topic. It is not clear whether the results in the present paper
can be extended for density estimators. One theoretical bottleneck for the extension
would be whether the posterior density of the density estimation can be expressed in
the form (18). Second, since the posterior expansion based on Taylor series can not be
applied to the case of non-smooth priors, it is interesting to extend the current results
to such problems. One possible starting point is to modify Stein’s identity in Lemma 1
for piecewise smooth f . Third, we may use the expansions to validate convergence of
simulation results. The idea is that if the posterior sample has converged to the true
distribution, the density induced by the sample should agree with the one obtained by
putting the empirical moments of the sample into (50). Finally, in the present paper
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Figure 4: Marginal posterior pdf of ρ. Solid: Exact distribution; Dotted: Approximation
to O(t−3/2); Dashed-Dotted: Approximation using 100 moments.
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Figure 5: Marginal posterior pdf of ρ. Solid: 20 moments; Dotted: 40 moments;
Dashed-Dotted: 60 moments; Dashed: 80 moments.

and Blinnikov and Moessner (1998), there is no guideline or methodologies for how
many terms should be included in the expansion based on real data; the method for
determining the order of expansion based on data may be a topic of future work.

Appendix

A: Proof of Proposition 1

We need one lemma.
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Lemma 4. Let Z denote a standard normal random variable. Then,

(a)
n∑

i=1

Cn
i iqi−1(x)E(Zn−i) =

n∑

i=0

Cn
i qi(x)E(Zn+1−i), (57)

(b)
n∑

i=0

Cn+1
i qi(x)E(Zn+1−i) =

n−1∑

i=0

Cn
i qi+1(x)E(Zn−i)

+
n∑

i=0

Cn
i qi(x)E(Zn+1−i). (58)

Proof. For (a), we need the fact that E(Zr) = (r − 1)(r − 3) · · · (3)(1) if r is even and
zero if r is odd. If n is even, there are n/2 nonzero terms on each side of (57). Let
m = 2j. Then, the jth nonzero terms on left and right sides are respectively

Cn
mmqm−1E(Zn−m) =

n(n− 1) · · · (n−m + 1)
m!

mqm−1(n−m− 1)(n−m− 3) · · · (3)(1)

and

Cn
m−1qm−1E(Zn−m+2)

=
n(n− 1) · · · (n−m + 2)

(m− 1)!
qm−1(n−m + 1)(n−m− 1)(n−m− 3) · · · (3)(1),

and they are equal. The proof for odd n is similar and we omit it.

For (b), we need the fact that Cn+1
i = Cn

i + Cn
i−1. So,

n∑

i=0

Cn+1
i qi(x)E(Zn+1−i)−

n∑

i=0

Cn
i qi(x)E(Zn+1−i)

=
n∑

i=1

Cn
i−1qi(x)E(Zn+1−i)

=
n−1∑

i=0

Cn
i qi+1(x)E(Zn−i).

This completes the proof. 2

Proof of Proposition 1. We shall prove (31) by induction. First, it is easily seen
that (31) holds for k = 1, 2. Next, suppose that (31) holds for k = n−1 and n. Together
with (28), we have

qn(x) = xn −
n−1∑

i=0

Cn
i qi(x)E(Zn−i) = xqn−1(x)− (n− 1)qn−2(x).

Taking derivative in the equation above with respect to x gives

nxn−1 −
n−1∑

i=0

Cn
i q′i(x)E(Zn−i) = qn−1(x) + xq′n−1(x)− (n− 1)q′n−2(x);
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and by (27) and (28) and some algebra we obtain

nxn−1 =
n∑

i=1

Cn
i iqi−1(x)E(Zn−i). (59)

Now, by (28) and the fact that (31) holds for k = n− 1 and n, it follows that

qn+1(x) = xqn(x)− nqn−1(x)

= xn+1 −
n−1∑

i=0

Cn
i xqi(x)E(Zn−i)−

[
nxn−1 − n

n−2∑

i=0

Cn−1
i qi(x)E(Zn−1−i)

]
, (60)

where straightforward calculations and (28) give

n−1∑

i=0

Cn
i xqi(x)E(Zn−i)− n

n−2∑

i=0

Cn−1
i qi(x)E(Zn−1−i)

= xq0(x) +
n−1∑

i=1

Cn
i xqi(x)E(Zn−i)− n

n−1∑

i=1

Cn−1
i−1 qi−1(x)E(Zn−i)

= xq0(x) +
n−1∑

i=1

Cn
i (xqi(x)− iqi−1(x))E(Zn−i)

=
n−1∑

i=0

Cn
i qi+1(x)E(Zn−i).

Then, by (59) and Lemma 4(a), we can rewrite (60) as

qn+1(x) = xn+1 −
n∑

i=0

Cn
i qi(x)E(Zn+1−i)−

n−1∑

i=0

Cn
i qi+1(x)E(Zn−i)

= xn+1 −
n∑

i=0

Cn+1
i qi(x)E(Zn+1−i),

where the last line follows by Lemma 4(b). Therefore, (31) holds for k = n + 1. This
completes the proof. 2

B: Proofs of (36)-(38)

Since ft(z) = ξ(θ(z))exp[ut(θ)], it is easily seen that

dft(z)
dz

=
(dθ

dz

)
ft(z)

(ξ(1)

ξ
+ u

(1)
t

)
=

(dθ

dz

)
ft(z)G1(θ).

So, (37) and (38) hold for G1. Next, suppose that

dk−1ft(z)
dzk−1

=
(dθ

dz

)k−1

ft(z)Gk−1(θ).
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Then,

dkft(z)
dzk

=
(dθ

dz

)k−1
[
ft(z)
dz

Gk−1(θ) + ft(z)
dGk−1(θ)

dθ

dθ

dz

]

=
(dθ

dz

)k

ft(z)(G1Gk−1 + G
(1)
k−1).

Thus, we proved (36).

Now, we shall prove (37) and (38) by induction. Suppose that Gk is of the form (37)
and (38) holds. It suffices to show that Gk+1 also has these two properties. To start,
write

Gk+1 = G1Gk + G
(1)
k .

The first term on the right side is

G1Gk =
(

ξ(1)

ξ
+ u

(1)
t

) ∑

l

ckl

{( k∏

i=1

[u(i)
t ]rki

)[ k∏

j=1

(ξ(j)

ξ

)skj
]}

,

and the second term is G
(1)
k = dGk/dθ. So, Gk+1 is of the form (37).

Then, we will show that (38) holds for Gk+1; that is,

k+1∑

i=1

(irk+1,i) +
k+1∑

j=1

(jsk+1,j) = k + 1. (61)

As Gk is multiplied by the factor ξ(1)/ξ, the power corresponding to this factor increases
by 1 (that is, sk+1,1 = sk1 + 1), and the remaining powers are unchanged (that is,
rk+1,i = rki ∀i and sk+1,j = skj for j 6= 1); hence (61) holds for terms in Gk(ξ(1)/ξ).
Similar arguments apply for terms in Gku

(1)
t . Next, consider G

(1)
k (= dGk/dθ). It

involves differentiation of either [u(i)
t ]rki or (ξ(j)/ξ)skj with respect to θ. Note that

d[u(i)
t ]rki

dθ
= rki[u

(i)
t ]rki−1u

(i+1)
t .

So, rk+1,i = rki − 1 and rk+1,i+1 = rk,i+1 + 1; and hence

irk+1,i + (i + 1)rk+1,i+1 = irki + (i + 1)rk,i+1 + 1,

which satisfies (61). The treatment for (d/dθ)(ξ(j)/ξ)skj is similar and we omit it. This
completes the proof. 2
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