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a b s t r a c t

We propose two exact p-values of two commonly-used test statistics for testing the
superiority under Poisson populations. We show that, the computationally-intensive
confidence-set p-value involves at most a supremum search over a closed interval of a
single argument. On the other hand, the estimated p-value has adequate performances
empirically.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The Poisson distribution is suitable tomodel a rare event in a variety of fields, such as biology, commerce, quality control,
and so on. Real examples include a breast cancer study in Ng and Tang (2005) and an evaluation of a new vaccine in Chan
andWang (2009). Recently, the Poisson distribution has been used to model the number of mapping reads for each gene in
an RNA-seq experiment. See Wang et al. (2010).

In comparing two Poisson distributions, the asymptotic test can be too liberal in finite sample cases. When the
sample scales are not large, the exact testing procedure is more appropriate for prevention of an inflated type I error
rate. One major challenge in the development of an exact test is the presence of nuisance parameters. When the null
hypothesis states the equality of the two populations, the classical conditional test uses conditioning to get rid of the
nuisance parameter(s). However, with a null hypothesis of non-superiority, the conditioning fails to eliminate the nuisance
parameter(s) completely.

One easy way to deal with the nuisance parameters is to estimate the p-value by plugging in some consistent estimates
of the nuisance parameters. Krishnamoorthy and Thomson (2004) first introduced the use of the restricted maximum
likelihood estimate (RMLE) of the commonPoissonmean under the null hypothesis of equalmeans. Ng et al. (2007) extended
the idea to the problems with a nonzero difference null hypothesis and proposed the numerical approximation p-value.
Chan and Wang (2009) use the RMLEs at the boundary of the null space for stratified data. In this study, we will propose
an exact method under the estimation principle as well. The RMLEs of the nuisance parameters by taking the null space of
non-superiority into account is employed in estimating an exact p-value. Although the estimated p-value is easy and quick
to implement, it does not guarantee a well-controlled type I error rate.

For a strict control of the type I error rate, the maximization principle is commonly suggested for a p-value instead.
Much more effort is required for calculation. Since the Poisson mean has an infinite parameter space, it even increases the
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computational difficulty. To limit the search space, we consider the confidence-set p-value proposed by Berger and Boos
(1994). Chan andWang (2009) had applied this test for stratified analysis as well. In this study, we will show that, from the
beneficial properties of the Poisson distribution and of the two popular test statistics, the calculation of the corresponding
confidence-set p-values can be simplified.

In this study, we consider the two commonly-used test statistics as ordering criterion among all possible samples. The
test statistics and the proposed exact p-values are introduced in Section 2. Section 3 presents a numerical study to justify
the proposed tests. Section 4 applies the proposed tests on a real example for illustration. A discussion is given in Section 5.

2. Test procedures

2.1. Notations and test statistics

Assume two independent Poisson random samples observed within a fixed duration, (Y11, . . . , Y1n1), (Y21, . . . , Y2n2),
where for i = 1, . . . , n1, j = 1, . . . , n2,

Y1i
iid
∼ Poi(λ1), Y2j

iid
∼ Poi(λ2),

andλ1, λ2 are themean incidence numberswithin the duration, respectively. It is known that the sums, Y1 =
n1

i=1 Y1i, Y2 =n2
j=1 Y2j, are the sufficient statistics, and the sample means, Ȳ1 = Y1/n1, Ȳ2 = Y2/n2, are the MLE of λ1, λ2, respectively.
In application, the rare event under study may be some adverse effect, incidence or recurrence of some disease. A

treatment is superior in terms of lowering the mean incidence rate. Hence Y2js stand for the realizations of incidences
from a treatment group, while Y1is are incidences from some reference or control group. The research interest is to test
the superiority of the treatment with the following hypotheses, i.e.

H0 : λ1 ≤ λ2, versus H1 : λ1 > λ2.

Denote the null space as Ω0 = {λ1 ≤ λ2}. Two common test statistics based on the difference of the two MLEs by using
different estimated standard errors in the denominator are considered,

ZR =
Ȳ1 − Ȳ2
λ̃0
n1

+
λ̃0
n2

, and ZU =
Ȳ1 − Ȳ2
Ȳ1
n1

+
Ȳ2
n2

,

where λ̃0 =
Y1+Y2
n1+n2

is the RMLE of the common mean at the boundary of Ω0, λ1 = λ2. Note that, the latter one is the Wald
statistic. The null hypothesis is rejected if a sufficiently large value of the test statistic is observed; or given an observed value
of a test statistic, the p-value is not greater than the significance level α. When the sample sizes are sufficiently large, an
approximated p-value is calculated under normal limiting distribution. On the other hand, if the sample scales are of small
to moderate size or the experimental duration is not lengthy, an exact p-value based on the exact null sampling distribution
is more adequate in prevention of an inflated type I error rate.

2.2. Exact P-values

Given some observed values, zR, zU , of the two test statistics, the exact p-values are

pE,R = P(ZR ≥ zR|λ1, λ2), pE,U = P(ZU ≥ zU |λ1, λ2),

where the probabilities are evaluated under Poisson distributions with (λ1, λ2) ∈ Ω0. Note that, it can be shown that ZR, ZU
are functions of Y1, Y2, which independently follow a Poisson distribution with mean n1λ1, n2λ2, respectively. Hence the
exact probability is calculated by

P(A|λ1, λ2) =

∞
y1=0

∞
y2=0

p(y1|n1λ1)p(y2|n2λ2)IA,

where p(·|l) is the probability function of a Poisson distribution with mean l; IA is the indicator of the event A.
To strictly control the size, one can consider the standard p-value, defined as the supremum of an exact p-value over

the null space, see Casella and Berger (1990). However, because the null space is infinite, the computation of a standard
exact p-value is a complicated and time-consuming task. Alternatively, we consider the confidence-set p-values proposed
by Berger and Boos (1994),

p(γ )

CI,R = sup
(λ1,λ2)∈Cγ

P(ZR ≥ zR|λ1, λ2) + γ , (1)

p(γ )

CI,U = sup
(λ1,λ2)∈Cγ

P(ZU ≥ zU |λ1, λ2) + γ , (2)
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where Cγ is a joint confidence set of (λ1, λ2) that guarantees 100(1 − γ )% confidence within Ω0. Note that, the tradeoff
γ should be far less than α for the possibility of obtaining a significant result. The construction of a confidence set in a
restricted null parameter space is less straightforward. We propose using the intersection of the null parameter space Ω0
and a 100(1−γ )% unconstrained confidence set CU,γ built under thewhole parameter space. That is, Cγ = Ω0∩CU,γ . Similar
approaches can be found in Wang (2008). For the unconstrained confidence set, we consider the following cross-product
set, CU,γ = {L1 ≤ λ1 ≤ U1, L2 ≤ λ ≤ U2} ,where (L1,U1) and (L2,U2) are independent 100

√
1 − γ% confidence intervals of

λ1 and λ2, respectively. The conventional confidence intervals derived through the relation between a Poisson distribution
and a chi-square distribution are employed,

(Li,Ui) =
1
2ni


χ2

{1−(1−
√
1−γ )/2,2yi}

, χ2
{(1−

√
1−γ )/2,2(yi+1)}


, i = 1, 2,

where χ2
{δ,k} is the 100(1 − δ)-th percentile of a chi-square distribution with degree of freedom k. As a consequence, if CU,γ

and Ω0 are not mutually disjoint, Cγ = {L1 ≤ λ1 ≤ min(U1, λ2). L2 ≤ λ2 ≤ U2}. Otherwise, Cγ = ∅. In latter case, we then
define the p-values as equal to γ and reject the null hypothesis. Note that, this case occurs when the sample evidence shows
a great deviation from the null scenario. From Berger and Boos (1994), the confidence-set p-values are always valid. In the
following, we show that the calculations of p(γ )

CI,R, p
(γ )

CI,U can be further simplified.
Barnard (1947) proposed the following convexity condition for a test statistic under a bivariate discrete distribution:

S(s1, s2 + 1) ≤ S(s1, s2) ≤ S(s1 + 1, s2),

for any sample point (s1, s2) of the two discrete random variables. With no occurrence of ties, the strict convexity is defined
by

S(s1, s2 + 1) < S(s1, s2) < S(s1 + 1, s2).

The condition indicates that the statistic has a monotonicity in ordering the sample points of the support. Röhmel and
Mansmann (1999) proved that under the Binomial distribution, a test statistic satisfying the convexity condition, the
supremum of the correspondent exact p-value is attained at a boundary point over a compact parameter space. The
calculation of the maximal exact p-value can be simplified to solely take the boundary into consideration. The following
theorem and corollary are generalizations of the problem of comparing two Poisson means.

Theorem 1. In comparing two Poisson means, let S be a test statistic depending on the data only through the sufficient statistics
(Y1, Y2). Suppose S satisfies the strict convexity condition. Then given s0, the supremum of P(S ≥ s0|λ1, λ2) over a compact set
in the parameter space occurs at a boundary point.

In fact, it can be shown that ZR and ZU both satisfy the strict convexity condition, and subsequently the maximums for
their confidence-set p-values occur in the boundary of Cγ . Further, in proving Theorem 1, it is seen that the probability
P(S ≥ s0|λ1, λ2) increases as λ1 increases and λ2 decreases. Hence, the maximum occurs at the bottom right corner. It
either occurs at one specific point or on a closed interval over the diagonal. The supremum can be found by a grid-search in
the latter case. Please see the following corollary.

Corollary 2. If Cγ ≠ ∅, let Cd = [max(L1, L2),min(U1,U2)]. Then the confidence-set p-values of ZR and ZU , in (1) and (2), are
equal to

p(γ )

CI,R =


P(ZR ≥ zR|U1, L2) + γ , if Cγ = CU,γ

sup
λ∈Cd

P(ZR ≥ zR|λ, λ) + γ , if Cγ ⊂ CU,γ (3)

and

p(γ )

CI,U =


P(ZU ≥ zU |U1, L2) + γ , if Cγ = CU,γ

sup
λ∈Cd

P(ZU ≥ zU |λ, λ) + γ , if Cγ ⊂ CU,γ . (4)

On the other hand, the easiest way to solve for the presence of nuisance parameters in finding an exact p-value is to
replace the parameters with some adequate estimates under the null space Ω0, which produces an estimated exact p-value.
We consider the RMLEs for amost likely outcome given the observed data. The null spaceΩ0 is a simple star-shaped scenario,
Ng et al. (2007) indicated that the RMLEs of λ1, λ2 over Ω0 are equal to

(λ̃01, λ̃02) =


(λ̂1, λ̂2), if λ̂1 ≤ λ̂2;

(λ̃0, λ̃0), if λ̂1 > λ̂2.

Then the estimated exact p-values are given by

p̃E,R = P(ZR ≥ zR|λ̃01, λ̃02), p̃E,U = P(ZU ≥ zU |λ̃01, λ̃02). (5)
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Table 1
The type I error rate (for δ0 ≤ 0) and the power (for δ0 > 0) of the proposed p-values of ZR, ZU at δ0 ∈ [−.25, 2]λ2 = 1, n2 = 10 and α = 5%.

n1 Statistic p-value δ0

−0.25 −0.15 −0.1 −0.05 0.0 0.1 0.5 1.0 1.5 2.0

6 ZR p(0.001)
CI,R 0.0096 0.0176 0.0231 0.0297 0.0375 0.0574 0.1942 0.4524 0.6999 0.8655

p̃E,R 0.0137 0.0233 0.0297 0.0372 0.0460 0.0675 0.2099 0.4728 0.7194 0.8781
pA,R 0.0157 0.0266 0.0337 0.0421 0.0519 0.0757 0.2298 0.5024 0.7432 0.8907

ZU p(0.001)
CI,U 0.0129 0.0228 0.0293 0.0370 0.0461 0.0682 0.2120 0.4743 0.7199 0.8782

p̃E,U 0.0145 0.0250 0.0318 0.0399 0.0493 0.0721 0.2199 0.4871 0.7310 0.8841
pA,U 0.0082 0.0153 0.0202 0.0262 0.0334 0.0517 0.1833 0.4425 0.6942 0.8623

10 ZR/ZU p(0.001)
CI 0.0123 0.0227 0.0298 0.0384 0.0487 0.0746 0.2544 0.5724 0.8223 0.9451

p̃E 0.0123 0.0227 0.0298 0.0384 0.0487 0.0747 0.2554 0.5773 0.8279 0.9477
pA 0.0126 0.0230 0.0301 0.0387 0.0489 0.0748 0.2554 0.5773 0.8279 0.9477

17 ZR p(0.001)
CI,R 0.0101 0.0196 0.0265 0.0351 0.0457 0.0736 0.2831 0.6495 0.8912 0.9776

p̃E,R 0.0112 0.0216 0.0289 0.0379 0.0488 0.0771 0.2858 0.6560 0.8954 0.9792
pA,R 0.0101 0.0196 0.0264 0.0351 0.0457 0.0736 0.2831 0.6497 0.8918 0.9782

ZU p(0.001)
CI,U 0.0082 0.0168 0.0231 0.0312 0.0411 0.0674 0.2678 0.6323 0.8864 0.9771

p̃E,U 0.0111 0.0216 0.0291 0.0385 0.0499 0.0795 0.2945 0.6592 0.8957 0.9793
pA,U 0.0159 0.0292 0.0384 0.0496 0.0629 0.0964 0.3250 0.6888 0.9100 0.9831

One can see that the RMLEs do not necessarily occur at the diagonal boundary. Since an exact p-value of the test statistic
satisfying the convexity condition is an increasing function as the parameter point (λ1, λ2) moves toward bottom right,
our estimated exact p-value is more powerful than the other estimated p-value evaluated at the diagonal, as proposed by
Krishnamoorthy and Thomson (2004) and by Chan and Wang (2009).

3. Numerical study

In this numerical study, we investigate the performance of the proposed exact tests. Denote δ0 = λ1 − λ2. We consider
λ2 = 1, δ0 ranged from −0.25 to 2, n2 = 10 and three n1 = 6, 10, 17. The nominal significance level α is set at 0.05. Table 1
reports the exact probabilities of rejecting the null hypothesis, which are the type I error rate, when δ0 ≤ 0, and are the
power, when δ0 > 0. The confidence-set p-value is constructed with (1 − γ ) = 99.9%. For comparison, the results of the
asymptotic tests by using the asymptotic normality, denoted by pA, are also listed in the tables. The tables of λ2 = 2 are
provided in the supplementary materials. Note that, n1 = n2, ZR and ZU are actually of the same form and have the same
results.

We find that, the two exact p-values have their sizes well controlled at α = 5%. On the contrary, the type I error rate of
the asymptotic method can exceed the significance level. Using the same test statistic, the size of the estimated p-value p̃E
is always closer to the nominal level and is more efficient in computations than the confidence-set p-value pCI . However,
the validity of the estimated p-value is not theoretically justified and hence is not guaranteed.

The test statistic used in the procedure affects the performance of the exact test. For the confidence-set p-value, the
employment of ZU is more powerful than that of ZR at n1 < n2, and less powerful than ZR at n1 > n2. For the estimated
p-value, the use of ZU always brings about more powerful results than ZR when n1 ≠ n2.

For a confidence-set p-value, a larger γ leads to less computations involved for the supremum search and subsequently,
a smaller supremum obtained. However, by adding this trade-off term, the resultant confidence-set p-value hardly varies.
Our numerical study indicates that the test is not significantly affected by γ . Please refer to the supplementary materials.

4. Real example

Consider the breast cancer study in Ng and Tang (2005). Female subjects were classified according towhether or not they
had been examined by using X-ray fluoroscopy during treatment for tuberculosis. The investigators suspect that, the use of
X-ray fluoroscopy will lead to a higher occurrence rate of breast cancer. Define λ1 as the mean incidence number of breast
cancer per person-year of the treatment group, in which the patients had received X-ray; and let λ2 be the mean incidence
number per person-year of the control group, in which the patients were not examined by X-ray. The research problem is to
test the following hypothesis, H0 : λ1 ≤ λ2 versus H1 : λ1 > λ2. The procedures proposed are extended to the case where
observations have various experimental durations. Assume Yij is the Poisson random variable in the i-th group with tij units
of duration, for i = 1, 2, j = 1, 2, . . . ,mi. Define n∗

i =
mi

j=1 tij, i = 1, 2. Then, replacing ni’s by n∗

i ’s in the test statistics, we
can apply the proposed approaches directly.

From Ng and Tang (2005), it was reported that the treatment group had y1 = 41 cases of breast cancer in n∗

1 = 28010
persons-year at risk and the control group had y2 = 15 cases of breast cancer in n∗

2 = 19017 person-years at risk. The
MLEs of λ1, λ2 are λ̂1 = 1.464, λ̂2 = 0.789, and the RMLE of the common mean value is λ̃0 = 1.191 per 1000 person-
year. In the following, all the estimates are expressed in the unit of 1000 person-year. Consequently, the observed ZR, ZU are
zR = 2.0818, zU = 2.2047 with correspondent asymptotic p-values 0.0187, 0.0137, respectively.
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Fig. 1. The shaded area is the constrained joint 99.9% confidence-set Cγ of (λ1, λ2) in the example. The twomaximal exact p-values occur at the diagonal.
The p-value is evaluated at λ1 = λ2 = 1.3831 (the circle) for ZR , at λ1 = λ2 = 0.9916 (the triangle) for ZU .

Table 2
The asymptotic, estimated, and confidence-set p-values of ZR and ZU .

Test statistic ZR ZU

Confidence-set p-value (γ = 0.001) 0.0183 0.0187
Estimated p-value 0.0179 0.0184
Asymptotic p-value 0.0187 0.0137

For the confidence-set p-value, the unconstrained joint 99.9% (with γ = 0.001) confidence set of (λ1, λ2) is CU,0.001 =

{0.7959 ≤ λ1 ≤ 2.4420, 0.2657 ≤ λ2 ≤ 1.7746}. Therefore, C0.001 ≠ ∅ and C0.001 ⊂ CU,0.001. See Fig. 1. As a
result, the confidence-set p-value is evaluated somewhere on the diagonal λ1 = λ2 between Cd = [max(L1, L2) =

0.7959,min(U1,U2) = 1.7746]. Via a grid-search, it is found that the confidence-set p-value of ZR occurs at λ1 = λ2 =

1.3831, and the confidence-set p-value of ZU occurs at λ1 = λ2 = 0.9916. The calculated p-values are reported in Table 2. On
the other hand, because the MLEs λ̂1 > λ̂2 are outside the null hypothetical space, the estimated exact p-value is evaluated
at the RMLE on the diagonal, λ̃0 = 1.191.

All p-values in Table 2 are less than α = 5% and lead to the conclusion of rejecting the null hypothesis. The increase in
the incidence rate of breast cancer by using the X-ray fluoroscopy achieves a statistical significance.

5. Discussion

This study focuses on testing the superiority of one Poisson distribution against another with a smaller mean value
for a small to moderate data set. Differing with the majority of the existing literature, we consider a non-superiority null
hypothesis and hence deal with a broader null parameter space, which introduces more difficulties for both theoretical
justification and practical computation of a p-value. Using a test that considers only the boundary of equality and ignores
the null space of inferiority risks an inflation of its type I error rate. For a strict control of the error rate, we consider the
confidence-set p-value. As the two proposed test statistics satisfy the convexity condition strictly, the calculations for the
confidence-set p-values are greatly simplified to involve at most a supremum search over a closed interval of a single
argument. On the other hand, we propose the estimated exact p-value by using the RMLEs under the null space. In the
numerical study, both the proposed p-values perform adequately.
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Appendix A. Proofs

A.1. Proof of Theorem 1

It is known that for the Poisson probability function p(x|λ), by letting p(−1|λ) = 0, for x ≥ 0,
∂

∂λ
p(x|λ) = p(x − 1|λ) − p(x|λ).

Suppose S is a function of the sufficient statistics (Y1, Y2). If given the observed value (y10, y20), S = s0, then the exact p-value
based on S is

PS(n1λ1, n2λ2) ≡ P(S ≥ s0|λ1, λ2) =


S(y1,y2)≥s0

p(y1 | n1λ1)p(y2 | n2λ2).

If S satisfies the convexity condition, then there exists a function h such that, at each fixed y2 ≥ 0, h(y2) is the lower limit of y1
that satisfies {y1 : S(y1, y2) ≥ s0} = {y1 ≥ h(y2)} ≡ Ry2 . Similarly, for some non-negative integer a, there exists a function
h∗ such that at each fixed y1 ≥ a, h∗(y1) is the upper limit of y2 that satisfies {y2 : S(y1, y2) ≥ s0} = {y2 ≤ h∗(y1)} ≡ R∗

y1 .
Furthermore, if S satisfies the strict convexity condition, for any y1, y2 in the support,

Ry2+1 ⊂ Ry2 , and R∗

y1 ⊂ R∗

y1+1. (6)

Consequently, the p-value has the following expression:

PS(n1λ1, n2λ2) =

∞
y2=0

p(y2 | n2λ2)P(Ry2) =

∞
y1=a

p(y1 | n1λ1)P(R∗

y1).

Then we can derive that

∂

∂λ2
PS(n1λ1, n2λ2) = n2

∞
y2=0

p(y2 | n2λ2)

P(Ry2+1) − P(Ry2)


which is always negative from (6). On the other hand,

∂

∂λ1
PS(n1λ1, n2λ2) =


n1

∞
y1=0

p(y1 | n1λ1)

P(R∗

y1+1) − P(R∗

y1)

, if a = 0

n1


p(a − 1|n1λ1)P(R∗

a) +

∞
y1=a

p(y1 | n1λ1)

P(R∗

y1+1) − P(R∗

y1)


, if a ≥ 1

which is always positive from (6). Hence the maximum of the p-value cannot occur at any inner point of a compact subset
in the parameter space.

A.2. Proof of Corollary 2

It suffices to show that, the two test statistics satisfy the strict convexity condition. Note that, at y1 = 0, y2 = 0, the two
statistics are defined as 0. In the following, we exclude this case from discussion. First, ZR(y1, y2) is investigated. At y2 = 0,
ZR(y1, 0) =

√
(n2/n1)y1, which obviously is strictly increasing in y1. For y2 > 0, it is derived that

∂

∂y1
ZR(y1, y2) =

y2
n1n2

2


y1+y2
n1+n2


1
n1

+
1
n2

 
y1+y2
n1+n2

 > 0.

Hence, this statistic satisfies the convexity condition strictly along the first coordinate. Next, for y1 = 0, ZR(0, y2) =

−
√

(n1/n2)y2, which is strictly decreasing in y2. For y1 > 0,

∂

∂y2
ZR(y1, y2) = −

y1
n1n2

2


y1+y2
n1+n2


1
n1

+
1
n2

 
y1+y2
n1+n2

 < 0.

Hence, this statistic satisfies the convexity condition strictly along the second coordinate.
On the other hand, similarly, we found that for ZU(y1, y2),

∂

∂y1
ZU(y1, y2) =

y1
n31

+
y2

n1n2


1
n1

+
2
n2


2


y1
n21

+
y2
n22


y1
n21

+
y2
n22

> 0
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and

∂

∂y2
ZU(y1, y2) = −

y1
n1n2


2
n1

+
1
n2


+

y2
n32

2


y1
n21

+
y2
n22


y1
n21

+
y2
n22

< 0.

ZU(y1, y2) is strictly increasing in y1 and strictly decreasing in y2, hence it satisfies the convexity condition strictly.

Appendix B. Supplementary data

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.spl.2013.01.030.

References

Barnard, G.A., 1947. Significance tests for 2 × 2 tables. Biometrika 34, 123–138.
Berger, R.L., Boos, D.D., 1994. P values maximized over a confidence set for the nuisance parameter. Journal of the American Statistical Association 89,

1012–1016.
Casella, G., Berger, R.L., 1990. Statistical Inference. Wadsworth, Pacific Grove, CA.
Chan, I.S.F., Wang, W.W.B., 2009. On analysis of the difference of two exposure-adjusted poisson rates with stratification: from asymptotic to exact

approaches. Statistics in Bioscience 1, 65–79.
Krishnamoorthy, K., Thomson, J., 2004. A more powerful test for two poisson means. Journal of Statistical Planning and Inference 119, 23–35.
Ng, H.K.T., Gu, K., Tang, M.L., 2007. A comparative study of tests for the difference of two poisson means. Computational Statistics & Data Analysis 51,

3085–3099.
Ng, H.K., Tang, M.L., 2005. Testing the equality of two poisson means using the rate ratio. Satistics in Medicine 24, 955–965.
Röhmel, J., Mansmann, U., 1999. Unconditional non-asymptotic one-sided tests for independent binomial proportions when the interest lies in showing

non-inferiority and/or superiority. Biometrical Journal 41, 149–170.
Wang, H., 2008. Confidence intervals for the mean of a normal distribution with restricted parameter space. Journal of Statistical Computation and

Simulation 78, 829–841.
Wang, L., Feng, Z.,Wang, X.,Wang, X., Zhang, X., 2010. DEGseq: anRpackage for identifying differentially expressed genes fromRNA-seqdata. Bioinformatics

26, 136–138.

http://dx.doi.org/10.1016/j.spl.2013.01.030

	Exact tests of the superiority under the Poisson distribution
	Introduction
	Test procedures
	Notations and test statistics
	Exact  P -values

	Numerical study
	Real example
	Discussion
	Acknowledgments
	Proofs
	Proof of Theorem 1
	Proof of Corollary 2

	Supplementary data
	References


