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Profile  monitoring  has  received  increasingly  attention  in  a wide  range  of  applications  in  statistical  pro-
cess  control  (SPC).  In this  work,  we  propose  a framework  for monitoring  nonparametric  profiles  in
multi-dimensional  data  spaces.  The  framework  has  the  following  important  features:  (i)  a  flexible  and
computationally  efficient  smoothing  technique,  called  Support  Vector  Regression,  is  employed  to describe
the relationship  between  the  response  variable  and  the  explanatory  variables;  (ii) the  usual  structural
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assumptions  on the  residuals  are  not  required;  and (iii)  the  dependence  structure  for  the within-profile
observations  is  appropriately  accommodated.  Finally,  real AIDS  data  collected  from  hospitals  in  Taiwan
are used  to  illustrate  and  evaluate  our  proposed  framework.

© 2011 Elsevier Ltd. All rights reserved.
. Introduction

In many industrial and medical applications, the quality of a
rocess (or product) can be characterized by a functional relation-
hip between a quality measurement and explanatory variables.
nder such circumstances, statistical process control (SPC) aims on
onitoring data (called profiles) that represent such a functional

elationship, instead of on monitoring a single quality measure-
ent. In this study, we are interested in monitoring profiles

or which the underlying functional relationship cannot be rea-
onably described by a parametric model. An important feature
or such data is that they are usually collected over time (i.e.
ime-dependent). Therefore, it is natural to assume that the within-
rofile observations are correlated.

Profile monitoring has received increasingly attention over the
ast decade. A nice overview and extensive discussions can be found
n [34,35]. As described in [34], SPC is generally divided into two
hases. In Phase I, data are cleaned and the obtained in-control
IC) data are used to estimate certain parameters of the process. In

hase II, the estimated IC parameters are used to detect/monitor
hanges in the profiles. We  highlight some relative works in the
ollowing. The early research on profile monitoring mostly focused

∗ Corresponding author. Tel.: +886 2 29387115; fax: +886 2 29398024.
E-mail addresses: hungy@nccu.edu.tw (Y.-C. Hung), wctsai@nccu.edu.tw

W.-C. Tsai), yang@nccu.edu.tw (S.-F. Yang), scchuang@ie.nthu.edu.tw
S.-C. Chuang), tsengyk@ncu.edu.tw (Y.-K. Tseng).

959-1524/$ – see front matter ©  2011 Elsevier Ltd. All rights reserved.
oi:10.1016/j.jprocont.2011.12.009
on simple linear models (see [14,17,23,37] and references there
in). Afterwards, correlation within linear profiles [13] and meth-
ods based on multiple and polynomial regression models were also
explored [15,38]. Recently, methods for nonlinear (NL) profile mon-
itoring have become popular in a wide area of applications due to
their model flexibility. For example, three general approaches to NL
profile monitoring with dose–response applications were given in
[32,33]; the principal component analysis was  used for monitoring
roundness profiles of manufactured items in [4];  a wavelet-based
procedure was used for process fault detection in [19]; a dimension-
reduction method was used for monitoring nonlinear profiles in [7];
nonparametric regression methods were used in [39]; just to name
a few.

Traditional nonlinear profile monitoring methods have an unre-
alistic assumption that the within-profile data are independent. On
the other hand, methods that incorporate the correlation struc-
ture into analysis are rather limited. Two  exceptional works can
be found in [12,26],  of which the former incorporates both the
within-profile correlation and the correlation structure of errors
via nonlinear mixed (parametric) models, and the later describes
the within-profile correlation via nonparametric mixed-effects
models. These two  approaches are novel from a theoretical view-
point, but both require a certain amount of computation for
real implementation. Our goal here is to provide a practical and
easy-to-implement framework for monitoring nonparametric pro-

files, especially for data in multi-dimensional spaces. Specifically,
based on the observed in-control (IC) profiles we  wish to estab-
lish an adequate confidence region for the underlying functional

dx.doi.org/10.1016/j.jprocont.2011.12.009
http://www.sciencedirect.com/science/journal/09591524
http://www.elsevier.com/locate/jprocont
mailto:hungy@nccu.edu.tw
mailto:wctsai@nccu.edu.tw
mailto:yang@nccu.edu.tw
mailto:scchuang@ie.nthu.edu.tw
mailto:tsengyk@ncu.edu.tw
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elationship without requiring strong model assumptions. This
onfidence region can then serve as a control chart for Phase II
rocess monitoring.

The proposed framework is mainly divided into five steps. In
tep 1, an adequate Support Vector Regression (SVR) model is fit-
ed to each of IC profiles. In Step 2, the moving block bootstrap

ethod (MBB) is used to generate correlated samples for each IC
rofile. In Step 3, the SVR model is fitted to each of the bootstrap
ample and its corresponding “surface depth” is calculated. In Step
, the SVR models with smaller surface depths are removed and,
he resulting confidence regions of all profiles are pooled so as to
btain a simultaneous confidence region for the underlying func-
ional relationship. In Step 5, a future profile is monitored online
ased on the obtained simultaneous confidence region and a simple
ata matching process. The remaining of this study is organized as
ollows. In Section 2, the framework for nonparametric profile mon-
toring in multi-dimensional data spaces is introduced. In Section 3,
he proposed framework is illustrated by using real AIDS data col-
ected from hospitals in Taiwan. In addition, numerical results show
hat our proposed framework performs well by testing a moderate
umber of in-control (IC) and out-of-control (OC) profiles. Some
oncluding remarks are drawn in Section 4.

. Nonparametric profile monitoring in multi-dimensional
ata spaces

Here we consider a general formulation for the problem with
ulti-dimensional data structures. Suppose there are M indepen-

ent profiles obtained from a typical in-control (IC) process and
he ith profile has ni observations, i = 1, . . .,  M.  Let yij be the mea-
urement of interest for the jth observation in the ith profile, with
ij = (x1

ij
, . . . , xK

ij
) be the vector of K corresponding explanatory vari-

bles, j = 1, . . .,  ni for each i = 1, . . .,  M.  With this assumption, it is clear
hat the data range for each profile can be different. Suppose the
nderlying IC model is denoted by

ij = f (xij) + εij, i = 1, . . . , M,  j = 1, . . . , ni, (1)

here f(·) is a general function with some degree of smoothness,
nd εij are associated error terms from some unknown distribu-
ion. It should be mentioned that for time-series profiles, index j
f the ith profile then corresponds to a specific point in time tij at
hich yij and the corresponding explanatory variables x1

ij
, . . . , xK

ij

re observed. Further, for modeling flexibility we do not place any
tructural assumptions on the errors εij (such as i.i.d. or normal
istribution). This relaxed assumption is suitable for many real-life
ata that present the characteristics of non-normality and correla-
ion over time.

Our goal here is to propose an easy-to-implement framework
or constructing an overall confidence region for the functional
elationship f(x) based on the observed IC profiles. The proposed
ramework is sequential and outlined as follows: (i) an adequate
upport Vector Regression (SVR) model is fitted to each profile; (ii)
he block bootstrap method is used to resample from each profile
ata; (iii) the confidence region for each profile is constructed based
n the bootstrap percentiles of “surface depths”; (iv) the simul-
aneous confidence region for the desired function f is obtained
y pooling the confidence regions for all IC profiles; and (v) an
nline monitoring scheme is introduced by utilizing the obtained
imultaneous confidence region and a data matching process.

.1. Fitting Support Vector Regression models
In order to simplify the notations, we denote the data of a par-
icular profile by {(y1, x1), . . .,  (yn, xn)}, where xj = (x1

j
, . . . , xK

j
)

s a K-dimensional vector of explanatory variables and yj = y(xj) is
 Control 22 (2012) 397– 403

the corresponding output measure of interest. The first step of our
guide is to obtain a smooth function f̂  (x) that represents well the
relationship between yj and xj for each profile so that the under-
lying function f(x) can be estimated accordingly in later stages.
Note that one of the most popular and powerful techniques in
nonparametric regression originates from the framework of sta-
tistical learning theory, called Support Vector Regression (SVR)
[1,5,8,27,30]. The ideas of SVR are summarized as follows. In ε-SVR,
the goal is to find a function f(x) that has at most ε deviation from
the actually observed outputs yj for all the training data, and at the
same time, is as flat as possible. For simple linear functions f(x) = 〈ω,
x〉 + b, this corresponds to finding the solution of the following opti-
mization problem:

minimize
1
2

‖ω‖2 + C

n∑
j=1

(�j + �∗
j )

subject to

⎧⎨
⎩

yj − 〈ω, xj〉 − b ≤ ε + �j

〈ω, xj〉 + b − yj ≤ ε + �∗
j

�j, �∗
j

≥ 0

(2)

Note that the l2-norm ||ω||2 takes into account the flatness of func-
tion f (x),

∑n
j=1(�j + �∗

j
) is the amount up to which deviations lager

than ε are tolerated, and C > 0 is the trade off between both [31].
To achieve nonlinearity, the SVR algorithm finds the optimal solu-
tion of f in a high dimensional feature space (or Hilbert space) H
using a mapping � : D → H.  With this mapping, it is shown that
the optimization solution depends on the data merely through
inner products in H, that is, on functions of the form 〈�(xi), �(xj)〉.
Hence, a computationally cheaper way  is to use a kernel function
k(xi, xj) = 〈�(xi), �(xj)〉 instead of �(·) explicitly.

A popular choice of the kernel function is the Gaussian kernel
(or radial basis function), which has the form that

k(xi, xj) = exp

{
−‖xi − xj‖2

2�2

}
. (3)

From the viewpoint of implementation, the Gaussian kernel has the
following two advantages: (i) it can easily handle nonlinear mod-
els by mapping data into infinite-dimensional spaces; and (ii) it has
relatively low complexity for model selection (since the model has
only two  unknown parameters C and �2). Therefore, it is partic-
ularly suitable for exploring high-dimensional data structures. In
practice, (C, �2) can be chosen by performing a grid search in R2+
and utilizing the idea of cross-validation (CV) so as to minimize the
“mean square prediction error” [10]. Specifically, one can super-
impose a reasonable number of grids over a pre-selected region (0,
a] × (0, b] in R2+. Let us denote the set of grids by G, then for each grid
point g ∈ G, the leave-one-out CV score is defined as the following
mean squared error of prediction (MSEP):

MSEP(g) = 1
n

n∑
j=1

(yj − f̂(−j)(xj))
2 (4)

where f̂(−j) is the obtained SVR model (with (C, �2) chosen to be g)
by removing the jth observation (yj, xj). After calculating the MSEP
for each grid point g ∈ G, the optimal choice of (C, �2) is given by

g∗ = argmin
g∈G

MSEP(g). (5)

Remark: For other alternative approaches of choosing (C, �2) in
SVR with the Gaussian kernel, the readers can refer to [11,16].
2.2. Block bootstrap resampling for dependent data

Suppose now an adequate SVR model f̂i(x) for each profile i is
obtained, the residuals are then given by eij = yij − f̂i(xij), where
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Fig. 1. An illustration of ACF for a time series with size n = 460.

 = 1, . . .,  ni. The next step is to construct the confidence region for
i(x) within the data range of each profile i based on all eij. This can
e done naturally by a bootstrap resampling procedure. However,
ince we assume residuals ei1, . . . , eini

can be dependent for each
rofile i, it is important that the resampling should be carried out

n a way that the dependence structure is well captured. We  next
ntroduce a simple and popular bootstrap method for dependent
ata, called block bootstrap. Its basic idea is introduced as follows.

In the block bootstrap, data are divided into several blocks so
hat the original dependence structure within a block is preserved.

 popular version for this type of resampling method is the moving
lock bootstrap (MBB), for which overlapping blocks of the same
ength are drawn randomly with replacement. It was shown in
xtensively studies that the MBB  outperforms other methods based
n subsequent values presenting high correlation in relatively short
eriods of observations (see [24] and references therein). Further,

t does not require specific assumptions on the structure of the data
enerating process. For the MBB  with a block length l, the residuals
i1, . . . , eini

of each profile i can be divided into ni − l + 1 blocks, viz,
ith block 1 being {ei1, . . .,  eil}, block 2 being {ei2, . . .,  ei(l+1)}, etc.

herefore, the bootstrap sample for each profile i is generated by
he following mechanism:

y∗
ij, x∗

ij} = {f̂i(xij) + ei(t+k), xij} (6)

here j = 1, 2, . . .,  ni, t is generated independently from a uniform
andom variable on {1, 2, . . .,  ni − l + 1}, and k = 1, 2, . . .,  l.

It is noted that the accuracy of the MBB  is sensitive to the choice
f block length l. In general, blocks of a shorter length can achieve

 better approximation of the underlying distribution, but on the
ther hand they may  destroy the structure of medium-range (or
ong-range) dependence. There are different ways suggested in lit-
rature for choosing the optimal block length [2,9,18,20,21].  Among
ll the methods, two essential ones are called the plug-in methods
nd the empirical criterion-based methods. However, these two
ypes of methods may  not be practical in the sense that the plug-in

ethods often require a huge amount of work in order to obtain
he theoretical expression for the optimal block length, while the
riterion-based methods often require a certain amount of compu-
ation. In this work, we introduce a simple method for choosing a
suitable” block length for time series data. The idea is based on
xamining the diagnostic plot of the sample autocorrelation func-
ion (ACF). To illustrate, let us look at the ACF of a time series (with
ample size n = 460) shown in Fig. 1. As can be seen from Fig. 1,

he value of ACF has a sharp decay right after lag 7 and becomes
nsignificant beyond that lag. In this case, the suggested smallest
lock length is l = 8 (since the block length is often chosen to be sub-
tantially longer than the dependence length). However, it should
 Control 22 (2012) 397– 403 399

be mentioned here, the block length chosen by observing the ACF
can be unexpectedly large (e.g. for long-range-dependent data). To
overcome this problem, one can utilize another criterion suggested
in [20], viz., choosing the block length l ≤ √

n. As a result, we suggest
the following guideline for choosing the best block length:

Let k* be the smallest lag such that the ACF is not significant for all
lag k ≥ k*. The suggested block length is l∗ = min{k∗, [

√
n]}, where n

is the sample size and the bracket [
√

n] denotes the greatest integer
less than or equal to

√
n.

Remark: Since the glue points break the property of stationarity,
the data generated by the MBB  are non-stationary. However, this
problem can be solved by using a method called stationary bootstrap
(if the original data are stationary), for which the block length l is
randomly selected from a geometric distribution [25]. For other
methods that can be used to resample from dependent data (such
as subsampling, sieve bootstrap, local bootstrap, wild bootstrap,
and Markov bootstrap), the readers can refer to [3,6].

2.3. Simultaneous confidence region based on bootstrap surface
depths

To construct the confidence region for the underlying function
f(x), we  first establish the bootstrap percentile confidence region
for each profile and then glue all the resulting confidence regions
together. Suppose for each profile i, the bootstrap sampling
process is repeated N times so that a collection of N resulting
SVR “surfaces” CN

i
(x) = {f̂ 1

i
(x), . . . , f̂ N

i
(x)} is obtained, where x ∈

Xi = {(x1, . . . , xK ) : min
j

{xk
ij
} ≤ xk ≤ max

j
{xk

ij
} for all k = 1, . . . , K}.

The confidence region for the ith profile is obtained by ranking
the “surface depths” for all f̂ 1

i
(x), . . . , f̂ N

i
(x) in CN

i
(x). Its basic

idea, which is motivated by the concept of “curve depth” in a
two-dimensional data space [36], is described as follows.

In a two-dimensional data space (x, y), the curve distance for a
particular bootstrap curve f̂ j

i
(x) ∈ CN

i
(x) with respect to the baseline

curve f̂i(x) (obtained from the original profile data) is defined as

dij = d(f̂i(x), f̂ j
i
(x)) =

∫
Xi

|f̂ j
i
(x) − f̂i(x)|dx (7)

or

dij = d(f̂i(x), f̂ j
i
(x)) =

∫
Xi

(f̂ j
i
(x) − f̂i(x))2dx. (8)

The corresponding curve depth is then defined as Dij = (1 + dij)−1.
With this definition, the smaller the curve depth is, the further the
curve is located from the benchmark curve. For high-dimensional
data spaces, a similar measure called surface distance can be defined
as

sij = d(f̂i(x), f̂ j
i
(x)) =

∫
Xi

|f̂ j
i
(x) − f̂i(x)|dx (9)

or

sij = d(f̂i(x), f̂ j
i
(x)) =

∫
Xi

(f̂ j
i
(x) − f̂i(x))2dx. (10)

The corresponding surface depth is then defined as Sij = (1 + sij)−1.
The surface depth has a similar interpretation to the curve depth –
the smaller the depth is, the further the surface is located from the
benchmark surface. To obtain the bootstrap percentile confidence
region for the ith profile, we can exclude 100˛% surfaces with the
lowest depths from the collection CN

i
(x).
Now we describe the detailed steps for constructing the over-
all confidence region of f(x). Let Si(1) ≤ Si(2) ≤ · · · ≤ Si(N) be the sorted
surface depths Sij for all the bootstrap surfaces in CN

i
(x). For any

given 0 <  ̨ < 1, define the collection CN
i,1−˛

(x) = {f̂ (j)
i

(x) : ˛N ≤ j ≤
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}, where x ∈ Di. The 100(1−  ˛) % bootstrap percentile confidence
egion for the ith profile is then given by

N
i,1−˛(x) = {(x, y) : For each fixed x, min

j
f̂ j
i
(x) ≤ y ≤ max

j
f̂ j
i
(x)}, (11)

here f̂ j
i
(x) ∈ CN

i,1−˛
(x) and x ∈ Di, i = 1, . . .,  M.  Since we  assume

ll the profiles are independent, it is natural to pool all the con-
dence regions BN

1,1−˛(x), BN
2,1−˛(x), . . . , BN

M,1−˛(x) so as to obtain
he confidence region of f(x) over the entire data space. Thus, the
imultaneous confidence region of f(x) is given by

1−˛(x) = {(x, y) : For each fixed x, min
i,j

f̂ j
i
(x) ≤ y ≤ max

i,j
f̂ j
i
(x)}, (12)

here f̂ j
i
(x) ∈ CN

i,1−˛
(x) and x ∈

⋃M
i=1Di.

Remark: Since the consideration of squared distance is more
ensitive to surfaces lying outwardly with respect to the baseline
urface (i.e. outliers), the confidence region based on the surface
istance defined by Eq. (10) is, intuitively, thinner than that based
n the surface distance defined by Eq. (9).

Remark: It is noted that the resulting confidence region BN
i,1−˛

(x)
epresents a volume in a (K + 1)-dimensional space. In practice, it
an be approximated by a set of “fine grids” superimposed over the
ata space.

.4. Online profile monitoring

Note that the confidence region B1−˛(x) can serve as a control
hart for online monitoring of nonparametric profiles in Phase II.
o do this, for a particular new profile we need to obtain an SVR
odel at any point in time t based on the current observations. If the

btained SVR model, denoted by f̂ (xt), falls completely within the
onfidence region (i.e. f̂ (xt) ⊂ B1−˛(x) for all xt ∈

⋃M
i=1Di), then the

rofile is considered as “in-control” at time t. Otherwise, it is con-
idered as “out-of-control”. However, such an online monitoring
cheme can induce huge amounts of computation since a new grid
earch for (C, �2) is necessary for obtaining the desired SVR model
see Section 2.1) when a new data point is observed and included in
nalysis. To overcome this computational issue, we suggest choos-
ng (C, �2) based on the concept of “data matching”. Its basic idea
s introduced as follows.

Let (y1, x1), . . .,  (yn(t), xn(t)) be the observed profile data at any
iven point in time t. The IC profile that “best matches” the observed
ata can be simply given by

∗(t) = arg min
i=1,...,M

n(t)∑
j=1

(yj − f̂i(xj))
2, (13)

here f̂i is the SVR model for the ith IC profile obtained from the
arlier stage. Let us denote the best choice of (C, �2) (based on a grid
earch) for establishing f̂i∗(t) by (Ci∗(t), �2

i∗(t)). Since the i*(t)th IC pro-

le best matches the observed data based on Eq. (13), (Ci∗(t), �2
i∗(t))

an serve as a good surrogate for fitting the desired SVR model f̂ (xt).
t should be mentioned here that, the proposed data matching pro-
edure for finding (Ci∗(t), �2

i∗(t)) is computationally much cheaper
han performing consecutive grid searches over time.

.5. Algorithm for profile monitoring
For implementation purpose, we summarize the proposed
ramework of nonparametric profile monitoring in the following
lgorithm. Note that Step 1–4 basically constitute Phase I of the
onitoring scheme, while Step 5 focuses on Phase II studies.
 Control 22 (2012) 397– 403

Step 1: Obtain the SVR model f̂i(x) for each profile i based on the
procedure introduced in Section 2.1.  If possible, remove
potential outliers that may be caused by measurement
error.

Step 2: Generate N bootstrap samples {y∗
ij
, x∗

ij
} for each of retained

profile i based on the procedure introduced in Section 2.2.
Step 3: For each profile i, obtain the SVR model f̂ j

i
(x) based on

each generated bootstrap sample and compute its sur-
face depth Sij with respect to the benchmark surface f̂i(x).
Obtain the sorted surface depths Si(j) and identify the col-
lection of surfaces CN

i,1−˛
(x) for a given 0 <  ̨ < 1.

Step 4: Construct the 100(1− ˛) % bootstrap percentile confi-
dence region BN

i,1−˛
(x) for each profile i by using Eq. (11).

Obtain the simultaneous confidence region B1−˛(x) for
f(x) by using Eq. (12).

Step 5: Monitor a future profile online based on the simultaneous
confidence region obtained in Step 4. At any given point
in time t, perform a data matching procedure based on Eq.
(13) so that the desired SVR model f̂ (xt) can be established
by choosing (C, �2) = (Ci∗(t), �2

i∗(t)). If f̂  (xt) ⊂ B1−˛(x) for

all xt ∈
⋃M

i=1Di, then the profile is characterized as “in-
control” at time t; otherwise it is characterized as “out-
of-control”.

3. A real example

In this section, we  illustrate the proposed framework on real
AIDS data collected from hospitals in Taiwan. We  first introduce
the data set, some numerical results are presented afterward.

3.1. Introduction to the data set

The AIDS cohort data, which were collected between January
1990 and January 2003, include the information of clinical, bio-
chemical, serologic, and histologic parameters of 1054 HIV-infected
patients in Taiwan. All patients were advised to return to hospital
every three or four months for a follow-up diagnosis. The primary
goal of collecting such a data set is to evaluate the efficacy of the
highly active antiretroviral therapy (HAART), which consists of at
least three anti-HIV drugs (see [29] for a detailed description of this
data set). To illustrate our proposed framework, here we  select 4
important variables from the data set for analysis, of which one is
treated as the dependent variable (Y) and the others are treated
as explanatory variables (X1, X2, X3). These selected variables are
described as follows.

Y: The CD4 cell count (per cubic millimeter of blood) in log scale.
X1: The measurement time in years.
X2: The ratio of CD4 cell count to CD8 cell count.
X3: The CD4 cell count in percentage.

We divide the patients into two  groups. The patients who took
the therapy HAART are categorized as the “in-control” (IC) profiles.
On the other hand, the patients who did not take the therapy HAART
are categorized as the “out-of-control” (OC) profiles. Fig. 2 summa-
rizes all the paired relationships of 20 randomly selected IC profiles
(patients) between Y and X1, X2, X3. As can be seen from Fig. 2,
there exists a very clear functional relationship between Y and the
explanatory variables X2 and X3. It should be pointed here that, due
region for the underlying relationship between Y and X1, . . .,  X3 will
be constructed based on merely these 20 IC profiles. The rest of the
profile data are left for testing the performance of the proposed
framework shown later in Section 3.3.
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Fig. 2. The paired scatter diag

.2. Construction of the simultaneous confidence region

We start with fitting the SVR model for each of the 20 IC profiles.
or each fitted SVR model f̂i(x), the optimal choice of (C, �2) is based
n a grid search over a pre-specified region in R+

2 . To illustrate, the
ontour plot of the MSEP for the 11th IC profile over the region (0,
.4] × (0, 0.2] is shown in Fig. 3. As can be seen, the optimal choice
f (C, �2) is around (0.43, 0.15), for which the fitted SVR model has
he minimum value of MSEP. For other IC profiles, the best fitted
VR models are selected in a similar fashion.

We next examine the plot of ACF for the residuals based on the
est fitted f̂i(x) for each of the 20 IC profiles. The goal of this step is to
hoose a suitable block size so as to conduct an adequate bootstrap
ampling procedure for each IC profile. Fig. 4 shows the resulting
CF for the 9th and 19th IC profile. As can be seen from Fig. 4, the
CF for the 9th and the 19th IC profile becomes insignificant after

ag 3 and lag 4, respectively. Therefore, the suggested block sizes
or these two profiles are 4 and 5, respectively. After examining all
he diagnostic plots, the suggested block sizes for the remaining 18
C profiles are: 3 for the 3rd IC profile, 2 for the 13th IC profile, and

 for all the other IC profiles.
Remark: It is noted that a small sample size can easily result
n “insignificance” of the ACF (for this example ni ≤ 48 for all i = 1,
 . .,  20). This might be the reason why a rather small block size is
uggested for each of the 20 IC profiles.
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ig. 3. An illustration of the MSEP contour lines with respect to the choice of (C, �2)
n  the SVR model fitted to the 11th IC profile.
for the 20 selected IC profiles.

Based on the obtained block sizes, the MBB method is then used
to resample from the residuals of each profile. Thus, for each gen-
erated bootstrap sample we  can obtain a fitted SVR model that
represents the relationship between Y and X1, X2, X3. To construct
the 95% bootstrap percentile confidence region BN

i,0.95(x) for each

profile i, the MBB  method is repeated 104 times (i.e. N = 104) so that
104 SVR models (i.e. f̂ j

i
(x), j = 1, . . . , 104) are constructed. By delet-

ing 5% of models based on the sorted surface depths (where sij are
computed using Eq. (10)) for each IC profile, the 95% simultaneous
confidence region B0.95(x) is then obtained by Eq. (12).

For visualization purpose, the resulting confidence region
B0.95(x) is projected respectively onto the axes of the three explana-
tory variables X1, X2, and X3. The result is given in Fig. 5. As can
be seen from Fig. 5, the confidence region projected onto the first
explanatory variable X1 reveals to be wider (in general) than that
projected onto the axis of X2 and X3. The result clearly agrees with
Fig. 2 in which a rather larger data variability in X1 is presented.

3.3. Performance evaluation

In this section we  evaluate the effectiveness of the proposed
framework by comparing with two benchmark methods in terms
of Type I and Type II errors. The first method to be compared is the
nonparametric regression approach introduced by Zou et al. [39],
wherein a standard Gaussian kernel function is selected to con-
struct the local linear smoother and the error terms eij are assumed
to be i.i.d. normal random variables (thus the within-profile correla-
tion is not taken into account). The second method to be compared
is the nonlinear mixed (NLM) models introduced by Jensen and
Birch [12], wherein a logistic model is selected and correlation
within the profile is also incorporated. To conduct such a compari-
son, 50 untested IC and OC profiles (patients) with more than five
observations are selected from the original data set. The resulting
Type I and Type II errors are given in Table 1.

Let f̂ (x) be the obtained SVR model for a particular profile to be
tested. The Type I and Type II errors are defined as
Type I error = P(f̂ (x) /⊂ B0.95(x)| the profile is IC) (14)

and

Type II error = P(f̂ (x) ⊂ B0.95(x)| the profile is OC), (15)

Table 1
The Type I and Type II errors of classifying the IC and OC  profiles for three different
methods.

Errors Our method The method by Zou
et al.

The method by
Jensen and Birch

Type I error 0.12 0.54 0.00
Type II error 0.40 0.32 0.92
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Fig. 5. The resulting confidence region B0

hich can be simply estimated by the proportion of the obtained
C/OC SVR models falling outside/inside the confidence region. The
umerical results in Table 1 reveal several interesting findings.
irst, the method by Jensen and Birch perfectly classifies the IC pro-
les (Type I error = 0%) but misclassifies almost all the OC profiles
Type II error = 92%). This may  be due to the fact that the method
ncorporates inadequate correlation structures into analysis so that

 rather “conservative” (large) confidence region is obtained. On the
ther hand, the method by Zou et al. misclassifies more than a half
f the IC profiles (Type I error = 54%) but performs relatively well
n classifying the OC profiles (Type II error = 32%). This may  be due
o the fact that the method totally ignores the correlation structure
ithin the profile so that a rather “tight” (small) confidence region

s obtained. Finally, it is worth noting that our method classifies
ell the IC profiles (Type I error = 12%) and performs fairly well in

lassifying the OC profiles (Type II error = 40%). Although the num-
er of tested profiles is not particularly large, the result strongly
upports that our proposed method is effective in classifying both
he IC and OC profiles.

. Conclusions

We proposed an easy-to-implement framework for monitor-
ng nonparametric profiles in multi-dimensional data spaces. The
ramework is sequential and mainly comprised of five steps. In Step
, an adequate support vector regression (SVR) model is fitted to

ach IC profile. This modeling technique has the advantages that
i) it does not require any structural assumptions on data (i.e. it is
ata-driven); (ii) it can easily handle the data in high-dimensional
paces; and (iii) it is computationally efficient. In Step 2, the
2 X3

projected onto the axes of X1, X2, and X3.

moving block bootstrap (MBB) method is used to generate depen-
dent samples for each profile. Such a sampling technique shares the
same intuition with the mixed models introduced in [12,22,28] –
it incorporates fairly well the correlation structure of errors within
each IC profile. In Step 3, the SVR model is fitted to each of the boot-
strap sample and its corresponding surface depth is calculated. In
Step 4, the SVR models with smaller surface depths are removed
and, the resulting confidence regions of all profiles are pooled so as
to obtain an overall confidence region for the underlying functional
relationship. In Step 5, an online monitoring scheme is introduced
based on the obtained overall confidence region and a data match-
ing process. Numerical results show that, compared to other two
benchmark methods, our proposed framework is effective in clas-
sifying both the in-control and out-of-control profiles.

Here we  highlight some potential problems for future research
studies. First, in practice any nonparametric modeling technique
with adequately chosen tuning parameters can be applied in the
Step 1 of our proposed framework. However, one needs to take
into account the computational cost (especially when the data
dimension or the number of profiles becomes large) and how
to best compare the confidence regions obtained from different
modeling techniques. Second, it is possible to develop the online
control chart for monitoring nonparametric profiles in real time
by extending the ideas introduced in this work. For example,
instead of monitoring the functional relationship, one can possibly
establish a control chart for monitoring the residuals. However,
how to best incorporate the dependence structure of the observed

residuals into the development of such a control chart needs to be
further investigated. Finally, incorporating common-cause varia-
tion between profiles into the control chart scheme is sometimes
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