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Control charts have been widely used for monitoring the functional relationship between a response
variable and some explanatory variable(s) (called profile) in various industrial applications. In this article,
we propose an easy-to-implement framework for monitoring nonparametric profiles in both Phase I and
Phase II of a control chart scheme. The proposed framework includes the following steps: (i) data clean-
ing; (ii) fitting B-spline models; (iii) resampling for dependent data using block bootstrap method; (iv)
constructing the confidence band based on bootstrap curve depths; and (v) monitoring profiles online
based on curve matching. It should be noted that, the proposed method does not require any structural
assumptions on the data and, it can appropriately accommodate the dependence structure of the within-
profile observations. We illustrate and evaluate our proposed framework by using a real data set.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In many industrial applications, the quality of a process (or
product) can be characterized by a functional relationship between
a quality measurement and the explanatory variables. Under such
circumstances, statistical process control (SPC) aims on monitoring
data (called profiles) that represent such a functional relationship,
instead of on monitoring a single quality measurement. A nice
overview and extensive discussions of profile monitoring can be
found in Noorossana, Saghaei, and Amiri (2011). In this study, we
are interested in monitoring nonparametric profiles for which the
underlying functional relationship cannot be reasonably described
by a pre-specified model. In particular, we focus on examining
profiles that are collected over time. For this type of data, it is nat-
ural to assume that the within-profile observations are correlated.

Nonparametric profile monitoring has received increased atten-
tion in recent years due to its flexibility in modeling complex data
structures. We highlight some remarkable works below. Chicken,
Pignatiello, and Simpson (2009) and Lada, Lu, and Wilson (2002)
used the wavelet-based approaches for process fault detection.
Ding, Zeng, and Zhou (2006) used a dimension-reduction method
for monitoring nonlinear profiles. Colosimo and Pacella (2007)
used the principal component analysis for monitoring roundness
profiles of manufactured items. Zou, Tsung, and Wang (2008) used
a multivariate exponentially weighted moving average (MEWMA)
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chart and the generalized likelihood ratio test to monitor changes
of the functional relationship based on local linear smoothers.
Zhang and Albin (2009) used a chi-square control chart to identify
outlying profiles without requiring explicit expression of the func-
tional relationship. Zou, Qiu, and Hawkins (2009) used a change-
point model and the generalized likelihood ratio tests to detect
changes of the functional relationship. Chang and Yamada (2010)
used a discrete wavelet transformation and B-splines to monitor
the mean shifts and shape changes in a profile. For more relevant
works the readers can refer to Chicken (2011) and references
therein.

Traditional profile monitoring methods often assume the with-
in-profile data are independent. On the other hand, methods that
incorporate the correlation structure into analysis are rather lim-
ited. Two remarkable works can be found in Jensen and Birch
(2009) and Qiu, Zou, and Wang (2010), of which the within-profile
correlation was accounted for by using nonlinear mixed models
and nonparametric mixed-effects models, respectively. These two
approaches are in fact semi-parametric, which are flexible and
novel from a theoretical viewpoint. However, from the viewpoint
of implementation, they may not be practical due to a certain
amount of numerical computation on the required parameter esti-
mation (such as the maximum likelihood estimators) and test
statistics (such as the likelihood ratio tests). Recently, Hung, Tsai,
Yang, Chuang, and Tseng (2012) proposed a framework for non-
parametric profile monitoring in multi-dimensional data spaces.
They introduced a technique called Support Vector Regression
(SVR) to model the functional relationship between the response
variable and explanatory variables, while the within-profile corre-
lation is accommodated by using a resampling technique called
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block bootstrap. The idea therein was closely related to our pro-
posed framework in this study. However, it has a shortcoming that
the computation for monitoring the profiles online can be very
intricate, especially when the number of explanatory variables
becomes large.

Our goal here is to provide an easy-to-implement and computa-
tionally cheaper framework for monitoring nonparametric profiles
by taking into account the within-profile correlation. To simplify
the formulation of the problem, here we discuss the cases with
only one covariate. Based on a certain number of observed in-con-
trol (IC) profiles, in Phase I we establish an adequate confidence
band for the underlying functional relationship without requiring
strong model assumptions. This confidence band can then serve
as a control chart for Phase II process monitoring. The proposed
framework in Phase I is mainly divided into five steps. In Step 1,
an automated approach, called the two-sided median method, is
used to clean each profile data. In Step 2, an adequate B-spline
model is fitted to each profile data. In Step 3, the moving block
bootstrap method (MBB) is used to generate correlated samples
for each profile. In Step 4, the B-spline model is fitted to each of
the bootstrap sample and its corresponding curve depth is
calculated. In Step 5, the B-spline curves with smaller curve depths
are removed and, the resulting confidence bands of all profiles are
pooled so as to obtain a simultaneous confidence band for the
underlying functional relationship. In Phase II, the idea of ‘‘curve
matching’’ is used to establish the time-dependent B-spline model
for monitoring a new profile online. The remaining of this study is
organized as follows. In Section 2, the framework for nonparamet-
ric profile monitoring is introduced. In Section 3, the proposed
framework is illustrated by using the AIDS data collected from
hospitals in Taiwan. In addition, numerical comparisons are made
to show that our proposed method works well in testing untried
experiments. Some concluding remarks are drawn in Section 4.
2. A framework for nonparametric profile monitoring

Suppose there are M independent profiles obtained from a
typical design of IC process and the ith profile has ni observations,
i ¼ 1; . . . ;M. Let yij be the measurement of the jth observation in
the ith profile and xij be the corresponding explanatory variable
such that j ¼ 1; . . . ;ni for each i ¼ 1; . . . ;M. With this assumption,
it is clear that the data range for each profile can be different.
Suppose the underlying IC model is denoted by

yij ¼ f ðxijÞ þ eij; i ¼ 1; . . . ;M; j ¼ 1; . . . ; ni; ð1Þ

where f ð�Þ is a general function with some degree of smoothness,
and eij are associated error terms from some unknown distribution.
It should be mentioned that here we mainly focus on time-series
profiles, viz., profile i is observed at time ti; t1 < t2 < � � � < tM ;

ðxij; yijÞ is the pair of observed quantities for the ith profile at time
tij, where ti ¼ ti1 < ti2 < � � � < tini

. Further, for modeling flexibility
we do not place any structural assumptions on the errors eij (such
as i.i.d. or normal distribution). This relaxed assumption is suitable
for many real-life data that present the characteristics of nonnor-
mality and correlation over time.

Our goal here is to propose an easy-to-implement framework
for constructing an overall confidence band of f(x) based on the
observed IC profiles. The proposed framework is sequential and
outlined as follows: (i) an automated method is used to clean the
profile data; (ii) an adequate B-spline model is fitted to each pro-
file; (iii) the block bootstrap method is used to resample from each
profile data; (iv) the confidence band for each profile is constructed
based on the bootstrap percentiles of curve depths; and (v) the
simultaneous confidence band for the desired function f is obtained
by pooling the confidence bands for all IC profiles. The simulta-
neous confidence band then serves as a control chart for online
monitoring of profiles.

2.1. Data cleaning

The identification of unusual observations (or outliers) for time
series data is important since they can lead to intervention of
analysis for the underlying process. For example, the data can be
obtained in the form of signals collected by sensors with different
time stamps (e.g., the Flight Data Recorder). These signals are often
noisy due to inaccurate sensor readings (i.e., measurement error).
Thus, in order to provide users (such as engineers or pilots) effi-
cient analysis tools, it is necessary to extract high quality informa-
tion from these noisy data.

The shortcoming of traditional methods for outlier detection is
that they are usually model dependent (Chang, Tiao, & Chen, 1988;
Peña, 2001). This type of approaches may not be practical since the
underlying time series can be highly nonstationary, thus requiring
an extremely high computational cost for model selection. To avoid
the problem of model selection, here we introduce an automated
data cleaning approach proposed by Basu and Meckesheimer
(2007), called the two-sided median method. It is noted that this
method is easy to implement, model independent, and computa-
tionally much cheaper than the model-based approaches. Its basic
idea is described below.

Given a time series y1; y2; . . . ; yn, the neighborhood of a particu-
lar observation yi is defined as the set fyi�k; . . . ; yi�1; yiþ1; . . . ; yiþkg,
where 2k is the size of the neighborhood window. Compute the
median for the neighborhood of yi and denote it by mðkÞi . Calculate
the distance from yi to mðkÞi and compare it to a pre-specified
threshold value s. If jyi �mðkÞi j < s, then the observation yi is re-
tained; otherwise yi is identified as an outlier and replaced by
mðkÞi . With this identification rule, an observation is labeled as an
outlier when it is considerably far from the median of its neighbor-
hood. Further, by replacing the identified outliers with more rea-
sonable values, a cleaner time series y�1; y

�
2; . . . ; y�n is obtained. It

should be mentioned here that in general there is no optimal rule
for choosing the best values of k (window width) and s (threshold
value). In real applications, these values are often determined
based on engineering knowledge. However, for practical purposes
here we provide a rough rule of thumb for choosing k and s:

Choose first a moderate value of k (e.g., k ¼ 3 or 5), then choose
a rather large value of s so that the amount of identified outliers
does not exceed 5–7% of the total observations.

Note that based on the above rule of thumb, the noisy data for
each profile can be reasonably cleaned, and yet, their primary
information can be fairly well preserved at the same time.

Remark. The two-sided median method can also be used to
estimate the missing values in a time series.
2.2. Fitting B-spline polynomial models

In order to simplify the notations, in this subsection we denote
the cleaned data of a particular profile by fyj; xjg, where
j ¼ 0;1; . . . ;n. The next step of our framework is to obtain a smooth
function f̂ ðxÞ that represents well the relationship between yj and
xj for each profile so that the underlying function f ðxÞ can be esti-
mated accordingly in later stages. Note that one of the most popu-
lar and powerful techniques in nonparametric regression is spline
smoothing (Hastie & Tibshirani, 1990; Green & Silverman, 1994;
Wahba, 1990). A general solution is to choose the function f̂ ðxÞ
so as to minimize the penalized sums of squares



484 S.-C. Chuang et al. / Computers & Industrial Engineering 64 (2013) 482–491
Xn

j¼1

ðyj � f̂ ðxÞÞ2 þ k
Z
ðf̂ 00ðxÞÞ2dx; ð2Þ

where k is a roughness penalty (or smoothing parameter) that con-
trols the trade-off between model fidelity and roughness.

The solution f̂ ðxÞ in Eq. (2) is a piecewise polynomial with the
join points (called knots) at a unique set of the explanatory values.
If f̂ ðxÞ is a cubic polynomial (this is the most common spline in
practice) over each interval of ðx0; x1Þ, . . ., ðxn�1; xnÞ and it has
continuous first and second derivatives (i.e. C2 continuous) at the
knots, then f̂ ðxÞ is called a smoothing spline. However, the natural
cubic spline does not provide an explicit form for f̂ ðxÞ. In addition,
it has the disadvantage that every time when one of the control
point changes, the entire curve needs to be recomputed. This
means that the implementation of smoothing spline can be
computationally expensive. To overcome this problem, we intro-
duce an alternative approach based on constructing a set of basis
functions, called B-spline.

Let us denote the knot vector by x ¼ ðx0; x1; . . . ; xnÞ with the
corresponding nþ 1 control points y0; . . . ; yn. A B-spline of degree
d is a parametric curve composed of a linear combination of basis
functions Bj;d, say,

f̂ ðxÞ ¼
Xn

j¼0

yjBj;dðxÞ: ð3Þ

The basis functions can be defined and easily computed by using
the Cox-de Boor recursion formula (de Boor, 1978, 2001):

Bj;0ðxÞ ¼
1 if xj 6 x < xjþ1;

0 otherwise;

�

Bj;dðxÞ ¼
x� xj

xjþd�1 � xj
Bj;d�1ðxÞ þ

xjþd � x
xjþd � xjþ1

Bjþ1;d�1ðxÞ; ð4Þ

where the convention 0
0 ¼ 0. Note that Bj;dðxÞ is a polynomial of de-

gree d� 1 (which is sometimes confusing) and Cd�2 continuous on
each interval xj < x < xjþ1. Also, the basis functions have the prop-
erty that 0 6 Bj;dðxÞ 6 1 for all j and

Pn
j¼0Bj;dðxÞ ¼ 1. As can be seen,

for any given x there are only d nonzero basis functions. This indi-
cates that the B-spline depends on d nearest control points at any
point x. Therefore, it is attractive in the context that, if we wish to
recompute the entire spline curve after one control point is chan-
ged, then only the terms involving that point need to be removed
and recomputed. Such an important feature also makes it particu-
larly useful for real-time monitoring, especially when the number
of observations becomes large.

The shape of the basis functions is clearly determined by the
position of the knots. If the spacing between the knots is a constant
(i.e. xjþ1 � xj � c), the B-spline is referred to as a uniform B-spline.
Note that the basis function for uniform B-splines can be easily cal-
culated, and, it is equal for each polynomial segment. To illustrate,
the ith polynomial segment for the most commonly used cubic
uniform B-spline (i.e. d ¼ 4, which refers to cubic polynomials) is
given by

SiðxÞ ¼ ½x3 x2 x 1� � 1
6

�1 3 �3 1
3 �6 3 0
�3 0 3 0
1 4 1 0

2
6664

3
7775

yi�1

yi

yiþ1

yiþ2

2
6664

3
7775 ð5Þ

Since equal knot spacing fails to cope with all but the most
simplistic of geometries, one may consider nonuniform B-splines
that allow any spacing of the knots. However, how to determine
the optimal number and position of the knots remains a challeng-
ing problem (it is in fact an NP-hard problem). Some related works
in literature include: the method called TURBO (Friedman & Silver-
man, 1989), the Delete-Knot/Cross-Validation method (DKCV)
(Breiman, 1993), the reversible jump Markov chain Monte Carlo
method (Denison, Mallick, & Smith, 1998), the model selection
algorithm based on Akaike Information Criterion (AIC) or Bayesian
Information Criterion (BIC) (Molinari, Durand, & Sabatier, 2004),
and the Simulated-Annealing strategy (Lolive, Barbot, & Boeffard,
2006), just to name a few. Due to the nice computational property
previously mentioned for B-splines, in this work we employ the
leave-one-out Cross-Validation (CV) strategy for choosing the opti-
mal number of knots. The idea of the leave-one-out CV strategy is
introduced as follows (Geisser, 1993; Mosteller & Wallace, 1963;
Stone, 1974).

First, the position of the knots can be chosen in a data-adaptive
scheme. For example, given any fixed number k, the knots can be
placed at suitable quantiles of fxjgn

j¼0. The leave-one-out CV score
is then defined as the following mean squared error of prediction
(MSEP):

MSEPðkÞ ¼ 1
nþ 1

Xn

j¼0

ðyj � f̂ ð�jÞðxjÞÞ2; ð6Þ

where f̂ ð�jÞ is the obtained cubic B-spline by removing the jth obser-
vation ðyj; xjÞ. Consider a reasonable set of distinct knot numbers,
say, fk1; k2; . . . ; kNg where 0 6 ki 6 nþ 1 for all i ¼ 1; . . . ;N. After
calculating the MSEP for each value of ki, the optimal number of
knots is then chosen as

k� ¼ arg min
k2fk1 ;...;kNg

MSEPðkÞ: ð7Þ
2.3. Block bootstrap resampling for dependent data

With all obtained residuals eij for each profile i, the next step is
to construct the confidence band for f̂ iðxÞ within the data range.
This can be done naturally by a bootstrap resampling procedure.
The traditional bootstrap method, as known first proposed by Efron
(1979), was designed to resample from independent data (one at a
time) so that the measurement of interest can be estimated based
on the empirical distribution of all sampled observations. However,
since now we assume the residuals ei1; . . . ; eini

can be correlated for
each profile i, the traditional bootstrap method may overestimate
(or underestimate) the desired quantity without incorporating
the dependence structure of data. To overcome this problem, we
introduce a simple and popular version of the bootstrap method
for dependent data, called block bootstrap. Its basic idea is
described as follows.

In the block bootstrap, data are divided into several blocks so
that the original dependence structure within a block is preserved.
A popular version for this type of resampling method is the moving
block bootstrap (MBB), for which overlapping blocks of the same
length are drawn randomly with replacement. It was shown in
extensive studies that the MBB outperforms other methods based
on subsequent values presenting high correlation in relatively
short periods of observations (see Mignani & Rose, 2001, and refer-
ences therein). Further, it does not require specific assumptions on
the structure of the data generating process. For the MBB with a
block length l, the residuals ei1; . . . ; eini

of each profile i can be di-
vided into ni � lþ 1 blocks, viz., with block 1 being fei1; . . . ; eilg,
block 2 being fei2; . . . ; eiðlþ1Þg,. . ., etc. Therefore, the bootstrap
sample for each profile i is generated by the following mechanism:

fy�ij; x�ijg ¼ ff̂ iðxijÞ þ eiðtþkÞ; xijg; ð8Þ

where j ¼ 1;2; . . . ;ni; t is generated independently from a uniform
random variable on f1;2; . . . ; ni � lþ 1g, and k ¼ 1;2; . . . ; l.

It is noted that the accuracy of the MBB is sensitive to the choice
of block length l. In general, blocks of a shorter length can achieve a
better approximation of the underlying distribution, but on the
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other hand they may destroy the structure of short-range (or med-
ium-range) dependence. There are different ways suggested in
literature for choosing the optimal block length (Bühlmann &
Künsch, 1999; Hall, Horowitz, & Jing, 1995; Künsch, 1989; Lahiri,
1999; Lahiri, Furukawa, & Lee, 2007). Among all the methods,
two essential ones are called the plug-in methods and the empiri-
cal criterion-based methods. However, these two types of methods
may not be practical in the sense that the plug-in methods often
require a huge amount of work in order to obtain the theoretical
expression for the optimal block length, while the criterion-based
methods often require a certain amount of computation. In this
work, we introduce a simple method for choosing a ‘‘suitable’’
block length for time series data. The idea is based on examining
the diagnostic plot of the sample autocorrelation function (ACF).
To illustrate, let us look at the ACF of a time series (with sample
size n ¼ 48) shown in Fig. 1. As can be seen from Fig. 1, the value
of ACF becomes insignificant after lag 3. In this case, the suggested
smallest block length is l ¼ 3þ 1 ¼ 4 (since the block length is
often chosen to be substantially longer than the dependence
length), which also agrees with the criterion suggested in Lahiri
(1999) (i.e., l ¼ 4 < n1=2 ¼ 481=2 � 7). In summary, the following
guideline is suggested for choosing the block length:

Suppose the sample size is n and �l is the smallest time lag so
that the ACF is not significant with all time lags greater than �l.
The suggested block length is then:
l� ¼minð�lþ 1;
ffiffiffi
n
p
Þ:
Remark. Since the glue points break the property of stationarity,
the data generated by the MBB are nonstationary. However, this
problem can be solved by using a method called stationary boot-
strap (if the original data are stationary), for which the block length
l is randomly selected from a geometric distribution (Politis &
Romano, 1994). For other methods that can be used to resample
from dependent data (such as subsampling, sieve bootstrap, local
bootstrap, wild bootstrap, and Markov bootstrap, etc.), the readers
can refer to Chernick (1999) and Davison and Hinkley (2006).

2.4. Simultaneous confidence band based on bootstrap curve depths

To construct the simultaneous confidence band for the underly-
ing function f ðxÞ, we first establish the bootstrap percentile confi-
dence band of f ðxÞ within the data range of each profile and then
glue all the confidence bands together. Suppose for each profile i,
the bootstrap sampling process is repeated N times so that a collec-
tion of N B-spline curves CN

i ðxÞ ¼ ff̂ 1
i ðxÞ; . . . ; f̂ N

i ðxÞg is obtained,
where minj6ni
xij 6 x 6 maxj6ni

xij. Here the confidence band is
constructed based on the method of ranking the ‘‘curve depths’’
in the collection CN

i ðxÞ, which was first proposed by Yeh (1996).
Its basic idea, when applied to our analysis, is described as follows.

For a particular bootstrap curve f̂ j
iðxÞ 2 CN

i ðxÞ, its curve distance
with respect to the baseline curve f̂ iðxÞ (obtained from the original
profile data) can be defined as

dij ¼ dðf̂ iðxÞ; f̂ j
iðxÞÞ ¼

Z xini

xi1

ðf̂ j
iðxÞ � f̂ iðxÞÞ2dx: ð9Þ

The corresponding curve depth is then defined as Dij ¼ ð1þ dijÞ�1.
With this definition, the smaller the curve depth is, the further
the curve is located from the benchmark curve. Therefore, to obtain
the bootstrap percentile confidence band we can exclude 100a%
curves with the lowest depths from the collection CN

i ðxÞ.
Now we describe the detailed steps for constructing the confi-

dence band of f ðxÞ within the data range of each profile i. Let
Dið1Þ 6 Dið2Þ 6 � � � 6 DiðNÞ be the sorted curve depths Dij for all the
bootstrap curves in CN

i ðxÞ. For any given 0 < a < 1, define the col-
lection CN

i;1�aðxÞ ¼ ff̂
ðjÞ
i ðxÞ : aN 6 j 6 Ng, where minj6ni

xij 6 x 6
maxj6ni

xij. The 100ð1� aÞ% bootstrap percentile confidence band
for f ðxÞ within the data range of profile i is then given by

BN
i;1�aðxÞ ¼ fðx;yÞ : For each fixed x;min

j
f̂ j

iðxÞ6 y6max
j

f̂ j
iðxÞg; ð10Þ

where f̂ j
iðxÞ 2 CN

i;1�aðxÞ and minj6ni
xij 6 x 6maxj6ni

xij. Since we as-
sume all the profiles are independent, it is natural to pool all the
confidence bands BN

1;1�aðxÞ;B
N
2;1�aðxÞ; . . . ;BN

M;1�aðxÞ so as to obtain
the confidence band of f ðxÞ over the entire data space. Thus, the
simultaneous confidence band of f ðxÞ is given by

B1�aðxÞ ¼ fðx;yÞ : For each fixed x;min
i;j

f̂ j
iðxÞ6 y6max

i;j
f̂ j

iðxÞg; ð11Þ

where f̂ j
iðxÞ 2 CN

i;1�aðxÞ;1 6 i 6 M, and 1 6 j 6 ni.

2.5. Algorithm for framework implementation

Note that the above procedures, which include data cleaning,
fitting B-spline models, block bootstrap resampling, and construc-
tion of the simultaneous confidence band, basically constitute the
Phase I analysis of profile monitoring. For implementation purpose,
we summarize the steps of these procedures in the following
algorithm:

Step 1: Clean each profile data by using the two-sided median
method.

Step 2: Obtain the B-spline curve f̂ iðxÞ for each profile i based on
the procedure introduced in Section 2.2.

Step 3: Generate N bootstrap samples fy�ij; x�ijg for each of retained
profile i based on the procedure introduced in Section 2.3.

Step 4: For each profile i, obtain the B-spline curve f̂ j
iðxÞ based on

each generated bootstrap sample and compute its curve
depth Dij with respect to the benchmark curve f̂ iðxÞ. Obtain
the sorted curve depths DiðjÞ and identify the collection of
curves CN

i;1�aðxÞ for a given 0 < a < 1.
Step 5: Construct the 100ð1� aÞ% bootstrap percentile confidence

band BN
i;1�aðxÞ within the data range of each profile i by

using Eq. (10). Obtain the simultaneous confidence band
for f ðxÞ over the entire data space by using Eq. (11).

2.6. Online monitoring based on curve matching

The confidence region B1�aðxÞ in Eq. (11) can simply serve as a
control chart for online monitoring of time-ordered profiles in
Phase II. To do this, for any new profile we observe, at any point
in time t a B-spline model has to be established based on the cur-
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rent observations. If the obtained B-spline model (denoted by f̂ ðxtÞ)
falls completely within the confidence region (i.e., f̂ ðxtÞ � B1�aðxÞ
for all xt such that mini;jxij 6 xt 6 maxi;jxij), then the profile is con-
sidered as ‘‘in-control’’ at time t. Otherwise, it is considered as
‘‘out-of-control’’. However, such an online monitoring scheme
can induce huge amounts of computation since a new search for
the optimal number of knots (i.e., k�) is necessary for obtaining
the desired B-spline model (see Section 2.2) when a new data point
is observed. To overcome this computational issue, we suggest
choosing k� based on the concept of ‘‘curve matching’’. Its basic
idea is introduced below.

Let ðy1; x1Þ; . . . ; ðynðtÞ; xnðtÞÞ be the observed profile data at any gi-
ven point in time t. The IC curve that ‘‘best matches’’ the observed
data is given by

iðtÞ ¼ arg min
i¼1;...;M

XnðtÞ
j¼1

ðyj � f̂ iðxjÞÞ2; ð12Þ

where f̂ i is the B-spline model for the ith IC profile obtained from
the earlier stage. Let us denote the optimal value of k� for establish-
ing f̂ iðtÞ by k�iðtÞ. Since the iðtÞth IC curve best matches the observed
data up to time t, the optimal number of knots for fitting the desired
B-spline model f̂ ðxtÞ can be chosen based on the following rule:

If nðtÞ > k�iðtÞ, choose k� ¼ k�iðtÞ; otherwise choose k� ¼ nðtÞ.
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It should be mentioned here that, the proposed curve matching
procedure for finding k� is computationally much cheaper than
performing consecutive empirical searches of k� over time, espe-
cially when the number of observations becomes large.

Remark. In practice, one may require a numerical way to check if
a particular B-spline curve f̂ ðxtÞ completely lies within the confi-
dence band B1�aðxÞ. To do this, one can superimpose fine grids on
the input domain of the explanatory variable and then check if the
corresponding measures of response on the B-spline curve exceed
the boundaries of the confidence band.
3. Performance evaluation: a real example

In this section, the performance of our proposed framework is
evaluated by a real data set from hospitals in Taiwan. We first intro-
duce the data, some numerical results are presented afterwards.

3.1. Introduction to the data

The AIDS cohort data, which were collected between January
1990 and January 2003, include the information of clinical,
biochemical, serologic, and histologic parameters of 1054 HIV-in-
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fected patients in Taiwan. All patients were advised to return to
hospital every three or four months for a follow-up diagnosis.
The primary goal of collecting such a data set is to evaluate the effi-
cacy of the highly active antiretroviral therapy (HAART), which
consists of at least three anti-HIV drugs (for a detailed description
of this data set, please refer to Shu & Tseng (2009)). To implement
the proposed framework, we select two important variables from
the data set:

Y: The CD4 cell count (per cubic millimeter of blood) in log
scale.

X: The ratio of CD4 cell count to CD8 cell count.
We divide the patients into two groups. The patients who took

the therapy HAART are categorized as the ‘‘in-control’’ (IC) profiles.
On the other hand, the patients who did not take the therapy
HAART are categorized as the ‘‘out-of-control’’ (OC) profiles. To
establish the confidence region for the underlying functional
relationship between X and Y, we randomly select 20 IC profiles
(patients) from the data. The scatter plot for these 20 selected IC
profiles is given in the left panel of Fig. 2.

As can be seen from the left panel of Fig. 2, there exists a very
clear functional relationship between Y and the explanatory vari-
able X. In addition, it shows that there may be some potential out-
liers in this particular data set. Therefore, we utilize the two-sided
median method to clean the noise. According to the rule of thumb
suggested in Section 2.1, here we choose k ¼ 5 and s ¼ 0:54 in the
two-sided median method. Further, the implementation of the
method yields two potential outliers, ðX;YÞ ¼ ð0:72;4:52Þ and
ð0:87;4:74Þ. With the two potential outliers being replaced by
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Fig. 4. The illustration of fitted B-spline
the medians in the neighborhood, the cleaned data are shown in
the right panel of Fig. 2.

3.2. Results of framework implementation – Phase I

We next establish the B-spline model for each of the 20 cleaned
IC profiles. In order to obtain an adequate B-spline model for each
of the profiles, we consider a set of possible numbers of knots
f0;1; . . . ;10g and compute the corresponding MSEP for each num-
ber using the leave-one-out CV. To make the results amenable to
visualization, the diagnostic plots for two illustrative profiles (pro-
files 1 and 2) are shown in Fig. 3. As can be seen from Fig. 3, the
optimal numbers of knots (i.e., k�) that minimize the MSEP for pro-
file 1 and profile 3 are given by 3 and 2, respectively. Based on all
the diagnostic plots, the optimal number of knots for all the 20 IC
profiles are given by 3, 1, 2, 2, 6, 1, 1, 1, 1, 9, 2, 5, 11, 2, 3, 1, 1, 2, 1,
and 1, respectively. The resulting fitted B-spline curves (i.e. f̂ iðxÞ)
based on the best selected number of knots for profiles 2, 5, 7,
and 10 are shown in Fig. 4.

We next examine the plot of ACF for the residuals based on the
fitted B-spline curve for each IC profile. The goal of this step is to
choose a suitable block size so as to conduct an adequate bootstrap
sampling procedure for each profile data. Note that Fig. 1 in fact
shows the plot of ACF for profile 11. For additional illustrations,
the plots of ACF for profiles 2, 5, 7, and 10 are given in Fig. 5. As
we can see from Fig. 5, the residuals of all profiles reveal a small
range of dependence over time (in fact this is true for all profiles).
In particular, the ACFs for profiles 2 and 10 are insignificant for all
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lags greater than zero, whereas the ACFs for profiles 5 and 7 be-
come insignificant after lag 1 and 2, respectively (note that the
ACF always has the value one at lag zero). These suggest that the
suitable block size for profiles 2 and 10 is one (which then reduces
to the primary bootstrap method), while the suggested block sizes
for profiles 5 and 7 are 2 and 3, respectively. Based on all the diag-
nostic plots, the suggested block sizes for all the 20 IC profiles are
given by 4, 1, 1, 1, 2, 1, 3, 1, 5, 1, 4, 2, 6, 1, 1, 1, 1, 2, 2, and 1,
respectively.

Based on the obtained block sizes, the MBB method (or boot-
strap method) is then used to resample from the residuals of each
profile. Thus, for each generated bootstrap sample we can obtain a
fitted B-spline curve that represents the relationship between X
and Y. Fig. 6 shows 20 B-spline curves obtained from the MBB
method for profiles 2, 5, 7, and 10. As can be seen from Fig. 6, each
experiment reveals to have a fairly uniform and tight confidence
band (in fact this is true for all profiles), except for the locations
where data are sparse or near the boundaries (this might be due
to the feature of fitting B-spline models). The result also provides
a strong evidence that each of the obtained B-spline models repre-
sents fairly well the underlying functional relationship within the
corresponding data range.

To construct the confidence band BN
i;1�aðxÞ for each profile, the

MBB method is repeated 104 times (i.e. N ¼ 104) so that 104 boot-
strap curves are obtained. Eq. (9) is then used to compute the curve
depth for each bootstrap sample. By deleting 5% of curves based on
the sorted curve depths for each profile, the resulting 95% simulta-
neous confidence bands B0:95ðxÞ over the entire data space are gi-
ven in Fig. 7a. Note that for comparison purpose, the
simultaneous confidence band based on the traditional bootstrap
method (i.e., block size � 1) is shown in Fig. 7b.

We summarize some remarkable findings in Fig. 7. First, as can
be seen from panel (a), the confidence band is promising since all
the B-spline curves for the 20 IC profiles completely lie within the
boundaries (i.e., coverage probability = 1.00 for these 20 IC pro-
files). Second, the simultaneous confidence band is not particularly
smooth (especially for the locations where two or more confidence
bands are pooled together) and does not have homogeneous
widths over the entire data range. This is likely due to inconsis-
tency of the correlation structures for different profiles. Last, panel
(b) shows that the confidence band obtained by the traditional
bootstrap method has a very similar shape to that obtained by
our method, of which the result is likely due to the small block
sizes chosen in the MBB method. In fact, numerical results show
that the confidence band obtained by the traditional bootstrap
method is a bit wider in the area of 0:5 < X < 0:8 and a bit
narrower in the area of 0:8 < X < 1:4, within which the corre-
sponding profile residuals are negatively correlated and positively
correlated, respectively.

3.3. Online profile monitoring – Phase II

To evaluate the effectiveness of our proposed framework, the
online monitoring procedure is performed for 50 randomly
selected IC and OC profiles from the original data set. At any point
in time t, a B-spline model is fitted to the observed profile data
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with the number of knots chosen based on the rule suggested in
Section 2.6. For visualization purpose, Fig. 8 illustrates the results
for monitoring four profiles using the previously obtained confi-
dence band based on Eq. (9) (i.e., the confidence band in panel
(a) of Fig. 7), of which two are identified as IC profiles and two
are identified as OC profiles. It is noted that an OC signal here
indicates the detection of HIV infection in high-risk patients.
We next compare the performance of our proposed framework
with other methods in terms of the following measures: (i) Aver-
age Run Length (ARL) to false alarm, i.e., the average number of
observed IC profiles before an OC signal is generated; (ii) ARL to
true alarm, i.e., the average number of observed OC profiles before
an OC signal is generated; (iii) Standard Deviation of Run Length
(SDRL), the standard deviation for the number of observed profiles
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Table 1
The performance measures for the online monitoring of 50 randomly selected IC and
OC profiles based on three different methods.

Performance measures Our method The method by
Zou et al.

The method by
Jensen and Birch

ARL (to false alarm) 7.14 1.25 8.33
ARL (to true alarm) 1.85 1.19 4.55
SDRL 3.38 1.60 2.40
ATS 7.44 7.00 7.36
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to true and false alarm; and (iv) Average Time to Signal (ATS), the
average number of observations to signal an OC profile. Due to
limited computational resources, here we consider two benchmark
methods to carry out the numerical comparisons. The first method
to be compared is the nonparametric regression approach intro-
duced by Zou et al. (2008), wherein a standard Gaussian kernel
function is selected to construct the local linear smoother and
the error terms eij are assumed to be iid normal random variables
(thus the within-profile correlation is not taken into account). The
second method to be compared is the nonlinear mixed (NLM) mod-
els introduced by Jensen and Birch (2009), wherein a logistic model
is selected and correlation within the profile is also incorporated.
The numerical results based on the 50 randomly selected IC and
OC profiles are summarized in Table 1.

The numerical results in Table 1 reveal several interesting find-
ings. First, the method by Jensen and Birch classifies well the IC
profiles (ARL to false alarm = 8.33) but misclassifies a large propor-
tion of the OC profiles (ARL to true alarm = 4.55). This may be due
to the fact that the method incorporates inadequate correlation
structures into analysis so that a rather ‘‘conservative’’ (large) con-
fidence region is obtained. Second, the method by Zou et al. classi-
fies fairly well the OC profiles (ARL to true alarm = 1.19) but
misclassifies a large proportion of the IC profiles (ARL to false
alarm = 1.25). This may be due to the fact that the method totally
ignores the correlation structure within the profile so that a rather
‘‘tight’’ (small) confidence region is obtained. Third, our method
classifies fairly well both the IC profiles (ARL to false alarm = 7.14)
and the OC profiles (ARL to true alarm = 1.85). It is known that a
good monitoring scheme should result in a large ARL to false alarm
and a small ARL to true alarm. Therefore, if the ARLs to both false
alarm and true alarm are considered, our method appears to have
the best overall performance among all the methods in this study
(though the associated SDRL is shown to be a bit larger than the
other two methods). Finally, our method results in a larger value
of ATS (i.e., slower on generating OC signals) for this particular data
set, which indicates a tradeoff between the computational speed
and accuracy.
4. Summary and concluding remarks

We proposed a general framework for monitoring nonparamet-
ric profiles in both Phase I and Phase II. The framework is mainly
divided into five steps in Phase I. In Step 1, an automated approach
(called the two-sided median method) is used to clean each profile
data. In Step 2, an adequate B-spline model is fitted to each profile
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data. In Step 3, the moving block bootstrap method is used to
generate dependent samples for each profile. In Step 4, the B-spline
model is fitted to each of the bootstrap sample and its correspond-
ing curve depth is calculated. In Step 5, the B-spline curves with
smaller curve depths are removed and, the resulting confidence
bands of all profiles are pooled so as to obtain a simultaneous
confidence band of the underlying functional relationship over
the entire data space. The obtained confidence band in Phase I
can be used to monitor nonparametric profiles in Phase II. The
numerical results show that our framework is effective in detecting
unobserved profiles in terms of average run length (ARL), com-
pared to two benchmark methods shown in literature.

Here we highlight some potential problems for future research
studies. First, in practice any nonparametric modeling technique
with adequately chosen tuning parameters can be applied in Step
2 of our proposed framework. However, one needs to take into
account the computational cost (especially when the number of
profiles/observations is large) and how to best compare the confi-
dence bands obtained from different modeling techniques. Second,
we can develop other control charts for monitoring nonparametric
profiles in real time based on the obtained simultaneous confi-
dence band. For example, we can consider the centerline of the
confidence band as a baseline function (i.e. an estimate of f ðxÞ)
and then monitor the change of residuals (or average curve
distances) for a new profile over time. However, how to best incor-
porate the dependence structure of the observations into the
development of such a control chart needs to be further investi-
gated. Third, the proposed framework can be properly extended
to monitor nonparametric profiles in high dimensional data spaces.
However, one may require a more efficient modeling technique to
best describe the underlying functional relationship. Finally, incor-
porating common-cause variation between profiles into the
control chart scheme is sometimes necessary in real applications.
This is obviously a more challenging task since one needs a new
model (parametric or semi-parametric model) that takes into ac-
count both the intra-profile and inter-profile correlations.
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