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This study shows that in particular cases, the minimal martingale measure coin-
cides with the Esscher martingale measure. Using the martingale approach can
produce an exact solution for the price of a European call option on an asset
modeled as an exponential Lévy process when a closed-form expression exists for
the Lévy measure under some integrability conditions. If the jump component
vanishes, the solution reduces to the Black–Scholes formula. To compute the
option price accurately and quickly, this study uses polynomial interpolation with
divided differences. A numerical analysis compares the accuracy and CPU time of
the latter method with those of three Fourier-based formulas described by Lewis
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INTRODUCTION

Option pricing usually relies on the risk-neutral approach, which involves choos-
ing a martingale measure for the discounted asset prices. However, the expo-
nential Lévy models contain numerous possible choices for such measures. For
example, the Esscher transform can produce an equivalent martingale measure,
which in the case of the exponential Lévy process achieves minimum relative
entropy (see Chan, 1999), whereas the Lévy property of the process continues
to hold. Another equivalent martingale procedure employs the minimal measure
described by Föllmer and Schweizer (1991), which minimizes the risk involved
in trying to replicate a contingent claim while also preserving the Lévy property
of the process. Noting these various options, this article aims to demonstrate
that in some cases the minimal martingale measure actually coincides with the
Esscher martingale measure.

As our second research goal, we derive an expression for the price of a
European call option for an asset modeled as an exponential Lévy process.
To evaluate the option, we use the underlying asset and savings account as
numeraires; change the probability measure, such that we can write the option
price in terms of two probabilities; and offer an exact closed-form formula
based on an inversion for obtaining the two probabilities. In this scenario, we
need to combine a nontrivial option pricing formula with an efficient algorithm
to compute prices quickly and accurately. Black and Scholes (1973) derive
a pricing formula that depends on two standard normal distributions; their
famous formula is a special case of our proposed formula. In the exponential
Lévy model, Carr and Madan (1999) and Lewis (2001) also suggest formulas
to evaluate option prices accurately in terms of a characteristic function of
the asset return. Although Lewis’s (2001) formula appears to take a Black–
Scholes form, it suffers from slow numerical computing and cannot reduce to
the Black–Scholes formula, even after excluding the jump part.

Finally, we aim to show that the method of polynomial interpolation with
divided differences is efficient for estimating option prices. To examine the ac-
curacy and CPU time for our approach, we apply five methods and compute 540
option prices for three sets of parameters of the diffusion-generalized tempered
stable process (D-GTSP), 60 strike levels, and three maturities. These results
reveal that our pricing formula can be computed efficiently through polynomial
interpolation.

To achieve these research goals, we structure the remainder of our article
as follows. The next section contains the model for the asset price process, as
well as a discussion of the link between the Esscher martingale measure and
the minimal measure. After we demonstrate how to calculate the price of an
option, we introduce the polynomial interpolation method. Then we consider
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D-GTSP as a driver of the underlying asset, compare the pricing errors, and
show that the CPU time needed for the method we introduced is much smaller
than that required by other pricing formulas. Finally, we conclude with some
implications.

MODEL OF ASSET PRICE WITH NO
ARBITRAGE CONDITION

We assume a complete stochastic basis, B = (�,F, (Ft)0≤t≤T∗, P ), where the
filtration satisfies the usual conditions, and we consider the range 0 < T < T∗.
A Lévy process is a càdlàg stochastic process Xt with stationary independent
increments; the characteristic function, which corresponds to a characteristic
triplet (ω, σ, ν), can be expressed as

EP [exp (i zX t)] = exp (t� (z)) ,

where � is the characteristic exponent of X . It satisfies the following Lévy
Khinchine representation:

�(z) = iωz − 1
2
σ 2z2 +

∫
R

(eizx − 1 − i zx1|x |≤1)ν(dx),

where ω ∈ R, σ > 0, and ν is a Lévy measure in R\ {0}, with
∫

R (x2 ∧ 1)ν(dx) <

∞. For our study purposes, we also require the process X to satisfy the following
condition:

EP [exp (uX1)] < ∞ for all u ∈ R. (1)

This requirement ensures that Xt has finite moments in all orders. The Lévy
measure ν should also satisfy the following conditions for all u ∈ R:

∫
|x |≥1

euxν(dx) < ∞,

∫
|x |≥1

xν(dx) < ∞, and

∫
|x |≥1

xheuxν(dx) < ∞ for h > 0.
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Next, we consider a driftless Lévy process Xt = σ Wt + ∫ t
0

∫
R

x(μ − ν)(du, dx), where W is a P -standard Brownian motion on R, and μ is
the random measure of jumps associated to Lévy measure ν(dt, dx) = ν(dx)dt.
From the Lévy Khinchine representation and Equation (1), we recognize that
the characteristic function of Xt can be expressed as

EP [exp (i zX t)] = exp
(

t
(

−1
2
σ 2z2 + �μν(z)

))
,

where

�μν(z) =
∫

R
(exp(i zx) − 1 − i zx) ν(dx).

Next, suppose that the asset price process S can be modeled by the following
exponential Lévy process:

St = S0 exp (bt + Xt) = S0 exp
(

bt + σ Wt +
∫ t

0

∫
R

x (μ − ν) (du, dx)
)
, S0 > 0,

(2)
where S0 is the current asset price, and b ∈ R. In differential form, Equation
(2) is equivalent to

dSt

St−
=

(
b + 1

2
σ 2

)
dt + σdWt +

∫
R

(ex − 1) (μ − ν)(dt, dx)

+
∫

R
(ex − 1 − x) ν(dt, dx).

Furthermore, the risk-free security can be expressed as Bt = B0er t , ∀t ∈ [0, T∗],
with B0 = 1, where r is a constant interest rate. We can then denote the dis-
counted asset price at time t as

S∗
t = St

Bt
= S0 exp

(
(b − r ) t + σ Wt +

∫ t

0

∫
R

x (μ − ν) (du, dx)
)

.

Using Ito’s formula, the evolution of the discounted asset price is

dS∗
t

S∗
t−

=
(

b − r + 1
2
σ 2

)
dt + σdWt +

∫
R

(ex − 1) (μ − ν)(dt, dx)

+
∫

R
(ex − 1 − x) ν(dt, dx). (3)
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According to the fundamental theorem of asset pricing, we know that the market
model defined by B and asset price (St)t∈[0,T] is arbitrage free, if and only if there
exists a probability measure P ∗ equivalent to P , such that the discounted price
process (S∗

t )t∈[0,T] is a P ∗-martingale. According to the Girsanov theorem for
the Lévy processes (Papapantoleon, 2005), we can define the Radon–Nikodym
derivative for the change of the measure from P to P ∗ as follows:

Zt = exp
[∫ t

0
βσdWu − 1

2

∫ t

0
β2σ 2du +

∫ t

0

∫
R

(κ (x) − 1) (μ − ν) (du, dx)

−
∫ t

0

∫
R

(κ (x) − 1 − ln (κ (x))) μ (du, dx)
]

, (4)

where the tuple (β, κ) characterizes the change in the drift of the continuous
part, as well as the change in the compensator portion of the jump part of the
process.

For P ∗, the process dW∗
t = dWt − βσdt is a standard Brownian motion,

and the measure ν∗(dt, dx) = κ(x)ν(dt, dx) is the compensator of the random
measure μ. Therefore, for W∗ and ν∗, the discounted asset price in Equation
(3) can be rewritten as

d S∗
t

S∗
t−

=
(

b − r +
(

1
2

+ β

)
σ 2

)
dt + σdW∗

t +
∫

R
(ex − 1) (μ − ν∗) (dt, dx)

+
∫

R
((ex − 1) κ(x) − x) ν(dt, dx).

According to the dynamics of S∗, the discounted asset price S∗ follows a mar-
tingale under P ∗, provided

b − r +
(

1
2

+ β

)
σ 2 +

∫
R

((ex − 1) κ (x) − x) ν(dx) = 0. (5)

Accordingly, the evolution of the asset price process S under P ∗ can be expressed
as

d St

St−
=

(
b +

(
1
2

+ β

)
σ 2

)
dt + σdW∗

t +
∫

R
(ex − 1) (μ − ν∗) (dt, dx)

+
∫

R
((ex − 1) κ(x) − x) ν(dt, dx).
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Using the martingale condition in Equation (5), the evolution of the asset price
under P ∗ is

d St

St−
= r dt + σdW∗

t +
∫

R
(ex − 1) (μ − ν∗) (dt, dx).

Thus, the asset price at time t equals

St = S0e(r − 1
2 σ 2)t+σ W∗

t +∫ t
0

∫
R x(μ−ν∗)(du,dx)−∫ t

0

∫
R (ex −1−x)ν∗(du,dx). (6)

Also, from the martingale condition in Equation (5), we know that β and κ

cannot be specified uniquely. In other words, the market is incomplete, and
a perfect hedge does not exist for the arbitrary contingent claim. We use the
Esscher transform and minimal measure to find β and κ. Gerber and Shiu
(1994) are the first to use the Esscher transform in option pricing. We follow
their lead and let θ ∈ R. Thus, we consider the following Esscher transform:

dPθ

dP

∣∣∣∣
Ft

= Z θ
t = eθ(σ Wt+

∫ t
0

∫
R x(μ−ν)(du,dx))

et( 1
2 θ2σ 2+∫

R (eθx−1−θx)ν(dx))
, (7)

where we can choose θ such that the discounted asset price S∗ follows a martin-
gale under Pθ . When Z = Z θ , the comparison of Equations (7) and (4) reveals
that the Esscher transform corresponds to the choices κ(x) = eθx and β = θ .
The martingale condition in Equation (5) then can be used to solve θ :

b − r +
(

1
2

+ θ

)
σ 2 +

∫
R

(
(ex − 1) eθx − x

)
ν (dx) = 0.

Next, we show that the Esscher martingale measure is also the minimal mar-
tingale measure introduced by Föllmer and Schweizer (1991) in an exponential
Lévy process, assuming certain conditions are satisfied. Föllmer and Schweizer
(1991) define the minimal martingale measure as follows.

Definition. An equivalent martingale measure P̄ is minimal if any square-
integrable P -martingale, orthogonal to the martingale part of S∗ under P ,1

remains a martingale under P̄ .

1Two martingales are orthogonal if their product follows a martingale.
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We thus write MZ
t = ∫ t

0 (σdWu + ∫
R (ex − 1)(μ − ν)(du, dx)). From Equa-

tion (3), we know that the martingale part of the discounted price process S∗

under P is

MS
t =

∫ t

0
S∗

u−dMZ
u ,

We also introduce a minimal measure P̄ , defined by

dP̄
dP

∣∣∣∣
FT

= Z̄T ,

where the Radon–Nikodym derivative Z̄ satisfies

Z̄t = 1 +
∫ t

0
γ Z̄u−d MZ

u

= 1 +
∫ t

0
γ Z̄u−

(
σdWu +

∫
R

(ex − 1) (μ − ν)(du, dx)
)

, (8)

and we can choose γ to make S∗ a martingale under P̄ . If a square-integrable
P -martingale N is orthogonal to MS, then

EP̄ [Nt] = EP
[
Nt Z̄t

] = EP [Nt] .

Therefore, N is a P̄ -local martingale, and the probability measure P̄ is the
minimal martingale measure.

Using Ito’s formula, Z admits the following integral representation:

Zt = 1 +
∫ t

0
Zu−

(
βσdWu +

∫
R

(κ(x) − 1) (μ − ν)(du, dx)
)

. (9)

When Z = Z̄ , we can compare Equation (8) with Equation (9) and obtain

β = γ, (10)

and

κ (x) = (ex − 1) γ + 1. (11)
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Then we can combine the martingale condition of Equation (5) with Equation
(10) and (11) to derive

γ =
r − b − 1

2σ 2 −
∫

R
(ex − 1 − x) ν(dx)

σ 2 +
∫

R
(ex − 1)2

ν(dx)
.

According to Papapantoleon’s (2005) Theorem 12.1, the equivalent martingale
measure exists if and only if κ(x) = (ex − 1)γ + 1 > 0, and it thus follows that
the minimal martingale measure P ∗ exists if and only if 0 ≤ γ ≤ 1.

Because ν∗(dx) = κ(x)ν(dx) = γ exν(dx) + (1 − γ )ν(dx), we know that ν∗

is a weighted sum of two Lévy measures: the original Lévy measure ν

and the transformed Lévy measure exν from the Esscher transform, with
the Esscher parameter θ = 1. From Equation (1), we have determined that∫

R (x2 ∧ 1)(γ exν(dx) + (1 − γ )ν(dx)) < ∞. Therefore, the process with ν∗ un-
der the minimal measure P ∗ retains the Lévy property of the process.

When θ = 1
x log[(ex − 1)γ + 1], for x 
= 0, it is easy to show that the mini-

mal measure cannot coincide with the Esscher martingale measure if 0 < γ < 1.
Therefore, we consider two cases: γ = 0 and γ = 1. If γ = 0, then β = θ = 0;
that is, d P ∗

d P

∣∣
Ft

= 1 for all t. In turn, the measures P and P ∗ are the same.
However, if γ = 1, then β = 1 and κ(x) = ex , in which case dW∗

t = dWt − σdt
and ν∗ = exν. This condition corresponds to the martingale condition of the
Esscher transform with the Esscher parameter θ = 1. The martingale condition
from Equation (5) now becomes

b = r − 3
2
σ 2 −

∫
R

(
e2x − ex − x

)
ν(dx) = r − 3

2
σ 2 − �μν(−2i) + �μν(−i).

(12)

As argued, we have thus established the following proposition:

Proposition 1: Assume that the asset price process is modeled as in Equation (2),
the Esscher martingale measure is defined as in Equation (7), and the minimal
martingale measure is defined as in Equation (8). The minimal martingale
measure cannot coincide with the Esscher martingale measure if 0 < γ < 1. If
the drift term in Equation (2) is described by Equation (12), then γ = θ = 1.
If the drift term in Equation (2) is described by b = r − 1

2σ 2 − �μν(−i), then
γ = θ = 0. When γ = 0 or γ = 1, the minimal martingale measure coincides
with the Esscher martingale measure.
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THE MARTINGALE APPROACH FOR
OPTION PRICING

Consider a European call option, written on an asset S (modeled as in Equation
(2)), and assume that the option matures at date T and has a strike price of
K . By virtue of the risk-neutral pricing rule, the value of any contingent claim
can be computed as a discounted expectation under the martingale measure,
equivalent to the original probability measure P . As we illustrated in the previous
section, we can obtain an equivalent martingale measure P ∗ using the Esscher
martingale measure or the minimal martingale measure. Therefore, the price
of this call option can be expressed as the risk-neutral conditional expectation
of the payoff for any t ∈ [0, T]:

c (t, St) = Bt EP ∗
[
(ST − K )+ B−1

T

∣∣Ft
]
. (13)

It is apparent from Equation (6) that the asset price at time T under the
equivalent martingale measure P ∗, conditional on the filtration Ft , can be
described as follows:

ST = Ste(r − 1
2 σ 2)(T−t)+σ(W∗

T −W∗
t )+

∫ T
t

∫
R x(μ−ν∗)(du,dx)+∫ T

t

∫
R (−ex +1+x)ν∗(du,dx). (14)

Because we assume the interest rate is constant, we note

c (t, St) = e−r (T−t) EP ∗
[

ST1{ST >K }
∣∣Ft

] − K e−r (T−t) EP ∗
[
1{ST >K }

∣∣Ft
]
. (15)

To evaluate the first expectation of the right-hand-side of Equation (15), it is
convenient to introduce an auxiliary probability measure P̃ on (�,F) by setting

Z̃T = d P̃
d P ∗

∣∣∣∣
FT

= ST/BT

S0/B0
= e− 1

2 σ 2T+σ W∗
T +∫ T

0

∫
R x(μ−ν∗)(du,dx)−∫ T

0

∫
R (ex −1−x)ν∗(du,dx), P ∗ − a.s.

(16)

For every t ∈ [0, T], we have

Z̃t = e− 1
2 σ 2t+σ W∗

t +∫ t
0

∫
R x(μ−ν∗)(du,dx)−∫ t

0

∫
R (ex −1−x)ν∗(du,dx),
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and the process dW̃t = dW∗
t − σdt follows a standard Brownian motion in the

space (�,F, P̃ ). In addition, ν̃(dx) = exν∗(dx) is the P̃ -compensator of the
random measure μ. The asset price at time T, under the probability measure P̃
and conditional on the filtration Ft , equals

ST = Ste(r + 1
2 σ 2)(T−t)+σ(W̃T −W̃t)+

∫ T
t

∫
R x(μ−ν̃)(du,dx)+∫ T

t

∫
R (e−x −1+x)ν̃(du,dx). (17)

Therefore, we obtain

e−r (T−t) EP ∗
[

ST1{ST >K }
∣∣Ft

] = St EP ∗
[

Z̃T Z̃−1
t 1{ST >K }

∣∣Ft
] = St EP̃

[
1{ST >K }

∣∣Ft
]
,

and Equation (15) can be rewritten as

e−r (T−t) EP ∗
[
(ST − K )+

∣∣Ft
] = St P̃ ( ST > K |Ft) − K e−r (T−t) P ∗ ( ST > K |Ft) .

(18)

To compute the conditional probability P ∗( ST > K |Ft), we first set X ∗μν
t =∫ t

0

∫
R x(μ − ν∗)(du, dx). Clearly, the compensated jump process X ∗μν follows

a P ∗-martingale, and the characteristic function of X ∗μν
t for the probability

measure P ∗ can be given by

EP ∗
[
exp

(
i zX ∗μν

t
)] = exp

(
t�∗

μν (z)
)
,

where �∗
μν(z) = ∫

R (eizx − 1 − i zx)ν∗(dx) is the Lévy exponent of X ∗μν .
Using Equation (14) and the property of stationary increments of Lévy

processes, we know that under the equivalent martingale measure P ∗, the pro-
cess σ (W∗

T − W∗
t ) + ∫ T

t

∫
R x(μ − ν∗)(du, dx)—with a standard deviation derived

as
√

(σ 2 + ∫
R x2ν∗(dx))(T − t)—is independent of filtration Ft . Moreover, the

conditional probability P ∗( ST > K |Ft) can be computed as

P ∗ ( ST > K |Ft)

= P ∗
(

Ste(r−1
2 σ 2)(T−t)+σ(W∗

T −W∗
t )+

∫ T
t

∫
R x(μ−ν∗)(du,dx)+∫ T

t

∫
R (−ex+1+x)ν∗(du,dx) > K

∣∣∣Ft

)
= P ∗ (Y ∗ < d2) ,

where

d2 = ln (St/K ) + (
r − 1

2σ 2 − �∗
μν (−i)

)
(T − t)√(

σ 2 + ∫
R x2ν∗ (dx)

)
(T − t)

,
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and

Y ∗ = −σ
(
W∗

T − W∗
t

) + ∫ T
t

∫
R x (μ − ν∗) (du, dx)√(

σ 2 + ∫
R x2ν∗ (dx)

)
(T − t)

. (19)

Because W∗ and X ∗μν are independent, the characteristic function �∗ of the
random variable Y ∗ under P ∗ is

�∗ (z) = EP ∗ [exp (i zY ∗)] = e
− 1

2
σ2z2

σ2+∫
R x2ν∗(dx)

+�∗
μν

(
−z√

(σ2+∫
R x2ν∗(dx))(T−t)

)
(T−t)

.

Then, according to Karr’s (1993) Theorem 6.5, the probability P ∗(Y ∗ < d2) can
be derived as follows:

�2 (d2) = P ∗ (Y ∗ < d2) = 1
2π

lim
L→−∞

lim
A→∞

∫ A

−A

e−i zL − e−i zd2

i z
�∗ (z) dz.

To compute the conditional probability P̃ ( ST > K |Ft), we let X̃ μν
t =∫ t

0

∫
R x(μ − ν̃)(du, dx). The characteristic function of X̃ μν

t is given by

EP̃

[
exp

(
i z X̃ μν

t
)] = exp

(
t�̃μν (z)

)
,

where �̃μν(z) = ∫
R (eizx − 1 − i zx)ν̃(dx) is the Lévy exponent of X̃ μν .

From Equation (17) and the property of stationary increments that marks
the Lévy process, we know that with the equivalent martingale measure P̃ ,
the process σ (W̃T − W̃t) + ∫ T

t

∫
R x(μ − ν̃)(du, dx)—with a standard deviation

derived as
√

(σ 2 + ∫
R x2ν̃(dx))(T − t)—is independent of filtration Ft . The con-

ditional probability P̃ ( ST > K |Ft) can be computed as

P̃ ( ST > K |Ft)

= P̃
(

Ste(r + 1
2 σ 2)(T−t)+σ(W̃T −W̃t)+

∫ T
t

∫
R x(μ−ν̃)(du,dx)+∫ T

t

∫
R (e−x −1+x)ν̃(du,dx) > K

∣∣∣Ft

)
= P̃

(
Ỹ < d1

)
,

where

d1 = ln (St/K ) + (
r + 1

2σ 2 + �̃μν (i)
)

(T − t)√(
σ 2 + ∫

R x2ν̃ (dx)
)

(T − t)
,
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and

Ỹ = −σ
(
W̃T − W̃t

) + ∫ T
t

∫
R x (μ − ν̃) (du, dx)√(

σ 2 + ∫
R x2ν̃ (dx)

)
(T − t)

. (20)

Again in this case, W̃ and X̃ μν are independent, so the characteristic function
�̃ of the random variable Ỹ under P̃ is

�̃ (z) = EP̃

[
exp

(
i zỸ

)] = e
− 1

2
σ2z2

σ2+∫
R x2 ν̃(dx)

+�̃μν

(
−z√

(σ2+∫
R x2 ν̃(dx))(T−t)

)
(T−t)

.

Then we can derive the probability P̃ (Ỹ < d1) in the following form:

�1 (d1) = P̃
(
Ỹ < d1

) = 1
2π

lim
L→−∞

lim
A→∞

∫ A

−A

e−i zL − e−i zd1

i z
�̃ (z) dz.

Through these arguments, we establish the following proposition, which pro-
vides a closed-form pricing formula of a European call option in the exponential
Lévy model.

Proposition 2: An arbitrage-free price of a European call option, written on an
asset modeled as in Equation (2) with an expiration date T and strike price K ,
can be given, for any t ∈ [0, T], by

c (t, St) = St�1 (d1) − K e−r (T−t)�2 (d2) , (21)

where

�1 (d1) = 1
2π

lim
L1→−∞

lim
A→∞

∫ A

−A

e−i zL1 − e−i zd1

i z
�̃ (z) dz,

�2 (d2) = 1
2π

lim
L2→−∞

lim
A→∞

∫ A

−A

e−i zL2 − e−i zd2

i z
�∗ (z) dz,

d1 = ln (St/K ) + (
r + 1

2σ 2 + �̃μν (i)
)

(T − t)√(
σ 2 + ∫

R x2ν̃ (dx)
)

(T − t)
,

d2 = ln (St/K ) + (
r − 1

2σ 2 − �∗
μν (−i)

)
(T − t)√(

σ 2 + ∫
R x2ν∗ (dx)

)
(T − t)

,
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�̃ (z) = e
− 1

2
σ2z2

σ2+∫
R x2 ν̃(dx)

+�̃μν

(
−z√

(σ2+∫
R x2 ν̃(dx))(T−t)

)
(T−t)

,

�∗ (z) = e
− 1

2
σ2z2

σ2+∫
R x2ν∗(dx)

+�∗
μν

(
−z√

(σ2+∫
R x2ν∗(dx))(T−t)

)
(T−t)

,

�̃μν (z) =
∫

R

(
eizx − 1 − i zx

)
ν̃ (dx),

�∗
μν (z) =

∫
R

(
eizx − 1 − i zx

)
ν∗ (dx), and

ν̃ (dx) = exν∗ (dx) .

That is, Proposition 2 states that the call option price can be written according
to two probabilities. From the risk-neutral pricing rule and Equation (13), we
know that the probability measure P ∗ is the martingale measure that corre-
sponds to the choice of the savings account B as a numeraire asset. According
to Equation (16), the probability measure P̃ is the martingale measure that
corresponds to the choice of the asset price S as the numeraire. We have also
shown that �1, represented by the characteristic function �̃, is the distribution
function of the random variable Ỹ , which follows a martingale under P̃ . Fur-
thermore, �2, represented by the characteristic function �∗, is the distribution
function of the random variable Y ∗, which follows a martingale under P ∗. When
the jump component vanishes, Ỹ and Y ∗ become standardized normal random
variables, and Equation (21) yields the Black-Scholes (1973) valuation formula
as a special case. From Equations (15) and (21), the expression Ster (T−t)�1(d1)
is the expected value of a variable that equals ST if ST > K and is zero otherwise
in a risk-neutral world, and K �2(d2) is the strike price times the probability that
the strike price will be paid in a risk-neutral world.

Bakshi and Madan (2000) similarly show that the call price can be de-
composed into a portfolio of Arrow–Debreu securities. However, each Arrow–
Debreu security is not explicitly represented as a distribution function of a
random variable according to a probability measure. Furthermore, their pricing
formula does not reduce to the Black-Scholes (1973) valuation formula when
the jump component disappears.

In a condition in which σJD =
√

(σ 2 + ∫
R x2ν∗(dx))(T − t) and d3 = d2σJD,

Carr and Madan (1999) assume that the characteristic function of the risk-
neutral density is known analytically. Therefore, they derive the pricing formula
of a European call option, for ν1 > 0, as

c (t, St) = K e−r (T−t)

2π

∫ ∞

−∞

e(i z+(ν1+1))d3�∗ (− (u − (ν1 + 1) i) σJD
)

(iu + ν1 + 1) (iu + ν1)
du. (22)
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Instead, if x = ln ST , a < −1, and b > 0, Lewis (2001) applies a generalized
Fourier transform and derives a general formula for an option with payoff f (x):

c (t, St) = e−r (T−t)

2π

∫ iν0+∞

iν0−∞
e−i zd3�∗ (

zσJD
)

f̂ (z) dz, ν0 = Im z, z ∈ Sc
�= S f ∩ S∗,

where

S∗ = {z : a < −Im z < b} and

S f =
{

z : f̂ (z) =
∫ ∞

−∞
eizx f (x) dx exists for z such that a < Im z < b

}
.

This expression provides several variation formulas for a European call option.
For example, for ν0 = 1/2, the call option price c(t, St) is given by

c (t, St) = St −
√

St K e−r (T−t)/2

π

∫ ∞

0

Re
[
eizd3�∗ (− (

z − i
2

)
σJD

)]
z2 + 1/4

dz. (23)

If instead ν0 = ν1 + 1, the call option price c(t, St) is given by

c (t, St) = − K e−r (T−t)

2π

∫ iν0+∞

iν0−∞
e−i zd3�∗ (

zσJD
) dz

z2 − i z
. (24)

If we move the contours to exactly ν0 = 1 and ν0 = 0, the call option price
c(t, St) in Black–Scholes terms takes the form:

c (t, St) = St�3 (d3) − K e−r (T−t)�4 (d3) , (25)

where

�3 = 1
2

+ 1
π

∫ ∞

0
Re

[
eizd3�∗ (− (z − i) σJD

)
i z

]
dz,

and

�4 = 1
2

+ 1
π

∫ ∞

0
Re

[
eizd3�∗ (−zσJD

)
i z

]
dz.

If we change the integration variables by letting u = −z + (ν1 + 1)i , we realize
that Equation (24) is equivalent to Equation (22). In addition, Equation (25)
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represents a special case of Bakshi and Madan’s (2000) Expression (12). Al-
though a generalized Fourier transform can evaluate option prices accurately,
the martingale method we use provides a more economical explanation for the
option valuation. Thus, we combine these findings with our Proposition 2, to
derive the following corollary.

Corollary. An arbitrage-free price of a European put option, written on an asset
modeled as in Equation (2) with an expiration date T and strike price K , is
given, for any t ∈ [0, T], by

p (t, St) = K e−r (T−t) (1 − �2 (d2)) − St (1 − �1 (d1)) ,

where �1, �2, d1, and d2 are defined as in Proposition 2.

Proposition 3: The price of the call option is given as in Equation (21), and the
delta hedge ratio equals

∂c (t, St)
∂St

= �1 (d1) +
1

2π
lim

A→∞
∫ A
−A e−i zd1�̃ (z) dz√(

σ 2 + ∫
R x2ν̃ (dx)

)
(T − t)

−
K e−r (T−t) 1

2π
lim

A→∞
∫ A
−A e−i zd2�∗ (z) dz

St

√(
σ 2 + ∫

R x2ν∗ (dx)
)

(T − t)
.

Proof: The delta hedge ratio can be deduced from

∂c (t, St)
∂St

= �1 (d1) + St
∂�1 (d1)

∂d1

∂d1

∂St
− K e−r (T−t) ∂�2 (d2)

∂d2

∂d2

∂St
.

Because

∂d1

∂St
= 1

St

√(
σ 2 + ∫

R x2ν̃ (dx)
)

(T − t)
,

∂d2

∂St
= 1

St

√(
σ 2 + ∫

R x2ν∗ (dx)
)

(T − t)
,

π1 (d1) = ∂�1 (d1)
∂d1

= 1
2π

lim
A→∞

∫ A

−A
e−i zd1�̃ (z) dz, and

π2 (d2) = ∂�2 (d2)
∂d2

= 1
2π

lim
A→∞

∫ A

−A
e−i zd2�∗ (z) dz,
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the delta hedge ratio takes the following form:

∂c (t, St)
∂St

= �1 (d1) + π1 (d1)√(
σ 2 + ∫

R x2ν̃ (dx)
)

(T − t)

− K e−r (T−t)π2 (d2)

St

√(
σ 2 + ∫

R x2ν∗ (dx)
)

(T − t)
.

Then it becomes obvious that πi for i = 1, 2 refers to the probability density
functions of �i .

In the Black–Scholes model, the delta hedge ratio is identical to the first
probability element. Without jumps, we attain the Black–Scholes delta hedge
ratio �1(d1) = N(d1).

OPTION PRICING USING POLYNOMIAL
INTERPOLATION

The numerical computation of one option price using Equation (21) takes
0.1288 seconds when we set the error tolerance to 10−6, according to an adap-
tive Lobatto quadrature rule, whereas the Black–Scholes formula takes 0.0002
seconds. This difference suggests that we need to find a method that is able to
compute option prices both accurately and quickly. Interpolation is a critical tool
for obtaining accurate estimates from tabulated values, and it is easy to tabulate
numerical approximations for the values of a cumulative distribution function.
Therefore, we propose using polynomial interpolation to estimate �1(d1) and
�2(d2). Maron (1982) provides a discussion of the polynomial interpolation
problem; we also detail the technical aspects of our polynomial interpolation
with divided differences in the Appendix.

First, let �1 = �̃, and �2 = �∗. For i = 1, 2, �̄i takes the following form:

�̄i (di ) = 1
2π

lim
Ai →∞

∫ Ai

−Ai

e−i zLi − e−i zdi

i z
�i (z) dz.

Second, we can identify an Ai , such that

Ai = inf
{

z > 0
∣∣∣∣0 ≤ |Re (�i (z))| + |Im (�i (z))|

z
≤ ε, ε → 0

}
.

Third, when Li < 0 and πi (Li ) approaches 0, �̄i (di ) also moves toward �i (di ).
We can find an Li , such that Li = sup

{
L < 0

∣∣0 ≤ πi (L) ≤ ε, ε → 0
}
. If Ui > 0
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and πi (Ui ) approaches 0, then �̄i (Ui ) moves toward 1. We find that Ui =
inf

{
U > 0

∣∣0 ≤ πi (U) ≤ ε, ε → 0
}
. Therefore, if di ≤ Li , then �i (di ) moves

toward 0, whereas if di ≥ Ui , then it moves toward 1. In addition, Mi satisfies
πi (Mi ) = max

Li <di <Ui

πi (di ). We then observe that �i (di ) is a convex function when

di is in [Li , Mi ], and �i (di ) is a concave function when di is in [Mi , Ui ]. It is
difficult to obtain the desired accuracy using interpolation methods for a single
interval [Li , Ui ].

To obtain accurate values of the probabilities �i (di ) and Li ≤ di ≤ Ui ,
i = 1, 2, we split [Li , Ui ] into five interpolation intervals: [Li , Mi − 1.5],
[Mi − 1.5, Mi ], [Mi , Mi + 1.5], [Mi + 1.5, Mi + 3], and [Mi + 3, Ui ]. In turn,
we can form divided difference tables with n = 40 Chebyshev knots for each
subinterval, which support our computation of the value of �i (di ), Li ≤ di ≤
Ui .2

INTERPOLATION FOR D-GTSP OPTION
PRICING

The generalized tempered stable process, introduced by Koponen (1995), is a
Lévy process with Lévy density of the form

ν (x) = c+
x1+α+

e−λ+x1{x>0} + c−
|x |1+α−

e−λ−|x |1{x<0}, (26)

where the parameters satisfy c± > 0, λ− > 0, λ+ > 2, and α± < 2. For α± < 2,
we have∫

R
|x |2 ν (dx) = c+λ

−(2−α+)
+ � (2 − α+) + c−λ

−(2−α−)
− � (2 − α−) < ∞,

where �(x) is the gamma function, and then

∫
|x |≤1

|x |2 ν (dx) <

∫
R

|x |2 ν (dx) < ∞, and

∫
|x |≥1

ν (dx) <

∫
|x |≥1

x2ν (dx) ≤
∫

R
|x |2 ν (dx) < ∞.

Therefore,
∫

R (x2 ∧ 1)ν(dx) < ∞, as required.
Let X μν

t = ∫ t
0

∫
R x(μ − ν)(dx, du) be a generalized tempered stable process,

where μ(dx, dt) is a jump measure with the Lévy measure ν(dx, dt) = ν(dx)dt,

2For example, if Mi − 1.5 ≤ di ≤ Mi , then [a , b] = [Mi − 1.5, Mi ] and �i (di ) = qkm ,km+m(di ).
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where ν is defined by Equation (26). The characteristic function of the process
X μν

t under the probability measure P in turn is given by

EP
[
exp

(
i zX μν

t
)] = exp

(
t�μν (z)

)
,

where

�μν (z) = φμν (z, 0, c+, α+, λ+) + φμν (−z, 0, c−, α−, λ−) ,

and if (α± 
= 1 and α± 
= 0), then

φμν (z, h, c, α, λ) = c� (−α)
[
(λ − h − i z)α − (λ − h)α + i zα (λ − h)α−1] ,

whereas if α+ = 1 or α− = 1, then

φμν (z, h, c, α, λ) = c
(

(λ − h − i z) ln
(

1 − i z
λ − h

)
+ i z

)
.

Finally, if α+ = 0 or α− = 0, then

φμν (z, h, c, α, λ) = −c
(

i z
λ − h

+ ln
(

1 − i z
λ − h

))
.

Using the characteristic exponent, the cumulant, cn(X μν
t ), of the generalized

tempered stable process X μν
t is given by

cn
(
X μν

t
) = tϕn (0) ,

where ϕ1(0) = 0. In addition, for n ∈ N, n ≥ 2,

ϕn (h) = c+ (λ+ − h)α+−n � (n − α+) + (−1)n c− (λ− + h)α−−n � (n − α−) .

When the asset price process S is defined by Equations (2) and (26), S
is a D-GTSP model. To evaluate the price of a contingent claim, we use the
martingale measure given by the methods mentioned in Section 2. First, a Lévy
process under P is also a Lévy process under the equivalent martingale measure
P ∗, as derived by the Esscher transform or by the minimal measure. Second,
the measures P and P ∗ on the path space corresponding to two generalized
tempered stable processes are mutually equivalent if and only if their coefficients
α± and c± coincide (Cont and Tankov, 2004). Therefore, the property of the
GTSP can be preserved under the equivalent martingale measure P θ , obtained
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from P through the Esscher transform, because the coefficients α± and c±
under P θ remain the same as those under P .

We consider the drift term in Equation (2) as in Equation (12). From
Proposition 1, we know that the equivalent martingale measure P ∗ possesses
simultaneously the properties of the Esscher martingale measure and the min-
imal measure. In turn, under the equivalent martingale measure P ∗, we know
that ν∗(dx) = exν(dx), and the characteristic exponent of X ∗μν

t can be derived
as

�∗
μν (z) = φμν (z, 1, c+, α+, λ+) + φμν (−z, −1, c−, α−, λ−) .

Furthermore, the characteristic function of the random variable Y ∗ defined by
Equation (19) under P ∗ is equal to

�∗ (z) = e
− 1

2
σ2z2

σ2+ϕ2(1)
+�∗

μν

(
−z√

(σ2+ϕ2(1))(T−t)

)
(T−t)

.

We next focus on the properties of the D-GTSP under the equivalent measure P̃
with respect to P ∗, which is given by Equation (16). The characteristic exponent
of X̃ μν is

�̃μν (z) = φμν (z, 2, c+, α+, λ+) + φμν (−z, −2, c−, α−, λ−) ,

and the characteristic function of the random variable Ỹ defined by Equation
(20) under P̃ equals

�̃ (z) = e
− 1

2
σ2z2

σ2+ϕ2(2)
+�̃μν

(
−z√

(σ2+ϕ2(2))(T−t)

)
(T−t)

.

By Proposition 2, we can evaluate the price of a European call option under the
D-GTSP model.

Next, we compute option prices using five methods and compare their mean
errors and CPU times:

1. M1 from Equation (21).
2. M2, or a polynomial interpolation with divided differences.
3. M3 from Equation (22), with ν1 = 0.12.
4. M4 from Equation (23).
5. M5 from Equation (25).

All five methods must approximate the integrals, and we thus need to define
an error tolerance to confirm if the termination test for the integral is satisfied.
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TABLE I

The CPU Times (Error Tolerances) for Various Pricing Errors

Pricing Errors M1 M2 M3 M4 M5

10−3 ∼ 10−4 38.61 (1.0E-04) 0.19 (1.0E-04) 149.06 (1.0E-04) 51.22 (1.0E-04) 320.06 (1.0E-04)

10−4 ∼ 10−5 38.61 (1.0E-04) 0.19 (1.0E-04) 149.06 (1.0E-04) 55.89 (1.0E-05) 320.06 (1.0E-04)

10−5 ∼ 10−6 48.52 (1.0E-05) 0.19 (1.0E-05) 149.06 (1.0E-04) 65.30 (1.0E-06) 380.17 (1.0E-05)

10−6 ∼ 10−7 69.56 (1.0E-06) 0.19 (1.0E-06) 160.64 (1.0E-05) 73.20 (1.0E-07) 453.86 (1.0E-06)

10−7 ∼ 10−8 97.64 (1.0E-07) 0.19 (1.0E-07) 181.64 (1.0E-06) 84.66 (1.0E-08) 584.97 (1.0E-07)

10−8 ∼ 10−9 127.58 (1.0E-08) 0.20 (1.0E-09) 212.83 (1.0E-07) 108.50 (1.0E-09) 584.97 (1.0E-07)

Note. Let the asset price be at 100 and the interest rate at 0.02. Three sets of D-GTSP parameters are given by the

following:

1. σ 2 = 0.01, α+ = 0.10, c+ = 526.37, λ+ = 310.55, α− = −0.17, c− = 526.69, λ− = 94.58;

2. σ 2 = 0.0016, α+ = −0.52, c+ = 1455.80, λ+ = 3122.20, α− = −0.50, c− = 1470.60, λ− = 93.32;

3. σ 2 = 0.005, α+ = 0.42, c+ = 60.12, λ+ = 265.78, α− = 0.295, c−=60.19, λ− = 79.34.

We use eight different error tolerances to approximate the integrals, from 10−4,
10−5, . . . , to 10−11. For each error tolerance, we compute 540 option prices
with the five methods, using three sets of D-GTSP parameters, 60 strike levels
(70–129), and three maturity dates (5, 30, and 270 days).

To evaluate pricing errors, we must estimate exact values of the 540 op-
tion prices. Because all 540 option prices reported by any two methods are in
agreement up to eight decimal places when we set the error tolerance to 10−11,
we denote the exact option price as the average value of the option prices com-
puted by these five methods, based on this error tolerance. Pricing errors are
therefore deviations from these exact option prices. Thus, we can obtain the
error tolerances and CPU times of all five methods for the six ranges of the
mean error; we provide the results in Table I.

Table I shows that when the desired mean error level is set to range be-
tween 10−6 and 10−7, the lowest required error tolerances for methods M1–M5
are 10−6, 10−6, 10−5, 10−7, and 10−6, and their corresponding CPU times are
69.56, 0.19, 160.64, 73.20, and 453.86, respectively. Thus, M2, which com-
putes 540 option prices in 0.19 seconds, is considerably faster than the other
methods for every level of mean error. The performance of M1 is next best for
mean error levels between 10−3 and 10−7; however, M4 performs second best
for mean error levels between 10−7 and 10−9.

Because the values of L1 and L2—which are independent of the initial
asset prices and the strike prices—can be obtained before we evaluate the
probabilities �1(d1) and �2(d2) in M1, we omit the CPU times for finding
these values when we compute the values for �1(d1) and �2(d2) for M1. For
the same reason, we exclude CPU times to form the divided difference tables
when we assess �1(d1) and �2(d2) for M2.
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CONCLUSION

This article shows that the Esscher martingale measure coincides with the
minimal martingale measure in some cases. Therefore, we can consider the
equivalent martingale measure that simultaneously possesses the properties of
the minimal measure and the Esscher measure. Using the same martingale ap-
proach as that used by Musiela and Rutkowski (1997) for the proof of Black and
Scholes’s (1973) theorem, we develop a Black–Scholes form of the European
option in an exponential Lévy model. Our formula yields the Black–Scholes ex-
pression as a special case when the jump component vanishes. This martingale
approach can be applied to revisit contingent claims valuation in the context
of Musiela and Rutkowski (1997) under the exponential Lévy model. It is easy
to find a smooth function to interpolate the Lévy cumulative distribution func-
tion, so we use polynomial interpolation with divided differences to estimate
the probabilities in our formula and attain the option price. We illustrate this
method for the D-GTSP option-pricing model; the use of polynomial interpola-
tion is much faster than any other methods and permits real-time pricing and
hedging.

APPENDIX

Interpolation with Divided Differences

Suppose n + 1 points Q j (x j , y j ) for j = 0, . . . , n appear on the xy-plane, where
y j = �(x j ), and � is either �1 or �2. Polynomial interpolation finds polyno-
mials that interpolate one or more of these points—that is, whose graph goes
through some or all of Q0, Q1, . . . , Qn. The Chebyshev nodes x0, x1, . . . , xn in
[a , b] can be chosen to ensure that the interpolation error is as uniformly small
as possible. To this end, we first obtain the Chebyshev nodes ξ0, ξ1, . . . , ξn on
[−1, 1] by calculating

ξ j = cos
(

2 j + 1
2n + 2

π

)
, j = 0, 1, . . . , n.

To obtain the desired nodes x0, x1, . . . , xn in [a , b], we reflect the Chebyshev
nodes ξ0, ξ1, . . . , ξn into [a , b] using the form

x j = a + b − a
2

(
ξ j + 1

)
, j = 0, 1, . . . , n.
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Then we define the mth divided difference at Qk to be

�m yk = �m−1yk+1 − �m−1yk

xk+m − xk
, k = 0, . . . , n − m.

We can form the divided difference table for n + 1, given Chebyshev knots
Q0, Q1, . . . , Qn. Using Deuflhard and Hohmann’s (2003) Theorem 7.10, we
determine that a polynomial qk,k+m that interpolates the m + 1 consecutive
knots Qk, Qk+1, . . . , Qk+m takes the expression

qk,k+m (x) = qprev (x) + δm (x) ,

where δm(x) = �m yk�prev(x − x j ); qprev(x) is either qk+1,k+m(x) or qk,k+m−1(x);
and �prev denotes the product as x j varies over previously used nodes. For
an accurate estimate of the cumulative probability for a given x , this formula
makes it easy to find qk0,k0 , qk1,k1+1, qk2,k2+2, . . . , qkm,km+m successively, adding
new nodes to ensure the best centering of x , until δm(x) ceases at the desired
accuracy. Assume that kj for each j = 1, . . . , m is chosen so that the interval
[xkj , xkj + j ] provides the best centering of x . For example, let x0 = 0, x1 = 0.1,
x2 = 0.2, x3 = 0.3, x4 = 0.4, and x5 = 0.5. When x = 0.13, we add the closest
nodes in the following order: x1, x2, x0, x3, x4, x5. When x = 0.36, we add the
closest nodes in the following order: x4, x3, x5, x2, x1, x0.
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