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A New Chart for Monitoring Service
Process Mean
Su-Fen Yang,a*† Tsung-Chi Cheng,a Ying-Chao Hunga and
Smiley W. Chenga,b
Control charts are demonstrated effective in monitoring not only manufacturing processes but also service processes. In ser-
vice processes, many data came from a process with nonnormal distribution or unknown distribution. Hence, the commonly
used Shewhart variable control charts are not suitable because they could not be properly constructed. In this article, we pro-
posed a new mean chart on the basis of a simple statistic to monitor the shifts of the process mean. We explored the sam-
pling properties of the new monitoring statistic and calculated the average run lengths of the proposed chart. Furthermore,
an arcsine transformed exponentially weighted moving average chart was proposed because the average run lengths of this
modified chart are more intuitive and reasonable than those of the mean chart. We would recommend the arcsine trans-
formed exponentially weighted moving average chart if we were concerned with the proper values of the average run length.
A numerical example of service times with skewed distribution from a service system of a bank branch in Taiwan is used to
illustrate the proposed charts. Copyright © 2011 John Wiley & Sons, Ltd.
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1. Introduction

C
ontrol charts are commonly used tools to improve the quality of manufacturing processes. In the past few years, more and more sta-
tistical process control techniques are applied to service industry, and control charts are also becoming an effective tool in improving
the service quality. There were a few studies in this area, like those of Maccarthy and Wasusri1, Tsung et al.,2 and Ning et al.3

Many service process data do not come from a process with normal distribution or known distribution, some are from unknown
population. Hence, the commonly used Shewhart variable control charts are not suitable because they cannot be properly con-
structed and their performance could not be properly evaluated. In most cases, normality was assumed for variable data, some with
other known distributions. When we had no knowledge of the underlying distribution, it is not possible to derive the necessary sam-
pling properties to construct the chart and evaluate its performance. Hence, we need to find an alternative. Using nonparametric
approach seems to be a good alternate way. Some research had been carried out in this area, like those of Ferrell4, Bakir and Reynolds5,
Amin et al.,6 Chakraborti et al.,7 Altukife8,9, Bakir10,11, Chakraborti and Eryilmaz12, Chakraborti and Graham13, Chakraborti and Van
der Wiel14, Das and Bhattacharya15, and Li et al.16 A major drawback of the previous nonparametric approaches is that they are not
easy for practitioners to apply because they are not statisticians and do not quite understand the proper way to implement the scheme.

In this article, we propose a new control chart for variable data tomonitor the processmean, without assuming a process distribution. The
approach is simple to understand and easy to use. The article is organized as follows: in Section 2, we discuss the construction of a newly
proposed mean chart and its performance. In Section 3, we propose an arcsine transformed exponentially weighted moving average
(EWMA) chart. In Section 4, we apply the proposed EWMA chart to monitor the service quality of a service system in a bank branch and
compare its performance with the mean chart and three existing charts. Finally, in Section 5, we summarize the findings.
2. Proposed mean chart

Assume that a critical quality characteristic, X, has a mean m. Let Y=X – m and p=P(Y>0)=the “process proportion.” If the process was
in control, then p=p0; if the process was out of control, that is, m had shifted, then p=p1 6¼ p0. If p0 is not given, it will be estimated
using the preliminary data set (i.e. the phase I of the statistical process control).
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A random sample of size n, X1,X2, . . .,Xn, , is taken from X to monitor the process mean. Define Yj=Xj – m and Ij ¼ 1; if Yj > 0;
0; otherwise;

�
j=1, 2,. . ., n. LetM be the total number of Yj>0, thenM ¼ Pn

j¼1Ij would follow a binomial distribution with parameters (n, p0) for an in-

control process, where p0=probability of success.

2.1. Construction of the mean chart

Monitoring the process mean shifts is equivalent to monitoring the changes in process proportion. For the in-control process, we
defined the monitoring statistics Mt as the number of (Yj>0) at time t, Mt~B(n, p0). The center line (CL), the lower control limit

(LCL), and the upper control limit (UCL) of the proposed mean chart are CL = np0, LCL = np0 � 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np0 1� p0ð Þp

, and UCL = np0 þ
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np0 1� p0ð Þp

, and then plot Mt.
If any Mt≥UCL or Mt≤LCL, the process is deemed to be out of control.
Note that although the resulting chart is a “binomial chart (np chart)”, this is a new chart in that the binomial variable is not the

count of nonconforming units in the sample but rather the number of Xj values in a sample that are above the in-control process
mean.

To measure the performance of the proposed mean chart, we calculated the average run length (ARL). The in-control ARL, ARL0, of
the mean chart depends on the values of n and p0.

2.2. ARL of the mean chart

The chance of observing a false signal is

Q ¼ P ðMt≤LCL orMt≥UCLjMt eBðn;p0ÞÞ
¼ PðMt≤np0 � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np0 1� p0ð Þp

orMt≥np0 þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np0 1� p0ð Þp Þ

¼
Xnp0�3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np0 1�p0ð Þ

p� �
i¼0

n
i

� �
p0

i 1� p0ð Þn�i þ
Xn

i¼np0þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np0 1�p0ð Þ

p
n
i

� �
p0 1� p0ð Þn�i

where [a] is Gauss’ symbol, that is, the largest integer≤a, and ARL0=1 / Q. Table I lists the values of ARL0 for n=9(1)20 and p0 = 0.25
(0.05)0.5.

When the process is out of control, the chance of observing a true signal is

Q1 ¼ P ðMt≤LCL orMt≥UCLjMt eBðn;p1ÞÞ
¼ PðMt≤np0 � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np0 1� p0ð Þp

orMt≥np0 þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np0 1� p0ð Þp Þ

¼
Xnp0�3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np0 1�p0ð Þ

p� �
i¼0

n
i

� �
p1

i 1� p1ð Þn�i þ
Xn

i¼np0þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np0 1�p0ð Þ

p
n
i

� �
p1 1� p1ð Þn�i

and the out-of-control ARL, ARL1=1 / Q1.
Table II lists the values of ARL1 for p1 = 0.05(0.05)0.45 under the in-control proportion p0 = 0.5. Similar calculations can easily be

performed for other in-control values of p0.
Table I. ARL0 of the mean chart

p0

n 0.25 0.3 0.35 0.4 0.45 0.5
9 745 233 716 3815 1322 256
10 285 629 1852 596 2937 512
11 842 233 491 1362 277 1024
12 360 591 1179 356 542 2048
13 177 248 398 760 1058 293
14 464 600 904 718 420 546
15 238 274 353 417 810 1024
16 608 638 768 819 644 239
17 322 309 272 372 410 426
18 804 699 536 724 752 762
19 437 354 297 679 486 1372
20 254 782 588 468 407 388

ARL0 (p0)=ARL0 (1–p0) for p0>0.5.
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Table II. ARL1 of the mean chart under p0 = 0.5

p1

n 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
9 2 3 4 7 13 25 48 97 186
10 2 3 5 9 18 35 74 163 348
11 2 3 6 12 24 51 114 272 647
12 2 4 7 15 32 72 176 456 1197
13 1 2 3 4 8 16 34 78 184
14 1 2 3 5 10 21 49 123 319
15 1 2 3 6 12 28 71 192 551
16 1 1 2 3 5 10 22 54 139
17 1 1 2 3 6 13 31 81 229
18 1 1 2 4 7 17 42 121 377
19 1 1 2 4 9 22 59 183 625
20 1 1 2 2 4 9 23 62 192

ARL1 (p1)=ARL1(1–p1), for p1 > 0.5.

S.-F. YANG ET AL.
From Table I, we found that ARL0s are quite different from the supposed value of 370. The reason is that the binomial distribution is
asymmetric for p 6¼0.5. In Table II, it is found that the values of out-of-control ARL1 did not change with n inversely as it normally should.

To rectify this problem, we proposed an “arcsine transformed EWMA chart” because EWMA chart would monitor the small shifts of
the process mean quickly and effectively.

Let T ¼ sin�1
ffiffiffi
M
n

q� 	
, then the distribution of T would be approximately normal with a mean sin�1 ffiffiffi

p
p
 �

and variance 1/(4n) (see

Mosteller and Youtz17).
3
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3. The new EWMA chart

We define the new EWMA statistic as

EWMATi ¼ lTi þ 1� lð ÞEWMATi�1 0 < l≤1

Let the starting value, EWMAT0 , be the mean of T; that is, EWMAT0 ¼ sin�1 ffiffiffiffiffi
p0

p
for an in-control process. Hence, the mean and the

variance of EWMATi are E EWMATið Þ ¼ sin�1 ffiffiffiffiffi
p0

p
and Var EWMATið Þ ¼ l 1� 1�lð Þ2i½ �

2�l 1=4nð Þ.
The asymptotic variance of EWMATi is Var EWMATið Þ¼ l

2�l 1=4nð Þ.
We could now construct the new EWMA chart as follows:

UCL ¼ sin�1 ffiffiffiffiffi
p0

pð Þ þ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

4n 2� lð Þ

s

CL ¼ sin�1 ffiffiffiffiffi
p0

pð Þ

LCL ¼ sin�1 ffiffiffiffiffi
p0

pð Þ � k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

4n 2� lð Þ

s

and plot EWMATi .
The two parameters, k and l, are chosen to satisfy certain required in-control ARL (ARL0).

3.1. In-control ARLs of the new EWMA chart

We used the ARL to measure the performance of the proposed chart. Following Lucas and Saccucci18, the ARLs of the new EWMA
chart are evaluated by the Markov chain approach.

Table III lists the ARL0 = 370.5 under various combinations of (n,p0), for n=9(1)20 and p0 = 0.25(0.05)0.75, with the combination
(l = 0.2, k=2.86) in the new EWMA chart.

3.2. Out-of-control ARLs of the new EWMA chart

The values of ARL1 of the new EWMA chart are a function of (n, k, l). Adopting the in-control process proportion p0=0.613, ARL0=
370.5, with l=0.2 and k=2.86, the values of ARL1 of the EWMA chart for n=9(1)20 and p1 = 0.25(0.05)0.95 are listed in Table IV.
The values of ARL1 of the mean chart for n=9(1)20 and p1 = 0.25(0.05)0.95 under p0 = 0.613 are listed in Table V. Now the values
Copyright © 2011 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2012, 28 377–386



Table IV. ARL1 of the EWMA chart (l = 0.2, k=2.86, p0=0.613)

n

p1

0.25 0.35 0.45 0.55 0.613 0.65 0.75 0.85 0.95

9 6.0 10.5 25.9 132.0 370.5 153.8 15.1 3.4 1.5
10 5.6 9.6 23.4 123.0 370.5 146.8 13.3 3.1 1.4
11 5.2 8.9 21.3 115.1 370.5 140.3 11.8 2.8 1.4
12 4.9 8.2 19.6 108.1 370.5 134.3 10.6 2.6 1.4
13 4.7 7.3 17.0 101.8 370.5 128.8 9.6 2.4 1.3
14 4.4 7.3 17.0 96.2 370.5 123.6 8.7 2.3 1.3
15 4.2 6.9 15.9 91.1 370.5 118.8 8.0 2.1 1.2
16 4.1 6.6 15.0 86.5 370.5 114.3 7.4 2.0 1.2
17 3.9 6.3 14.1 82.4 370.5 106.1 6.4 1.9 1.1
18 3.8 6.0 13.4 78.5 370.5 102.4 6.0 1.8 1.1
19 3.6 5.8 12.8 75.1 370.5 99.0 6.0 1.8 1.1
20 3.5 5.6 12.2 71.8 370.5 96.1 5.4 1.7 1.1

Table V. ARL1 of the mean chart under p0 = 0.613

n

p1

0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

9 13.3 48.3 217.1 1321.6 12687.8 262144 26012295 5.12E+11
10 17.8 74.3 394.8 2936.8 36251.0 1048576 173415306 1.024E+13
11 23.7 114.3 717.8 6526.2 103574.2 4194304 1.156E+9 2.048E+14
12 6.3 23.6 120.6 925.7 12708.5 453438 1.117E+8 1.788E+13
13 7.9 33.8 203.9 1908.3 33628.0 1677722 6.882E+8 3.303E+14
14 3.6 11.9 58.8 464.9 7087.2 311410 1.141E+8 4947E+13
15 4.2 16.2 93.8 810.0 617.8 74.8 11.4 2.2
16 5.1 22.2 151.0 1574.6 963.5 99.8 13.5 2.3
17 2.8 9.7 54.2 525.1 1340.2 133.0 15.8 2.4
18 3.3 12.8 83.4 982.1 2150.8 177.4 18.6 2.5
19 2.1 6.7 35.7 361.3 2538.5 236.4 21.9 2.7
20 2.4 8.5 53.0 609.0 458.1 41.1 5.7 1.4

Table III. ARL0 of the EWMAT chart (l=0.2, k=2.86)

n

p0

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75

9 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5
10 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5
11 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5
12 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5
13 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5
14 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5
15 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5
16 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5
17 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5
18 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5
19 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5
20 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5
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of ARL1 behave normally; that is, it changes inversely with n. As shown in Table V, the values of ARL1 in the EWMA chart are smaller
than those in the mean chart. The results suggest that the detection ability of the EWMA chart is better than the mean chart. Hence,
we would recommend the EWMA chart if we were concerned with the proper values of ARL0.
4. When population parameters are unknown

When the in-control process mean, m, and hence the in-control process proportion, p0, are unknown, we would use the following pre-
liminary sample data

Xi1; Xi2; . . . ; Xin; i ¼ 1; 2; . . . ;m;

from m sampling periods, each with n observations, to estimate them, that is,

m̂ ¼ X
�� ¼

Pm
i¼1

�Xi

m
; �Xi ¼

Pn
j¼1

Xij

n
; i ¼ 1; 2; . . . ;m;

and

p̂ ¼ �p ¼
Pm
i¼1

Mi=n

m

The mean chart and the EWMA chart are thus constructed. The Mi and the EWMATi for the m samples are plotted on the resulting
mean chart and EWMA chart, respectively. If all points fell inside the control limits, then we conclude that the process seemed to be in
control.
4.1. Example

The service time is an important quality characteristic for a bank branch in Taiwan. To measure the efficiency in the service system of a
bank branch, the sampling service times (in minutes) are measured from 10 counters every 2days for 30days; that is, 15 samples of
size n=10. These data have been analyzed and have a right-skewed distribution, as shown in Table VI.

Here, sample size=10, number of samples=15, x
��
= 5.77,Mi=sum of positive differences (Xj–5.77), i=1, 2,. . ., 15,�p ¼ P15

i¼1

Mi
10 =15= 0.39,

adopting ARL0=370.5.0 with l=0.2 and k=2.86 based on Table III. The EWMA chart is shown in Figure 1 (UCL=0.85, CL=0.66, and
LCL=0.47). There is no out-of-control signals, so the process seems to be in control.

For comparison, the corresponding X-bar chart, the EWMAX-bar chart, and the transformed X-bar chart by applying X0.25 transfor-
mation because X is a right-skewed distribution (follows an exponential distribution) (see, e.g. Montgomery19), which requires nor-
mality, were constructed and plotted in Figures 2–4. Both the X-bar chart and the EWMAX-bar chart (Figures 2 and 3) gave
the same conclusion, so did the mean chart (Figure 5). However, the transformed X-bar chart gave a false alarm (sample 11) after
searching the cause.

To show the detection ability of the proposed EWMA chart for the data set of service times from a new automatic service system of
the bank branch, 10 new samples of size 10, samples 16–25, were collected and listed in Table VII.
1614121086420
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UCL=0.85

CL=0.66

LCL=0.47

EWMA chart

Figure 1. The EWMA chart
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The plots of samples 17 to 25 fell below the LCL of the EWMAT chart (see Figure 6). It signaled that the process was not in control.
That is, the service times are significantly reduced because of the improved new automatic service system. However, the correspond-
ing X-bar chart and EWMAX-bar chart showed no signals (see Figures 7 and 8). The transformed X-bar chart detected signals at sam-
ples 17 and 18 (see Figure 9). The proposed EWMAT chart detects the small shifts of the process mean quickly and effectively than
those of the X-bar chart, the EWMAX-bar chart, and the transformed X-bar chart. The mean chart in Figure 10 also detected signals
at samples 17, 18, 20, 22, 23, and 24.

To construct the X-bar chart, the EWMA X-bar chart and the transformed X-bar chart require the normality assumption but not the
mean chart and the arcsine transformed EWMA chart. In this example, neither X-bar chart nor EWMA X-bar chart detected out-of-
control signals, and the transformed X-bar chart detected only two out-of-control signals. However, the proposed simple charts—
the mean chart and the transformed EWMA chart—did, as it should.
Copyright © 2011 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2012, 28 377–386



Figure 5. The mean chart

Table VII. The new service times from 10 counters in a bank branch

m X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Xj
�

M/10 EWMATi EWMAX-bar

16 3.54 0.01 1.33 7.27 5.52 0.09 1.84 1.04 2.91 0.63 2.28 0.1 0.58 4.82
17 0.86 1.61 1.15 0.96 0.54 3.05 4.11 0.63 2.37 0.05 2.03 0.0 0.46 4.26
18 1.45 0.19 4.18 0.18 0.02 0.70 0.80 0.97 3.60 2.94 1.80 0.0 0.37 3.77
19 1.37 0.14 1.54 1.58 0.45 6.01 4.59 1.74 3.92 4.82 2.73 0.1 0.36 3.56
20 3.00 2.46 0.06 1.80 3.25 2.13 2.22 1.37 2.13 0.25 1.79 0.0 0.29 3.21
21 1.59 3.88 0.39 0.54 1.58 1.70 0.68 1.25 6.83 0.31 2.48 0.1 0.29 3.06
22 5.01 1.85 3.10 1.00 0.09 1.16 2.69 2.79 1.84 2.62 2.28 0.0 0.24 2.90
23 4.96 0.55 1.43 4.12 4.06 1.42 1.43 0.86 0.67 0.13 2.38 0.0 0.19 2.80
24 1.08 0.65 0.91 0.88 2.02 2.88 1.76 2.87 1.97 0.62 1.76 0.0 0.15 2.59
25 4.56 0.44 5.61 2.79 1.73 2.46 0.53 1.73 7.02 2.13 3.21 0.1 0.18 2.72
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5. Conclusion

In this article, we propose the mean chart on the basis of a simple statistic to monitor the mean shifts in the process. The sampling
properties of the new monitoring statistic are explored and the ARLs of the proposed chart are calculated. Furthermore, a new
EWMA chart is proposed because it provides more intuitive and reasonable in-control ARLs. A numerical example of service
times with a skewed distribution from a bank branch is used to illustrate the application of the new EWMA chart, and its detec-
tion ability was compared with three existing charts. The new EWMA chart showed better detection ability than those three
charts. The new EWMA chart is thus recommended.
Copyright © 2011 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2012, 28 377–386
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