
Computational Statistics and Data Analysis 54 (2010) 219–232

Contents lists available at ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

Uniform design over general input domains with applications to target
region estimation in computer experiments
S.C. Chuang a, Y.C. Hung b,∗
a Graduate Institute of Statistics, National Central University, Jhongli 32049, Taiwan
b Department of Statistics, National Chengchi University, Taipei 11605, Taiwan

a r t i c l e i n f o

Article history:
Received 18 November 2008
Received in revised form 3 June 2009
Accepted 14 August 2009
Available online 21 August 2009

a b s t r a c t

The power of uniform design (UD) has received great attention in the area of computer
experiments over the last two decades. However, when conducting a typical computer
experiment, one finds many non-rectangular types of input domains on which traditional
UD methods cannot be adequately applied. In this study, we propose a new UD method
that is suitable for any type of design area. For practical implementation, we develop an
efficient algorithm to construct a so-called nearly uniform design (NUD) and show that
it approximates very well the UD solution for small sizes of experiment. By utilizing the
proposed UD method, we also develop a methodology for estimating the target region of
computer experiments. The methodology is sequential and aims to (i) provide adaptive
models that predict well the output measures related to the experimental target; and
(ii) minimize the number of experimental trials. Finally, we illustrate the developed
methodology on various examples and show that, given the same experimental budget,
it outperforms other approaches in estimating the prespecified target region of computer
experiments.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction and motivating examples

We first illustrate two examples from stochastic processing networks that are used to motivate this research.
Motivating Example 1: Consider a queueing system comprised of K infinite capacity first-in–first-out (FIFO) queues in
parallel, and each queue corresponds to a different class of job traffic. The class k jobs arrive according to some process with
mean rate xk and are queued up for service, k = 1, . . . , K . At any point in time, the system can be in one of S service modes.
When service mode s is used, the first job of queue k receives service with mean rateµsk, k = 1, . . . , K . Therefore, mode s is
associated with the service rate vector Us = (µs1, . . . , µsK), s = 1, . . . , S. This queueing system is known as the Switched
Processing System (SPS), which captures the essence of a fundamental resource allocation problem inmanymodern systems
involving heterogeneous processors and multiple classes of job traffic flows (e.g., parallel computing, wireless networking,
call centers, flexible manufacturing, etc.).
It has been shown in the literature (Armony and Bambos, 2003; Hung and Michailidis, 2008) that, in order to achieve

system stability (e.g. the long-term input rate for each queue is equivalent to its long-term service rate), the input rate
vector x = (x1, . . . , xK)must lie within the following region:

D =

{
x ∈ RK

+
: xk <

S∑
s=1

ωsµsk, for all k = 1, . . . , K

}
,

∗ Corresponding author.
E-mail address: hungy@stat.ncu.edu.tw (Y.C. Hung).

0167-9473/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.csda.2009.08.008

http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
mailto:hungy@stat.ncu.edu.tw
http://dx.doi.org/10.1016/j.csda.2009.08.008

220 S.C. Chuang, Y.C. Hung / Computational Statistics and Data Analysis 54 (2010) 219–232

Fig. 1. (Left panel): The domain D of the input rate vectors x for a 2-queue systemwith three service rate vectors U1 = (3, 0), U2 = (2, 3), and U3 = (0, 4).
(Right panel): The domain D of the weight vectors x (in the MaxProduct policy) for a 3-queue system (where K = 3 and x3 = 1− x1 − x2).

where 0 ≤ ωs ≤ 1 for all s = 1, . . . , S, and
∑S
s=1 ωs = 1. Note that the linear constraints in D describe that the long-term

input rate of each queue k cannot exceed its long-term service rate. Further, it can be shown that D is a convex hull generated
by all service rate vectors Us and their projections on the axes. An example of such D is shown in the left panel of Fig. 1.
In addition, a service-mode allocation policy is called a throughput-maximizing policy if it can stabilize the system for all
input rate vectors x ∈ D. A natural question followed is, under a particular throughput-maximizing policy π , how the input
rate vector x affects the performance measures of interest (such as delay, backlog, etc). In this case, x1, . . . , xK are treated as
input factors, while the input domain D is a convex polygon.
Motivating Example 2: Let us consider the same queueing system introduced in Example 1. Suppose now all the input rates
are fixed (but still inside the region D), and we consider a throughput-maximizing policy called the ‘‘MaxProduct’’ (Armony
and Bambos, 2003; Hung and Chang, 2008; Hung and Michailidis, 2008). This policy employs service mode s∗ at time t if

s∗ = arg max
s=1,...,S

K∑
k=1

xkYk(t)µsk,

where Yk(t) represents the state of queue k (either the number of jobs or theworkload) at time t , and xk is any chosen positive
queue weight. Another interesting question is, how the choice of the queue weight vector x = (x1, . . . , xK) affects the
performancemeasures of interest. It has been shown that the weight vector x affects theMaxProduct policy only through its
directions inRK

+
(Hung andMichailidis, 2008). Therefore, it suffices to consider the vectors x satisfying that x1+· · ·+xK = 1.

This constraint can be further reduced to x1 + · · · + xK−1 ≤ 1, which clearly represents a simplex in RK−1+ . In this case, the
queue weights x1, . . . , xK−1 are treated as input factors, while the input domain D is a (K − 1)-simplex. An example of such
D is shown in the right panel of Fig. 1.
Note that due to the complex structure of dynamics, it is often hard to obtain the relationship between the input factors

and the response measures of interest for such systems. Therefore, this type of problems are often examined through
computer simulations (Hung et al., 2003; Hung and Michailidis, 2008). However, simulation of such complex systems is
expensive in terms of CPU time and the requirement of simulation resources. An natural question is then how one can obtain
a comprehensive understanding of system’s performance by performing theminimum possible number of simulation trials.
This has been a challenging task in the area of design and analysis of computer experiments (DACE).
The uniform design (UD) was first proposed by Fang andWang (Fang, 1980; Wang and Fang, 1981) and has been widely

used in computer experiments over the last two decades (Fang and Lin, 2003). Its basic idea is to seek input points to
be uniformly scattered on the input domain so that the relationships between the response(s) and the input factors can
be explored using a reasonable number of experimental trials. Traditional methods have provided solutions to UD for
the experiments without restrictions (Fang and Wang, 1994), i.e., the design area is or can be reasonably transformed
into a unit hypercube [0, 1]K . However, for non-rectangular types of design areas (such as the input areas shown in the
two motivating examples), how to best perform the UD is not fully discussed in literature. The work done by Fang et al.
(1999b) is closely related to the examples introduced above, wherein they proposed a ‘‘simplex method’’ to perform a
stochastic representation of UD over convex polyhedrons. The shortcomings for this type of Monte Carlo methods are: (i)
the represented UD has larger variations; and (ii) they are shown to have relatively low efficiency on approximating the
output measures of interest (Fang and Wang, 1994).
In this study, we propose a new UD method that is suitable for any types of design area under the framework of the

so-called number-theoretic method (NTM). The proposed UD method has an important feature that the optimal design is
invariant under coordinate rotations and can be properly extended so that lower-dimensional uniformity is also considered
(see Section 2 for details). For practical applications, we also develop a methodology to estimate the target region of
computer experiments by utilizing the proposed UD method. Note that the target region here represents a subset of the
input domain inwhich the experimental outputmeasure(s) of interest is desired to be produced. For example, let us consider
the queueing system introduced in Example 1, where one can specify a target region for the input rate vectors so that
the average delay (i.e., the average time waiting until service is first provided) of jobs in each queue does not exceed a

S.C. Chuang, Y.C. Hung / Computational Statistics and Data Analysis 54 (2010) 219–232 221

prespecified quantity. By keeping the input rates in the target region, the system then provides a commitment to a certain
level of quality service. Another example can be found in the recent work done by Ranjan et al. (2008), where a sequential
design based on the Gaussian stochastic process (GASP) model was proposed to estimate a contour of a complex computer
code. Their work can be viewed as a special case of our problem, for which the experiment has merely one output measure
and the contour line corresponds to the boundary of the target region. Analogous to the method proposed by Ranjan et al.
(2008), our methodology is also sequential and aims to (i) provide adaptive models that predict well the output measures
related to the experimental target; and (ii) minimize the number of experimental trials. In addition, it has the following
advantages: (i) it can easily handle the experiments with a large number of input factors; (ii) it can handle the target region
comprised of multiple output measures.
The rest of the paper is organized as follows. In Section 2, the proposed UD method and its extension called weighted

UD are introduced. For practical purposes, an efficient algorithm is developed to construct a so-called nearly uniform design
(NUD) and shown to approximate well the UD solution. In Section 3, the methodology for estimating the target region of
computer experiments is introduced. Note that the methodology is comprised of two main components: (i) design; and
(ii) fitting response models. For component (i), the proposed UD method with sequentially updated weight functions is
utilized; while for component (ii), the GASP model and another modelling technique called support vector regression (SVR)
are employed. In Section 4, the proposed methodology is illustrated on two examples. The numerical results show that,
given the same experimental budget, it outperforms other approaches in estimating the prespecified target regions. Some
concluding remarks are drawn in Section 5.

2. Uniform design over general input domains

The uniform design (UD), first proposed by Wang and Fang in 1980, is one of the space filling designs (Box and Drapper,
1987; Cheng and Li, 1995; Hickernell, 1999;Wu and Hamada, 2000) that seeks input points to be uniformly scattered on the
input region D. Its basic idea is introduced in the following. Suppose we would like to choose a set of n experiment points
P = {p1, . . . , pn} that are uniformly scattered on an identifiable input domain D, D ⊂ RK . LetM be a measure of uniformity
of P such that smaller M corresponds to better uniformity. Let Z(n) be the set of all possible sets {p1, . . . , pn} on D. A set
P ∗ ∈ Z(n) is called a uniform design if it has the minimum value ofM over Z(n), i.e.,

M(P ∗) = min
P∈Z(n)

M(P). (1)

The popular measures of uniformity are discrepancy (with various modified versions), dispersion, mean square error, and
sample moments (Fang et al., 2000; Hickernell, 1998; Fang and Wang, 1994). However, most of these methods for UD
are developed under the assumption that the experimental domain D can be reasonably transformed into a unit cube
(e.g. rectangles). Motivated by the examples introduced in Section 1, in this study we propose a UD method that is suitable
for experiments with any types of input domain.

2.1. A new measure of uniformity: Central composite discrepancy

We first introduce some notations that are necessary for constructing a new measure of uniformity called ‘‘central
composite discrepancy’’. For any point x ∈ R, denote the set

x(i) = {r ∈ R : x+ ai < r ≤ x+ ai+1}, i = 0, 1, . . . ,m− 1, (2)
where a0 = −∞, am = ∞, a1 < a2 < · · · < am−1, and aj = 0 for some 1 ≤ j ≤ m − 1. Thus, the real line is divided into
m parts at the point x. With the division on each coordinate of a given point x = (x1, . . . , xK) ∈ D ⊂ RK , the input domain
D is decomposed into (at most) mK subregions, where the kth subregion is denoted by Dk(x) = {x

(i1)
1 × · · · × x

(iK)
K }

⋂
D,

and (i1, . . . , iK) is the base-m display of integer k− 1. The examples of such a decomposition for a two-dimensional convex
polygon D are shown in Fig. 2.
Consider a set of n experiment points P = {p1, . . . , pn} on D and let

N(Dk(x),P) =
n∑
i=1

I{pi ∈ Dk(x)}, (3)

which represents the number of points allocated in the subregion Dk(x) given by the decomposition of D at x, x ∈ D. The
central composite discrepancy is defined as

CCDp(n,P) =

 1
v(D)

∫
D

1
mK

mK∑
k=1

∣∣∣∣N(Dk(x),P)n
−
v(Dk(x))
v(D)

∣∣∣∣p dx

1/p

, (4)

where p > 0, v(D) and v(Dk(x)) denote the volume of D and Dk(x), respectively. The optimal allocation of the n experiment
points is the set that minimizes CCDp(n,P), that is,

P ∗ = arg min
P∈Z(n)

CCDp(n,P). (5)

222 S.C. Chuang, Y.C. Hung / Computational Statistics and Data Analysis 54 (2010) 219–232

Fig. 2. (Left panel): The decomposition of D at xwithm = 2 and a1 = 0. (Right panel): The decomposition of D at xwithm = 3 and a1 = 0.

Note that the goal of placing the quantity 1/v(D) in (4) is to rescale the input domain D so that it has volume one. However,
this does not affect the optimal solution P ∗ for any given D.
The basic idea of the proposed central composite discrepancy is that each point x in D is treated as a ‘‘center’’, and

uniformity is measured over all decomposed subregions around it. In the special case when D is a hyper-rectangle, m = 2,
a1 = 0, and p = 1, it is equivalent to the so-called ‘‘symmetrical L1-discrepancy’’ (Ma, 1997a). Note that the central
composite discrepancy and the symmetrical discrepancy both share the same intuition that the optimal design is invariant
under coordinate rotation. However, the former can be applied to the entire class of input domains while the latter can
merely be applied to hyper-rectangles.
Remark: In addition to the central composite discrepancy defined in (4), one can also consider other measures of uniformity
such as

M(n,P) = sup
x∈D

mK∑
k=1

∣∣∣∣N(Dk(x),P)n
−
v(Dk(x))
v(D)

∣∣∣∣
or

M(n,P) =
mK∑
k=1

sup
x∈D

∣∣∣∣N(Dk(x),P)n
−
v(Dk(x))
v(D)

∣∣∣∣ .
2.2. The weighted uniform design

Let f (x) be a continuous function defined on D, f (x) > 0 for all x ∈ D and
∫
D f (x)dx = 1. How do we find a set of n points

P = {p1, . . . , pn} on D so that they have a ‘‘good representation’’ for f (x)? By utilizing the measure of uniformity defined
in (4), we next define the weighted central composite discrepancy by

WCCDf ,p(n,P) =

 1
v(D)

∫
D

1
mK

mK∑
k=1

∣∣∣∣N(Dk(x),P)n
− F(Dk(x))

∣∣∣∣p dx

1/p

, (6)

where F(Dk(x)) =
∫
Dk(x)

f (x)dx represents the proportion of points expected to be allocated on each subregion Dk(x),
k = 1, . . . ,mK . Therefore, a good representation for f (x)will be the set of points P ∗ that minimizesWCCDf ,p(n,P).
Note that if f (x) corresponds to a probability density function and p is chosen to be 1, then the quantity defined in (6)

is a rotation-invariant version of the so-called ‘‘F-discrepancy’’ (Fang and Wang, 1994). However, the interpretation of the
function f (x) is not restricted here. In general, it can represent the ‘‘weight’’ (or ‘‘importance’’) of each point x in D—the
larger the value of f (x) is, the more important the point x is considered. Some examples of how to choose the function f (x)
in correspondence with the prespecified targets of experiment are shown later in Section 3.

2.3. Construction of nearly uniform designs

It is known that solving P ∗ is a NP hard problem as the number of allocated design points goes to infinity. In practice,
a computationally more efficient way is to construct a so-called nearly uniform design (NUD) with a low measure of
uniformity. Traditional techniques for constructing the NUDs are the good lattice point method and its modifications (Wang
and Fang, 1981; Fang and Li, 1995; Ma, 1997b), the method based on searching only a subset of U-type designs (Fang
and Hickernell, 1995), the construction methods based on Latin squares (Fang et al., 1999a) and orthogonal designs (Fang,
1995), the threshold accepting method based on U-type designs (Winker and Fang, 1998; Fang et al., 2001), the method by
collapsing two uniform designs (Fang and Qin, 2003), and the cutting method (Ma and Fang, 2004). In order to deal with
general types of input domain, here we utilize an efficient approach (called ‘‘switching algorithm’’) that has been widely

S.C. Chuang, Y.C. Hung / Computational Statistics and Data Analysis 54 (2010) 219–232 223

used in design literature (Winker & Fang, 1998; Fang et al., 2001) and cluster analysis (e.g. K-means clustering, (Sharma,
1996)). The steps of the switching algorithm are summarized in the following.
The Switching Algorithm

Step 1: Superimpose N candidate grids g1, . . . , gN on the primary input domain and denote the new input domain by
D = {g1, . . . , gN}. Arbitrarily choose an initial design P (0)

= {g1, . . . , gn} from D, set i = 0.
Step 2: Set j = 1 and P (i+1)

= P (i).
Step 3: Let g∗ = argming∈D\P (i+1) CCDp(n, {g}

⋃
P (i+1)

\ {gj}).
If CCDp(n, {g∗}

⋃
P (i+1)

\ {gj}) < CCDp(n,P (i+1)),
set P (i+1)

= {g∗}
⋃

P (i+1)
\ {gj}.

Step 4: Set j = j+ 1. If j ≤ n, go to Step 3; otherwise go to Step 5.
Step 5: If P (i+1)

6= P (i), set i = i+ 1 and go to Step 2; otherwise return P (i).

Note that in Step 1, an initial design P (0) of size n is arbitrarily placed. For example, one can choose P (0) by utilizing the
technique of simple random sampling. After that, the designP (i) is iteratively updated by consecutively switching its design
points with other candidate grids in D so as to reduce the proposed measure of uniformity (Step 2–Step 4). In Step 5, the
design points are extracted when the measure of uniformity cannot be further reduced (i.e., no more switchings are needed
to improve uniformity). Denote the resulting design by P (i∗), we next show that: (i) solving P (i∗) requires at most O(N2+p)
computations of CCDp(n,P); and (ii) the resulting P (i∗) approximates very well the optimal design P ∗.

Fact 1. For any given P ⊂ D = {g1, . . . , gN}, 0 ≤ [CCDp(n,P)]p ≤ 1.

Fact 2. CCDp(n,P (i)) is a non-increasing function of i.

Note that the results of Facts 1 and 2 are straightforward, so the proofs are omitted.

Fact 3. If p is a positive integer and P (i+1)
6= P (i) in Step 5, then

[CCDp(n,P (i))]p − [CCDp(n,P (i+1))]p ≥
1

npN1+pmK
.

Proof. Define

W (n,P) =
∑
g∈D

mK∑
k=1

|N · N(Dk(g),P)− n · N(Dk(g),D)|p ,

it is clear thatW (n,P) is a positive integer and by definition

[CCDp(n,P (i))]p − [CCDp(n,P (i+1))]p =
W (n,P (i))−W (n,P (i+1))

npN1+pmK
.

The result then follows since by Fact 2 we know thatW (n,P (i))−W (n,P (i+1)) ≥ 1 when P (i+1)
6= P (i). �

Theorem 1. For any positive integer p, the computation time of CCDp(n,P (i)) in the switching algorithm is at most O(N2+p).

Proof. Note that to finish the update of each design P (i), the required computation time of CCDp(n,P) is n(N − n) (since
there are n switchings needed to be checked and each switching requires N − n computations of CCDp(n,P)). In addition,
from Facts 1–3 we know that CCDp(n,P (i)) is a non-increasing function of i and CCDp(n,P (0)) can be reduced at most
npN1+pmK times. These together imply the total computation time of CCDp(n,P) is bounded above by npN1+pmK ·n(N−n),
which can be represented as O(N2+p). �

The result of Theorem 1 is quite essential from the perspective of computational efficiency. To see this, note that the
computation time of CCDp(n,P) for finding the optimal design (based on exhaustive search) is clearly

(
N
n

)
= O(Nn).

However, since p is often chosen to be 1 or 2, the computation time can be dramatically reduced to O(N2+p) by using the
switching algorithm. To investigate how the resulting NUD approximates the true optimal design P ∗, we consider the unit
square input domain on which 30 grids are superimposed (i.e., N = 30). The switching algorithm is then carried out for 100
times (with each initial design chosen by simple random sampling) and the ‘‘average’’ central composite discrepancy (with
p = 2) of all resulting NUDs is computed. The results for different sizes of experiment (say n = 1, . . . , 15) are shown in
Fig. 3.
From Fig. 3, we see that the NUDs obtained from the switching algorithm approximate very well (in average sense) the

optimal design for various sizes of experiment. In addition, the numerical results show that the switching algorithm is quite
stable since the standard deviation of the resulting CCD2(n,P (i∗)) (based on 100 NUDs) is less than 2 × 10−3 for all n. For
practical purposes, the CPU time for finding the optimal design (based on exhaustive search) and the average CPU time for

224 S.C. Chuang, Y.C. Hung / Computational Statistics and Data Analysis 54 (2010) 219–232

Fig. 3. The comparison of the optimal design and the NUD based on the switching algorithm for the input domain of unit square.

Table 1
The CPU time (in seconds) for finding the optimal design (based on exhaustive search) and the average CPU time (in seconds) for finding the NUD.

n Optimal design NUD n Optimal design NUD n Optimal design NUD

1 <0.001 – 6 34 0.289 11 4525 0.816
2 0.015 0.047 7 128 0.377 12 7592 0.878
3 0.172 0.100 8 384 0.446 13 11183 1.112
4 1.235 0.145 9 1048 0.586 14 14286 1.207
5 7 0.230 10 2342 0.686 15 19627 1.356

finding the NUDs (based on 100 iterations of the switching algorithm) are attached in Table 1. As can be seen from Table 1,
as n becomes larger, the CPU time for finding the NUD based on the switching algorithm becomes significantly smaller than
that of finding the optimal design.

Remark: To improve the performance of nearly uniform design, one can superimpose coarse grids over the input domain
and then utilize the optimal design as the initial design in the switching algorithm. However, such a setup will require some
extra computational cost.

Remark: The optimal design and theNUDswere obtained based on the simulation trials thatwere executed on 2GHz Pentium
4 processors with 1GB of cache memory. Computer programs were all written in Fortran.

2.4. Discussion

In this section we discuss some other computational issues of the proposed UD method.

Low-dimensional Uniformity. It is noted that the proposed measure of uniformity can be modified so that uniformity over
low-dimensional spaces is also taken into account. Let ψ be a non-empty subset of {1, . . . , K} and |ψ | be the number of
elements in ψ . For any given weight function f (x), define fψ =

∫
f (x)dx−ψ , where dx−ψ =

∏
i∈{1,...,K}\ψ dxi. Thus, a more

general measure of uniformity, called projected central composite discrepancy, can be defined as

PCCDΨ ,f ,p(n,P) =

{
1
|Ψ |

∑
ψ∈Ψ

[WCCDfψ ,p(n,Pψ)]
p

}1/p
, (7)

where Ψ is the collection of all non-empty subsets of {1, . . . , K}, and Pψ is the projection of P to the subspace ψ . It is
noted that similar ideas are used to construct the so-called ‘‘centered Lp-discrepancy’’ (Hickernell, 1998). However, the
consideration of projections to low-dimensional spaces will require a large amount of computation, as can be seen from (7).
Therefore, here we restrict our attention on the uniformity in the K -dimensional space, i.e., we choose Ψ = {{1, . . . , K}}.

Choice of N . It is noted that if N is too small (i.e., the number of candidate grids is too small), then the resulting NUD may
not be good enough. On the other hand, if N is large, then the switching algorithmmay not be efficient. Therefore, to choose
the value of N , one must take into account the tradeoff between design optimality and computational cost. Here we provide
a guideline for choosing N: if K is small, then choose N = nK ; if K is large, then choose N = nK . Based on the guideline, an
nK factorial design is used for choosing the candidate grids in a small space, while the number of candidate grids is chosen
to be proportional to the size of design in a large space.

When K is Large. Another computational issue is how to evaluate the summations in (4) and (6) when K is large. In practice,
this can be done by considering the summation over a random subset of all decomposed subregions. For example, Eq. (4)

S.C. Chuang, Y.C. Hung / Computational Statistics and Data Analysis 54 (2010) 219–232 225

can be replaced by{
1
v(D)

∫
D

1
L

L∑
l=1

∣∣∣∣N(Dkl(x),P)n
−
v(Dkl(x))
v(D)

∣∣∣∣p dx
}1/p

,

where {k1, . . . , kL} is a random subset of {1, . . . ,mK }, and similarly for Eq. (6).

3. Methodology for target region estimation

Consider a typical computer experiment that can simultaneously produce outputs (or responses) y1(x), . . . , ym(x), where
x = (x1, . . . , xK) ∈ D represents the vector of K input factors, and D is a general convex region. Suppose there are I output
measures of interest, with each denoted by zi(x) = hi(y1(x), . . . , ym(x)), i = 1, . . . , I , and we would like to know how to
control the input factors x so that these output measures satisfy

ai ≤ zi(x) ≤ bi for all i = 1, . . . , I, (8)

where ai and bi are prespecified threshold values. Let us denote the ‘‘target region’’ for each output measure zi(x) by Ti(x),
where

Ti(x) = {x ∈ D : ai ≤ zi(x) ≤ bi}, i = 1, . . . , I. (9)

Therefore, the ‘‘overall’’ target region of the experiment is defined as

T (x) =
I⋂
i=1

Ti(x), (10)

which is the set of input factors so that all desired outputs of interest can be produced.
Note that T (x) represents a general form of target regions involving multiple responses of interest. However, the

analytical solution for T (x) is often hard to obtain due to the complexity of experiment. A naive approach is to perform
a large number of experimental trials over the entire input domain D so that T (x) can be estimated through an empirical
study. However, such a procedure reveals to be infeasible due to a high cost of each trial (an important feature of computer
experiments). Therefore, we propose an efficient methodology for estimating T (x). The proposedmethodology is sequential
and comprised of two main components: (i) design and (ii) fitting response surfaces. For the part of design, the UD method
introduced in Section 2 is utilized; while for fitting response models, the techniques based on Gaussian stochastic process
(GASP) and support vector regression (SVR) are considered. Before we proceed, the following preliminaries are shown
necessary.

3.1. Choosing the weight function f (x) for UD

Aswe know, every input point x inDmayprovide different information for estimating the target region T (x). For example,
the input points near the boundary of the target region (denoted by T̄ (x)) intuitively can provide more useful information
for estimating T (x). This means that the local model fitting near T̄ (x) is more attractive than the empirical model fitting over
the entire input domain D. Therefore, the experimental design (allocation of input points) has to place much more weight
on the input points near T̄ (x). Our first step is to construct a function f (x) which represents well the ‘‘importance’’ of each
input point x ∈ D with respect to T̄ (x). After normalizing f (x), we can treat it as a weight function so that the proposed
measure of uniformity (6) can be used to select the input points for analysis.
We start by considering the experiment with merely a single output measure zi(x). For each input point x ∈ D, consider

fi(x) = max
(
e
−βi(k)

|zi(x)−ai |
σzi , e

−βi(k)
|zi(x)−bi |
σzi

)
(11)

or

fi(x) = max
(
0, 1− βi(k)

|zi(x)− ai|
σzi

, 1− βi(k)
|zi(x)− bi|

σzi

)
, (12)

where βi(k) is a positive control process chosen by the designer, and σzi is the standard deviation of zi. With the definitions
in (11) and (12), it is clear that 0 < fi(x) ≤ 1 for all x ∈ D, and the maximum value happens at the input point(s) having the
output measure equivalent to one of the threshold values (i.e., ai or bi). As the output measure zi(x) gets further away from
the threshold values, fi(x) becomes exponentially or linearly smaller (i.e., away from 1). It should be noted that, the goal of
placing the divisor σzi is to make the weight function scale-free. In practice, σzi can be estimated by all available data. Fig. 4
shows two examples of the weight function fi(x) defined in (11) and (12).

226 S.C. Chuang, Y.C. Hung / Computational Statistics and Data Analysis 54 (2010) 219–232

Fig. 4. (Left panel): The exponential weight function defined in (11). (Right panel): The linear weight function defined in (12). Note that βi(k) and σzi are
chosen to be one for both cases.

To account for all output measures of interest, we define another function

f ′i (x) =
{
1 if x ∈ Ti(x),
fi(x) if x 6∈ Ti(x).

(13)

The overall weight function is then defined as

f (x) =


max
i=1,...,I

fi(x) if x ∈ T (x),
I∏
i=1

f ′i (x) if x 6∈ T (x).
(14)

From (11)–(14), it can be shown that 0 < f (x) ≤ 1 for all x ∈ D. Further, f (x) has themaximum value on the boundary of the
target region T (x) and becomes smaller as the input point gets further away from the boundary. To normalize the overall
weight function f (x), we simply define

f ∗(x) =
f (x)∫

x∈D f (x)dx
, x ∈ D. (15)

It is noted that the value of f ∗(x) is determined by all the output measures y1(x), . . . , ym(x) (or z1(x), . . . , zI(x)). In practice,
each output measure yi(x) can be estimated by fitting an adequate model over the entire input region D.

3.2. Fitting response models

In this section, we introduce two techniques that are used to model the responses in computer experiments. The first
technique is the Gaussian stochastic process (GASP) model, while the second one is support vector regression (SVR).
Gaussian Stochastic Process (GASP) Model. The GASP model was introduced by Sacks et al. (1989) and has been widely
used for modelling the output from complex computer codes (Jones et al., 1998). Suppose we are given n observed data
{(x1, y1), . . . , (xn, yn)}, where the ith input is a K -dimensional vector xi = (xi1, . . . , xiK) and yi = y(xi) is the corresponding
output. Consider the model

y(xi) = µ+ ε(xi), i = 1, . . . , n, (16)

whereµ is the overall mean, ε(xi) is a spatial Gaussian processwith E[ε(xi)] = 0, Var(ε(xi)) = σ 2ε , Cov(ε(xi), ε(xj)) = σ
2
ε Rij,

and

Rij = Corr(ε(xi), ε(xj)) =
K∏
k=1

exp{−θk(xik − xjk)pk}. (17)

Thus, the output vector y = (y1, . . . , yn)′ has amultivariate normal distributionNn(1nµ,Σ), whereΣ = σ 2ε R, and R = [Rij].
An important feature of the GASPmodel is that, the correlation between the output measures is modelled as a stochastic

process, while pk corresponds to the ‘‘smoothness’’ of the response surface in the direction of the kth input factor. Since
the likelihood for this model is straightforward, the likelihood (or profile likelihood) estimates of all parameters can be
computed. To estimate the output at any untried input point x∗, one can utilize the best linear unbiased predictor (BLUP) for
y(x∗), of which the closed-form solution can be clearly presented (Henderson, 1975; Ranjan et al., 2008). Although the GASP
model hasmany nice properties from a theoretical point of view, finding the likelihood estimates of all parameters becomes
a hard task when the number of input factors becomes large (i.e., when K is large). We next introduce another modelling
tool called support vector regression (SVR) that can easily handle the system with a large number of input factors.

S.C. Chuang, Y.C. Hung / Computational Statistics and Data Analysis 54 (2010) 219–232 227

Support Vector Regression (SVR). The SVR originates from the framework of statistical learning theory (Boser et al.,
1992; Cortes and Vapnik, 1995; Guyon et al., 1993; Schölkopf, 1997; Vapnik, 1998). The ideas of SVR are summarized
as follows. Suppose we are given n observed data {(x1, y1), . . . , (xn, yn)}, where the ith input is a K -dimensional vector
xi = (xi1, . . . , xiK) and yi = y(xi) is the corresponding output. In ε-SVR, the goal is to find a function g(x) that has at most
ε deviation from the actually obtained outputs yi for all the training data, and at the same time, is as flat as possible. For
simple linear functions g(x) = 〈ω, x〉 + b, this corresponds to finding the solution of the following optimization problem:

minimize
1
2
‖ω‖2 + C

n∑
i=1

(ξi + ξ
∗

i)

subject to

{yi − 〈ω, xi〉 − b ≤ ε + ξi
〈ω, xi〉 + b− yi ≤ ε + ξ ∗i
ξi, ξ

∗

i ≥ 0.
(18)

Note that the l2-norm ‖ω‖2 takes into account the flatness of function g(x),
∑n
i=1(ξi + ξ

∗

i) is the amount up to which
deviations lager than ε are tolerated, and C > 0 is the trade off between both (Vapnik, 1995). To achieve nonlinearity, the
SVR algorithm finds the optimal solution of g in a high-dimensional feature space (or Hilbert space) H using a mapping
Φ : D → H . With this mapping, it is shown that the optimization solution depends on the data merely through inner
products in H , that is, on functions of the form 〈Φ(xi),Φ(xj)〉. Hence, a computationally cheaper way is to use a kernel
function k(xi, xj) = 〈Φ(xi),Φ(xj)〉 instead ofΦ(·) explicitly.
A popular choice of the kernel function is the Gaussian kernel (or radial basis function), which has the form that

k(xi, xj) = exp
{
−‖xi − xj‖2

2σ 2

}
. (19)

From the viewpoint of implementation, the Gaussian kernel has the following two advantages: (i) it can easily handle
nonlinear models by mapping data into infinite-dimensional spaces; and (ii) it has relatively low complexity for model
selection (since the model has only two unknown parameters C and σ 2). In practice, (C, σ 2) can be chosen by performing a
grid search in R2

+
and utilizing the idea of cross-validation so as to minimize the ‘‘mean square prediction error’’ (Hsu et al.,

2003). For other approaches of choosing the best combination of (C, σ 2), the readers can refer to the work done by Keerthi
and Lin (2003) and Huang et al. (2007).

3.3. Sequential weighted uniform design for target region estimation

Wenowpropose a sequential approach for estimating the target region T (x) of computer experiments, as described in the
previous section. The idea is to first estimate the ‘‘importance’’ of each point x in the input domain D by fitting a response
model for each output measure yi based on an initial uniform design, and then sequentially update its ‘‘importance’’ by
refitting each response model with one new trial added. When some stopping criterion has been achieved, the resulting
estimation of T (x) is then extracted. We summarize all the steps in the following.

Step 1: Superimpose N candidate grids in D and perform an initial uniform design of size n0 based on (4). Perform
experimental trials at the selected input grids and obtain the corresponding output measures.

Step 2: Fit a model gi(x) for each of the output measures yi based on the existing data and obtain the estimated output
measures ẑ1(x), . . . , ẑI(x) for each grid point x ∈ D. Calculate the normalized weight function f ∗(x) using Eqs.
(11)–(15).

Step 3: Augment the existing design points and select an additional one so that (6) is minimized (i.e. consider f (x) = f ∗(x)
in (6)). Perform an experimental trial at the selected input point and obtain the corresponding output measures.

Step 4: Repeat Step 2–Step 3 until some prespecified criterion has been achieved.
Step 5: Obtain the estimated ẑ1(x), . . . , ẑI(x) based on the resulting response models for each grid point x ∈ D and extract

the ones satisfying (8).

In the first step of this procedure, an initial allocation of design points is used. The purpose of this step is to have an initial
set of trials uniformly scattered in the input region so that a response model can be fit to obtain a fairly good estimation
for each output measure. Note that with a prespecified budget of available experimental trials, an initial allocation of about
25%–35% of the total budget is a suggested rule of thumb (Ranjan et al., 2008). However, here we suggest an initial allocation
of about 25%–50% of the total experimental budget. The reason is that, due to the feature of the weight function defined in
(11) and (12), the input points away from the ‘‘initially estimated boundary T̄ (x)’’ might only have a little chance to be
selected in the following iterations. Therefore, increasing the size of initial design is sometimes necessary in order to reduce
the overall predictive uncertainty.
In Step 2, a response model is fit for each output measure yi based on the existing data and the estimated values ŷi(x)

for all x ∈ D are obtained. All the functions fi(x) and f ′i (x) are calculated using (11)–(13), wherein βi(k) is chosen to be
a nondecreasing function of k (k corresponds to the stage of the sequential design). The goal of choosing βi(k) to be a
nondecreasing function of k is that, as the number of allocated design points increases we gain more and more information

228 S.C. Chuang, Y.C. Hung / Computational Statistics and Data Analysis 54 (2010) 219–232

about the output models yi(x), therefore, adding more design points near the boundary of the target region intuitively can
improve the estimation of T̄ (x). To obtain the normalized overall weight function f ∗(x) defined in (15), we first calculate the
overall weight function f (x) by (14) and then estimate

∫
x∈D f (x)dx by its Riemann sums (using all candidate grids in D). As

mentioned before, the resulting f ∗(x) represents the (estimated) ‘‘importance’’ of each input x in D for identifying the target
region T (x).
In Step 3, an additional input point is selected by the proposed uniform design based on the weight function f ∗(x). It is

worth noting that by augmenting the existing data, this step allows for efficient use of available resources. In addition, the
allocation of the new design point aims to (i) maximize the information for improving the model fitting near the boundary
of T (x), and (ii) reduce the overall predictive uncertainty.
Lastly, in Steps 4 and 5, a set of grids is extracted to be the final estimation of T (x) when the prespecified criterion has

been achieved. In this study, we consider two possible criteria: (i) the prediction accuracy of the response models; and (ii)
the experimental budget (i.e., the number of experimental trials allowed). We now explain how to use criterion (i) as a
stopping rule. Denote the estimated mean square prediction error of the output measure yi after n iterations by M̂SEi(n),
where

M̂SEi(n) =
1

(n0 + n)

∑
x

[ŷi(x)− yi(x)]2, i = 1, . . . ,m. (20)

The proposed procedure stops after n iterations if

max
i=1,...,m

M̂SEi(n) < δ (21)

or

max
i=1,...,m

|M̂SEi(n)− M̂SEi(n− 1)|

M̂SEi(n− 1)
< δ′ (22)

for some positive δ and δ′. As can be seen from (21) and (22), both criteria provide a certain level of prediction accuracy for
all output measures. However, it should be noted that the criterion defined in (21) is scale-dependent, while the criterion
defined in (22) is scale-free. Criterion (ii) is straightforward, since trials cannot be undertakenwhen the experimental budget
is out.

4. Performance assessment

To evaluate the performance of our proposed methodology, we consider the following two examples. The first example
is the so-called Goldprice function that has been studied by Andre et al. (2000) and Ranjan et al. (2008). The second example
comes from the queueing system introduced in Section 1, where the target region is comprised of multiple responses. To
implement our proposed UD method, we choose m = 2, a1 = 0, and p = 2 so that the computation of Eq. (4) is simplified
(see Section 2.1 for details). Further, the exponential weight function defined in (11) is chosen to construct theweighted UD.

Example 4.1 (The Goldprice Function). The Goldprice function is given by

y(x1, x2) = [1+ (x1 + x2 + 1)2(19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x
2
2)]

× [30+ (2x1 − 2x2)2(18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x
2
2)],

where two input factors x1 and x2 are defined on the domain D = (−2, 2) × (−2, 2). For this example we consider the
target region T (x) = {(x1, x2) ∈ D : y(x1, x2) ≥ 1.5× 105}, of which the boundary T̄ (x) corresponds to the contour line at
y(x1, x2) = 1.5 × 105. To implement our proposed methodology, we first superimpose 402 = 1600 fine grids in the input
domain D. The (estimated) true target region based on the simulation at all these 1600 grid points is shown in Fig. 5.
Suppose now the total number of simulation trials is limited to be n = 40, and we first consider an initial design of size

n0 = 15. The control process is chosen to be β(k) = 4k/(n − n0), where k represents the number of input points added
after the initial design, k = 1, . . . , 25. The result of our proposed method based on fitting SVR models is shown in Fig. 6.

Remark: Note that choosing β(k) = 4k/(n− n0) results in the fact that 0 < β(k) ≤ 4 for k = 1, . . . , n− n0, which is a rule
of thumb we obtained from a large number of simulation trials.
The upper left panel of Fig. 6 shows the estimated boundary of the target region (or contour line) based on an initial

uniform design of size n0 = 15. As can be seen, the estimation totally misses the true target region in the bottom right
of input domain D. The upper right panel of Fig. 6 shows the estimated target region after 8 additional design points are
added. As can be seen, due to the feature of the proposed weighted uniform design, some of the newly added points are
allocated near the estimated boundary, while others are allocated in the sparsely sampled regions. In particular, the true
target region in the bottom right of input domain is detected when the 8th point (numbered 23) is added. The lower left
panel of Fig. 6 shows that the true target region is very well estimated after 15 additional design points are added. Further,
by sequentially increasing the weight of the control process β(k), we see that more and more design points are allocated

S.C. Chuang, Y.C. Hung / Computational Statistics and Data Analysis 54 (2010) 219–232 229

Fig. 5. The true target region T (x) = {(x1, x2) ∈ D : y(x1, x2) ≥ 1.5× 105} (the gray part) for the Goldprice function based on 1600 simulation trials.

Fig. 6. The illustration of the proposed sequential UD and the estimated target region based on fitting SVR models. Note that the small dotted points refer
to the initial design, the solid curve refers to the true boundary of the target region, while the dotted curve refers to the estimated boundary.

230 S.C. Chuang, Y.C. Hung / Computational Statistics and Data Analysis 54 (2010) 219–232

Fig. 7. (Left panel): The discrepancy measure (M∗) versus the number of additional points (k) added after the initial design of size n0 = 15. (Right panel):
The discrepancy measure (M∗) versus the number of additional points (k) added after the initial design of size n0 = 20.

Table 2
The comparison of discrepancy measure M∗ for five different methods. Note that for the methods based on sequential design, M∗ are calculated with an
initial design of size n0 = 10, 15, and 20, while for the methods based on pure UD,M∗ are calculated with all design points allocated at one time.

Methods Discrepancy measureM∗(n = 40)
n0 = 10 n0 = 15 n0 = 20

GASP+ Sequential design 0.00654 0.00535 0.00773
SVR+ Sequential UD 0.00535 0.00297 0.00535
GASP+ Sequential UD 0.00000 0.00119 0.02261

GASP+ Pure UD 0.00654
SVR+ Pure UD 0.00654

near the boundary of the target region, thus improving the accuracy of estimation. The final estimated target region with 25
added design points is shown in the lower right panel of Fig. 6.
Ranjan et al. (2008) considered three discrepancy measures (lack in correlation, average L2 distance, and maximum L2

distance) to evaluate the closeness of the estimated contour to the true one. The shortcoming of these discrepancymeasures
is that, for small target regions that are not detected (such as the target region in the bottom right of Fig. 5), the false
estimation will not be penalized (see Ranjan et al. (2008)). To overcome this problem, we propose another discrepancy
measure based on the N superimposed candidate grids in D:

M∗ =
∣∣∣(T (x) \ T̃ (x))⋃(

T̃ (x) \ T (x)
)∣∣∣ /N (23)

where T (x) ⊂ D is the true target set and T̃ (x) ⊂ D is the resulting estimated target set. This new discrepancy measure
accounts for the proportion of candidate grids located in the difference of two sets T (x) and T̃ (x)—the smaller the measure
is, the closer the estimated target set is to the true one (thus having higher prediction accuracy).
The diagnostic plots of the discrepancy measure M∗ for the initial design of size n0 = 15 and n0 = 20 are shown in

Fig. 7. As can be seen from Fig. 7, the value ofM∗ has a decreasing trend (to zero) as the number of added points gets larger.
Theoretically, our estimated target set will converge to the true target set as the number of design points becomes large.
The numerical results of M∗ are shown in Table 2, wherein the following methods are compared: (i) the GASP model

based on a sequential design proposed by Ranjan et al. (2008); (ii) the SVRmodel based on our proposed sequential UD; (iii)
the GASP model based on our proposed sequential UD; (iv) the GASP model based on pure UD (i.e., with 40 design points
allocated at one time); and (v) the SVR model based on pure UD.
As can be seen from Table 2, the proposed sequential UD outperforms other design methods for almost all given sizes

of initial design. An exception is found in the case when n0 = 20, where the GASP model has a relatively larger prediction
error compared with other methods. This may be due to the fact that the GASP model is rather sensitive to the observed
data, thus missing the target region in the bottom right. Therefore, reducing the size of initial design seems necessary when
the GASP model is employed. On the other hand, the SVR model reveals to be rather stable in terms of prediction for the
given sizes of initial design. It is also noted that both the GASP and SVR models based on pure UD perform ‘‘fairly well’’ in
this example. The reason is that the input domain D is now a small two-dimensional rectangle, while relatively sufficient
simulation budget (say n = 40) is provided.

Example 4.2 (The Queueing Example with Multiple Responses). Recall the queueing system introduced in Example 1 of
Section 1, where we assume there are only two queues and jobs arrive in accordance with independent Poisson processes

S.C. Chuang, Y.C. Hung / Computational Statistics and Data Analysis 54 (2010) 219–232 231

Fig. 8. (Left panel): The true target region T (x) = {x ∈ D : y1(x) < 1, y2(x) < 1, y3(x) > 0.5} (the gray part) based on 1124 simulation trials. (Right
panel): The illustration of the proposed sequential UD (n = 40) with an initial design of size n0 = 10 (small dotted points) and the estimated target region
(dotted line) based on fitting SVR models.

Table 3
The comparison of discrepancymeasureM∗ for four different methods. Note that for themethods based on sequential UD,M∗ are calculated with an initial
design of size n0 = 10, 15, and 20, while for the methods based on pure UD,M∗ are calculated with all design points allocated at one time.

Methods Discrepancy measureM∗(n = 40)
n0 = 10 n0 = 15 n0 = 20

GASP+ Sequential UD 0.03203 0.02313 0.03292
SVR+ Sequential UD 0.00712 0.02580 0.03826
GASP+ Pure UD 0.21174
SVR+ Pure UD 0.10587

with rates x1 and x2, respectively. Suppose there are three service rate vectors U1 = (3, 0), U2 = (2, 3), and U3 = (0, 4).
Thus, the input rate vector x = (x1, x2) belongs to a convex polygon D, as shown in the left panel of Fig. 1. For this example,
we are interested in how the input rate vector x affects the following three performance measures regarding ‘‘quality of
service’’ under the so-called MaxProduct policy. The first performance measure y1(x) is the average delay (i.e., the average
time waiting until service is first provided) of jobs in queue 1, the second performance measure y2(x) is the average delay
of jobs in queue 2, while the third performance measure y3(x) is the average delay of jobs in both queues. Suppose now the
desired target region is T (x) = {x ∈ D : y1(x) < 1, y2(x) < 1, y3(x) > 0.5} and 1124 grids are superimposed in the
domain D. The estimated target region based on simulating the system at all candidate grid points is shown in the left panel
of Fig. 8. Assume the total number of simulation trials is limited to be n = 40, the allocated design points and the estimated
target region based on the proposed sequential UD (with initial design of size n0 = 10) and fitting SVR models are shown
in the right panel of Fig. 8.

Note that since the sequential design proposed by Ranjan et al. (2008) cannot handle the target region with multiple
responses, it is excluded from comparison. The numerical results of the discrepancy measure M∗ for other methods are
shown in Table 3. As can be seen from Table 3, the proposed sequential UD significantly outperforms pure UD for fitting
both the GASP and SVR models with various sizes of initial design (say n0 = 10, 15, and 20).

5. Concluding remarks

This research ismainly divided into two parts. In the first part, we propose a newUDmethod that is suitable for any types
of design area. The proposed UD method has an important feature that the optimal design is invariant under coordinate
rotations and can be properly extended so that lower-dimensional uniformity is also considered. In order to reduce the
computational cost of finding the optimal design, we propose an efficient algorithm to construct a so-called nearly uniform
design (NUD). The numerical results also show that the constructed NUD approximates very well the optimal design for
small sizes of experiment. In the second part, we develop an efficient methodology for estimating the target region of
computer experiments. The methodology is sequential and comprised of two main components: (i) design; and (ii) fitting
responsemodels. For component (i), the proposed UDmethodwith sequentially updated weight functions is utilized; while
for component (ii), the GASP and SVR models with sequentially updated parameters are employed. It is noted that the

232 S.C. Chuang, Y.C. Hung / Computational Statistics and Data Analysis 54 (2010) 219–232

proposed methodology can be viewed as an extension of the work done by Ranjan et al. (2008). However, it has a more
general scope from the following viewpoints: (i) the employment of SVRmodels allows us to easily handle the experiments
with a large number of input factors; (ii) the proposed methodology can handle the target region comprised of multiple
output measures (remember the work done by Ranjan et al. (2008) can handle merely one output measure). The numerical
results also show that our proposed methodology outperforms other approaches in estimating the target region of various
computer experiments. We are currently investigating the computational issues that arise with high-dimensional input
spaces and also how to best compare the performance of different approaches.

References

Andre, J., Siarry, P., Dognon, T., 2000. An improvement of the standard genetic algorithm fighting premature convergence. Advances in Engineering Software
32 (1), 49–60.

Armony, M., Bambos, N., 2003. Queueing dynamics and maximal throughput scheduling in switched processing systems. Queueing Systems: Theory and
Applications 44, 209–252.

Boser, B.E., Guyon, I.M., Vapnik, V.N., 1992. A training algorithm for optimal margin classifiers. In: The 5th Annual ACMWorkshop on COLT. pp. 144–152.
Box, G.E.P., Drapper, D.R., 1987. Empirical Model Building and Response Surfaces. John Wiley & Sons, New York.
Cheng, C.S., Li, K.C., 1995. A study of the method of principal Hessian direction for analysis of data from design experiments. Statistica Sinica 5, 617–639.
Cortes, C., Vapnik, V.N., 1995. Support vector networks. Machine Learning 20, 273–297.
Fang, K.T., 1980. The uniform design: Application of number-theoretic methods in experimental design. Acta Mathematical Application Sinica 3, 363–372.
Fang, K.T., Hickernell, F.J., 1995. The uniform design and its applications. Bulletin of Institute of International Statistics 333–349. 50th Session, Book 1.
Fang, K.T., Li, J.K., 1995. Some new results on uniform design. Chinese Science Bulletin 40, 68–72.
Fang, K.T., Lin, D.K.J., 2003. Uniform experimental designs and their applications in industry. In: Handbook of Statistics, vol. 22. pp. 131–170.
Fang, K.T., Lin, D.K.J., Winker, P., Zhang, Y., 2000. Unifrom design: Theory and applications. Technometrics 42, 237–248.
Fang, K.T., Ma, C.X., Winker, P., 2001. Centered L2-discrepancy of random sampling and Latin hypercube design, and construction of uniform design.
Mathematical Computation 71, 275–296.

Fang, K.T., Qin, H., 2003. A note on construction of nearly uniform designs with large number of runs. Statistics & Probability Letters 61, 215–224.
Fang, K.T., Shiu, W.C., Pan, J.X., 1999a. Uniform designs based on Latin squares. Statistica Sinica 9, 905–912.
Fang, K.T., Tian, G.L., Xie, M.Y., 1999b. Uniform design over a convex polyhedron. Chinese Science Bulletin 44, 112–114.
Fang, K.T., Wang, Y., 1994. Number-theoretic Methods in Statistics. Chapman and Hall, London.
Fang, Y., 1995. Relationships between uniform design and orthogonal design. In: The 3rd International Chinese Statistical Association Conference, Beijing.
Guyon, I.M., Boser, B.E., Vapnik, V.N., 1993. Automatic capacity tuning of very large VC-dimension classifiers. Advances in Neural Information Processing
Systems 5, 147–155.

Henderson, C.R., 1975. Best linear unbiased estimation and prediction under a selection model. Biometrics 31, 423–447.
Hickernell, F.J., 1998. A generalized discrepancy and quadrature error bound. Math. Comput. 67, 299–322.
Hickernell, F.J., 1999. Goodness-of-fit statistics, discrepancies and robust dessigns. Statistics & Probability Letters 44, 73–78.
Hsu, C.W., Chang, C.C., Lin, C.J., 2003. A practical guide to support vector classification. Technical Report CWH03a, Department of Computer Science and
Information Engineering, National Taiwan University, Taipei, Taiwan.

Huang, C.M., Lee, Y.J., Lin, D.K.J., Huang, S.Y., 2007.Model selection for support vectormachines via uniform design. Computational Statistics & Data Analysis
52, 335–346.

Hung, Y.C., Chang, C.C., 2008. Dynamic scheduling for switched processing systems with substantial service-mode switching times. Queueing Systems:
Theory and Applications 60, 87–109.

Hung, Y.C., Michailidis, G., 2008. Modeling, scheduling, and simulation of switched processing systems. ACM Transactions on Modeling and Computer
Simulation 18, Article 12.

Hung, Y.C., Michailidis, G., Bingham, D.R., 2003. Developing efficient simulationmethodology for complex queueing networks. In: Proceedings of theWinter
Simulation Conference, New Orleans. pp. 152–159.

Jones, D., Schonlau, M., Welch, W., 1998. Efficient global optimization of expensive Black–Box functions. Journal of Global Optimization 13, 455–492.
Keerthi, S.S., Lin, C.-J., 2003. Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Computation 15, 1667–1689.
Ma, C.X., 1997a. A new criterion of uniformity — Symmetrical discrepancy. Journal of Nankai University 30, 30–37.
Ma, C.X., 1997b. Construction of uniform designs using symmetrical discrepancy. Application of Statistics and Manegement 166–169.
Ma, C.X., Fang, K.T., 2004. A newapproach to construction of nearly uniformdesigns. International Journal ofMaterials and Product Technology 20, 115–126.
Ranjan, R., Bingham, D., Michailidis, G., 2008. Sequential experiment design for contour estimation from complex computer codes. Technometrics 50,
527–541.

Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P., 1989. Design and analysis of computer experiments. Statistical Science 4, 409–423.
Schölkopf, B., 1997. Support Vector Learning. R. Oldenbourg Verlag, Munich.
Sharma, S., 1996. Applied Multivariate Techniques. Wiley.
Vapnik, V.N., 1998. Statistical Learning Theory. Wiley, New York.
Vapnik, V.N., 1995. The Nature of Statistical Learning Theory. Springer, New York.
Wang, Y., Fang, K.T., 1981. A note on uniform distribution and experimental design. KeXue TongBao 26, 485–489.
Winker, P., Fang, K.T., 1998. In: Niederreiter, H., Zinterhof, P., Hellekalek, P. (Eds.), Optimal U-type Design. Monte Carlo and Quasi-Monte Carlo Methods
1996. Springer, 436–448.

Wu, C.F.J., Hamada, M., 2000. Experiments: Planning, Analysis, and Parameter Design. Wiley, New York.

	Uniform design over general input domains with applications to target region estimation in computer experiments
	Introduction and motivating examples
	Uniform design over general input domains
	A new measure of uniformity: Central composite discrepancy
	The weighted uniform design
	Construction of nearly uniform designs
	Discussion

	Methodology for target region estimation
	Choosing the weight function f (x) for UD
	Fitting response models
	Sequential weighted uniform design for target region estimation

	Performance assessment
	Concluding remarks
	References

