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Abstract Conventional parametric stochastic cost fron-

tier models are likely to suffer from biased inferences due

to misspecification and the ignorance of allocative effi-

ciency (AE). To fill up the gap in the literature, this article

proposes a semiparametric stochastic cost frontier with

shadow input prices that combines a parametric portion

with a nonparametric portion and that allows for the

presence of both technical efficiency (TE) and AE. The

introduction of AE and the nonparametric function into the

cost function complicates substantially the estimation

procedure. We develop a new estimation procedure that

leads to consistent estimators and valid TE and AE mea-

sures, which are proved by conducting Monte Carlo

simulations.
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1 Introduction

A parametric linear or nonlinear regression model requires

setting a specific functional form prior to estimation in

order to describe the true but unknown relationship

between the dependent and the independent variables.

Consequently, potential specification errors are likely to

occur, leading to an inconsistent estimation. Although

some economic models do explicitly suggest relationships

among economic variables, most implications of economic

theory are nonparametric. Therefore, if one has reserva-

tions about a particular parametric form, then a nonpara-

metric function can be an alternative candidate.

Nonparametric regression models permit the functional

relationship to be unknown and nevertheless fit the data

quite well without imposing restrictions beyond some

degree of smoothness. They deliver estimators and infer-

ence procedures that are less reliant on the imposition of

specific functional forms. Inclusion of the nonparametric

element may circumvent an inconsistent estimation arising

from invalid parameterization. However, the inherent

critical element of the ‘‘curse of dimensionality’’ limits the

unknown function of a nonparametric model to contain a

small number of variables to lessen the approximation error

to the unknown function.

A researcher in some cases may be confident about a par-

ticular parametric form for one portion of the regression

function, but less sure about the shape of another portion. Such

prior beliefs justify the necessity for linking parametric with

nonparametric techniques to formulate semiparametric

regression models. The added value of semiparametric tech-

niques consists in their competence to largely mitigate the
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curse of dimensionality distress, and the respective estimators

of the parametric and nonparametric components have their

usual rates of convergence.1 See, for example, Härdle (1990),

Wand and Jones (1995), Fan et al. (1996), and Yatchew (1998,

2003).

Fan et al. (1996) first extended the traditional stochastic

production frontier model, dated back to Aigner et al.

(1977) and Meeusen and Van Den Broeck (1977), to a

semiparametric frontier model in the context of cross sec-

tion. They proposed pseudo-likelihood estimators and

proved by Monte Carlo experiments that the finite-sample

performance of their estimators is satisfactory. Deng and

Huang (2008) further generalized it to a panel data setting

and allowed for time-variant technical efficiency (TE) in

the form of Battese and Coelli (1992). Nevertheless, almost

all of the related works that use a semiparametric frontier

model focus on the study of technical efficiency (TE) and

the achievement of allocative efficiency (AE) is implicitly

presumed. Kumbhakar and Wang (2006a) found that the

assumption of fully AE in a cost function setting tends to

bias parameter estimates of the cost function and sub-

sequent measures using these estimates.

There are several ways of evaluating both TE and AE

measures in the literature. The shadow input price approach

will be used to estimate the shadow cost system, consisting

of an expenditure (cost) equation and the corresponding

share equations, simultaneously using the maximum like-

lihood. This allows researchers to decompose cost ineffi-

ciency into its technical and allocative components.

Unfortunately, the highly nonlinear nature of the simulta-

neous equations makes the estimation almost untractable.

Kumbhakar and Lovell (2000) proposed a two-step pro-

cedure with an eye to mitigate somewhat the estimation

problem of a pure parametric shadow cost system. They

recommend estimating the share equations in the first step

by the method of nonlinear iterative seemingly unrelated

regression (NISUR) to acquire the shadow price parameter

estimates of interest.2 These estimates are treated as given

in the second step, where the maximum likelihood tech-

nique is exploited to estimate the stochastic cost frontier

alone after appropriately transforming the original expen-

diture equation using the first step estimates. Kumbhakar

and Lovell (2000) did not address the properties of their

proposed estimators.3

The purpose of the current work is threefold. First, we

relax the parametric restriction on a cost function repre-

senting technology in order to at least diminish the possible

specification error. Second, the semiparametric stochastic

shadow cost frontier offered by this paper differs from the

standard semiparametric regression model and from the

stochastic production frontier of Fan et al. (1996). Specif-

ically, our model accommodates both TE and AE to avoid

biased estimates of the technology parameters. To the best

of our knowledge, no work has been done to introduce both

efficiency measures into a semiparametric stochastic sha-

dow cost frontier under the framework of panel data. It is

hoped that this research will bridge the existing gap and to

better characterize a firm’s optimization behavior. Third, a

distinct five-step procedure from the one suggested by

Kumbhakar and Lovell (2000) is proposed to facilitate the

estimation. We argue for the new procedure due to the fact

that the resultant estimators are shown to converge to the

true values as the sample size increases by applying Monte

Carlo simulations.

The rest of this paper is organized as follows. Section 2

briefly reviews the relevant literature. Section 3 first pre-

sents the semiparametric stochastic cost frontier with sha-

dow input prices and then proposes the estimation

procedure. Section 4 introduces the design of Monte Carlo

experiments to be conducted in the next section. Section 5

provides and discusses the results of the experiments,

which are intended to detect a suitable estimation proce-

dure leading to consistent estimators, while the last section

concludes the paper.

2 Literature review

The TE score of a firm can be estimated by two main

approaches, i.e., data envelopment analysis (DEA) and

stochastic frontier approach (SFA). The former involves

mathematical programming without the need for specifying

an explicit functional form, while the latter employs the

econometric methods to deal with the composed random

disturbances. These approaches have their own advantages

and weaknesses. Fan et al. (1996) elegantly extended the

standard parametric SFA to a semiparametric model in the

context of cross section, where the functional form of

the production frontier needs not to be specified a priori.

Their method makes use of nonparametric regression tech-

niques to avoid the requirement of specifying a particular

production function, associating a firm’s output with inputs.

1 Robinson (1988) showed that the parametric estimators are

consistent at the parametric rate of N-1/2, while the nonparametric

estimators converge at a slower rate than N-1/2, where N denotes the

sample size.
2 It can be shown that these estimators are consistent and asymptot-

ically normal.
3 The two-step estimation procedures of Kumbhakar and Lovell

(2000) are found to give consistent estimates of AE when the cost

function takes the translog form. The TE estimates in general perform

Footnote 3 continued

not as well as AE estimates, due mainly to the badly performed

distribution parameter estimates. Inferences on TE scores using a

small sample are doubtful.
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Therefore, the possible problem of misspecification is no

longer a key issue as opposed to conventional parametric

approach. Deng and Huang (2008) generalized the semi-

parametric model of Fan et al. (1996) to a panel data setting

and allowed for time-varying TE. Their empirical evidence

uncovered that the standard parametric translog production

function tends to underestimate the TE score due to the

possible specification error and its lack of flexibility in

describing firms’ production characteristics.

Wheelock and Wilson (2001) estimated and compared

the measures of scale and scope economies for US com-

mercial banks, derived from estimating parametric and

nonparametric cost equations, without regard to TE and

AE. In an expenditure equation modeling both technical

inefficiency (TI) and allocative inefficiency (AI), it is dif-

ficult for researchers to appropriately relate the two-sided

disturbances in the input share equations to the nonnegative

AI term in the expenditure equation. This is known as the

Greene problem (Bauer 1990). Berger et al. (1993),

Atkinson and Cornwell (1994), Kumbhakar (1996a), Huang

(2000), and Huang and Wang (2004), to mention a few,

utilized shadow prices to account for AI in addition to TI.

Kumbhakar (1996b, 1997) gave a complete treatment on

how to model TI and AI concurrently. Kumbhakar and

Wang (2006b) demonstrated an alternative primal system,

consisting of a production function and the first-order con-

ditions of cost minimization. However, the cost function

associated with the translog production function cannot be

analytically derived. The shadow price technique does not

need to specify an ad hoc relationship between the AI term

of the expenditure equation and the disturbance terms of the

share equations. In addition, this technique can be applied to

any parametric cost function as well as some semiparametric

cost functions. We therefore adopt the technique throughout

the paper.

3 Semiparametric stochastic shadow cost frontiers

Let the jth shadow input prices, Wj
*, be defined as

W�j ¼ HjWj; j ¼ 1; . . .; J ð3� 1Þ

where Hj ([0) denotes the allocative parameter of input j,

measuring the extent to which the shadow and actual input

prices (Wj) differ. The shadow price of Wj
* is not directly

observable due to the presence of Hj that can be estimated.

It thus reflects the degree of allocative inefficiency arising

from, e.g., regulation or slow adjustment to changes in

input prices. Here, a firm’s decision is assumed to be

grounded on shadow input prices. Following Atkinson and

Cornwell (1994), Kumbhakar (1996b, 1997), Huang and

Wang (2004), and Huang et al. (2011), the minimized

efficiency adjusted shadow cost, C**, for a firm employing

input vector X to produce output vector Y can be expressed

as4:

C�� Y ;
W�

b

� �
¼ Min

bX

W�

b
ðbXÞ FðbX; Yj Þ ¼ 0

� �

¼ 1

b
C�ðY ;W�Þ ð3� 2Þ

where b(0 \ b B 1) represents the degree of input-oriented

TI, C* is referred to as the shadow cost function indepen-

dent of the TI parameter of b, and Y is an m-vector of

output quantities. A firm is said to be technically efficient if

it has a value of b = 1, while a firm operating beneath the

efficiency frontier has a value of b \ 1. The larger the

value of b is, the more technically efficient the firm will be.

Function F(�,�) represents the production transformation

function with input-oriented technical inefficiency (Atkin-

son and Cornwell 1993). Note that b is an unknown

parameter to be estimated later.

Since a cost function must satisfy the homogeneity

restriction of degree one in input prices, we can only

measure J - 1 relative allocative parameters Hj/HJ,

j = 1, …, J - 1, and the Jth input is arbitrarily chosen as

the numeraire. A value of Hj/Hj less (greater) than unity

means that the jth input tends to be overused (underused)

relative to input J. Either overuse or underuse reflects the

presence of AI. Using Shephard’s Lemma, the shadow cost

share equation of input j (j = 1,…, J - 1) is written as:

S�j W�; Yð Þ � o ln C�

o ln W�j
¼

bW�j Xj

C�
: ð3� 3Þ

After some manipulations and taking a natural logarithm, a

firm’s actual expenditure (E) can be linked with C** (C*)

and Sj
* as follows:

ln E ¼ ln C�� þ ln
X

j

H�1
j S�j

¼ ln C�ðY;W�Þ þ ln
X

j

H�1
j S�j þ U ð3� 4Þ

where U = -ln b reflects the additional (log) expenditure

incurred by TI and is specified as a one-sided error term

later, ln
P

j H�1
j S�j captures a partial extra cost entailed by

AI, and the remaining extra cost of AI is embedded in ln

C*(Y, W*) due to W*
= W. It is readily seen that the extra

cost arising from AI vanishes once the firm attains fully

AE.

Equation (3-4) becomes a regression equation after

appending a two-sided random disturbance v to it, where v

is assumed to be distributed as N(0, rv
2). Term U ? v forms

4 Note that the objective function of (3-2) is initially expressed as

W�X and the choice vector is X. Since parameter b emerges in the

constraint of F(�,�), together with X, it is convenient to transform the

objective function into W�=bð ÞbX. This is equivalent to treat W�=b as

the new input prices and bX the new choice vector.
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the composed error term. This equation associates TI with

AI systematically. To identify the allocative parameters,

one has to count on the share equations. It can be shown

that the actual share equation of input j (Sj) is formulated as

Sj ¼
H�1

j S�jP
j H�1

j S�j
; j ¼ 1; . . .; J: ð3� 5Þ

After adding random disturbances to these share equations,

they can be used to help estimate parameters Hj. When

panel data are available, it is more ambitious to assume TI

term U to be time-varying. The time-variant TE model of

Battese and Coelli (1992) is adopted with Unt = un exp

[-c(t - T)], n = 1, …, N, t = 1, …, T, where un is a firm-

specific TI random variable distributed as |N(0, ru
2)| and

independent of vnt, and g(t) = exp [-c(t - T)] contains an

extra parameter c to be estimated.5

We now turn to the functional form of ln C*(Y, W*) in

(3-4). It is conventionally specified as a translog form, or as

a Fuss functional form like Berger et al. (1993), or as a

Fourier flexible function such as Altunbas et al. (2001) and

Huang and Wang (2004). In this paper ln C*(Y, W*) is

instead formulated as a semiparametric form:

ln C�ðYnt;W
�
ntÞ ¼ XntbþMðln YntÞ ð3� 6Þ

where Xnt consists of the linear and quadratic terms of ln

Wjnt
* (j = 1, …, J), the cross product terms among ln Wjnt

* ,

and the cross product terms of ln Wjnt
* with ln Yint (i = 1,

…, m), b is the corresponding unknown parameter vector,

ln Ynt is a m 9 1 random vector of (log) outputs with

support, and Mð�Þ is assumed to be a smooth function with

unknown form. The reason why the non-parametric part

has only outputs is that a cost function should be homo-

geneous of degree one in input prices. If the non-para-

metric part contains input prices, then it is difficult to

impose this restriction on it. Our specification is similar to,

e.g., Akhigbe and McNulty (2003), Altunbas et al. (2001),

Berger and DeYoung (1997), Berger et al. (1997), and

Berger and Mester (1997), who applied the Fourier flexible

(FF) cost function with the terms of Fourier series being

composed of transformed outputs only, excluding input

prices, for the same reasoning.

We rewrite our cost function system as:

ln Ent ¼ Xntbþ ln Gnt þMðln YntÞ þ ent ð3� 7Þ

Sjnt ¼
H�1

j S�jntP
j H�1

j S�jnt

þ gjnt; j ¼ 1; . . .; J ð3� 8Þ

where ln Gnt ¼ ln
P

j H�1
j S�j , ent = un exp [-c(t - T)] ?

vnt, and gnt = (g1nt, …, gJnt)
0 is assumed to be a

multivariate normal random vector with mean zero and

constant covariance matrix, independent of ent. It can be

shown that the nth firm’s probability density function of the

composed disturbance en = (en1, …, enT)0 is equal to:

hðenÞ ¼
2

rT�1
v r

½1� UðAnÞ�
YT
t¼1

/
ent

rv

� �" #
exp

1

2
ð�AnÞ2

� �

ð3� 9Þ

where An ¼ �k
P

t entgt=r; gt ¼ e�cðt�TÞ; k ¼ ru=rv; r2 ¼
r2

vþ r2
u

PT
t¼1 g2

t , and /ð�Þ and Uð�Þ are the standard normal

density and standard normal cumulative distribution func-

tions, respectively. The log-likelihood function of expen-

diture Eq. (3-7) alone can be easily derived by first

multiplying (3-9) over firms and then taking the natural

logarithm. Combining (3-9) with the joint probability

density function of the (J - 1) random disturbances of the

share equations (gnt), the cost function system can be

simultaneously estimated by the maximum likelihood if M

has a known form. Readers are suggested to refer to, e.g.,

Ferrier and Lovell (1990) and Kumbhakar (1991), for

details.

Three difficulties deserve specific mention. First, since

the log-likelihood function of the above cost function

system is highly nonlinear, getting maximum likelihood

estimators is computationally difficult, even though not

infeasible. Second, M has an unknown functional form,

hindering the log-likelihood function of the expenditure

equation from being maximized with respect to M in par-

ticular. One alternative relies on the use of some non-

parametric approaches to estimate M. However, M cannot

be estimated directly by existing nonparametric regression

methods, because it is not the conditional expectation of ln

Ent - Xntb – ln Gnt given ln Ynt. This is caused by the

nonzero mean of one-sided error Unt, i.e.:

E ln E � Xb� ln Gj ln Yntð Þ ¼ Mðln YntÞ þ ltðr2; k; cÞ
6¼ Mðln YntÞ

ð3� 10Þ

where

ltðr2; k; cÞ ¼ EðUntÞ ¼ gt

ffiffiffi
2
p
ffiffiffi
p
p ru

¼ gt

ffiffiffi
2
p
ffiffiffi
p
p krffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2P
t g2

t

q
0
B@

1
CA: ð3� 11Þ

5 Term gt decreases at an increasing rate if c[ 0, increases at an

increasing rate if c\ 0, or stays constant if c = 0.
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One cannot separate M(ln Ynt) from E(ln E - Xb -

ln G|ln Ynt) of (3-10) by employing a nonparametric estima-

tion. This problem can be solved by substituting E(ln E -

Xb - ln G| ln Ynt) - lt for M(ln Ynt)into the log-likelihood

function. E(ln E - Xb – ln G|ln Ynt) can now be consistently

estimated by the nonparametric approach. For details, please

see, e.g., Fan et al. (1996) and Deng and Huang (2008).

Finally, term ln Gnt ¼ ln
P

j H�1
j S�j is obviously a nonlinear

function of unknown parameters, leading the kernel estima-

tion procedure for a standard semiparametric regression

model, as proposed by Robinson (1988), to be not applicable.

We shall discuss possible ways of getting rid of this difficulty

in Subsect. 4-1, which influence the consistency of the

parameter estimates and are the core of this study.

We adopt the kernel estimation technique to estimate the

conditional expectations, such as E(ln E|ln Ynt), since it is

one of the popular nonparametric estimation methods. Spe-

cifically, the Nadaraya-Watson kernel estimator (Nadaraya

1964; Watson 1964) for a scalar ln Ynt is given by:

Êðln E ln Yntj Þ ¼
PN

i¼1

PT
t¼1 ln EitK

ln Ynt�ln Yit

h

� �
PN

i¼1

PT
t¼1 K ln Ynt�ln Yit

h

� � ð3� 12Þ

where Kð�Þ is the kernel function and h is the smoothing

parameter. Equation (3-12) can be easily extended to a

higher dimensional case of ln Ynt. The rest of the condi-

tional expectations in Eq. (3-10) can be estimated

analogously.

We now outline the estimation procedure of the semi-

parametric shadow cost frontier in the following five steps.

Step 1 Simultaneously estimate the J - 1 input share

equations of (3-8) by the NISUR to obtain the J - 1 estimates

of relative allocative parameters Hj/HJ (j = 1, …, J - 1) and

a part of the parameters involving the input prices of expen-

diture Eq. (3-7). These estimates can be shown to be consistent

and are used to calculate ln Gnt, denoted by ln Ĝnt.

Step 2 Apply formula (3-12) to obtain the kernel esti-

mates of E(ln E|ln Ynt.), E(X|ln Ynt.), and Eðln Ĝj ln YntÞ;
denoted by Êðln E ln Yntj Þ; ÊðX ln Yntj Þ; and Êðln Ĝj ln YntÞ;
respectively.

Step 3 Equation (3-7) subtracts its own conditional

expectations on ln Ynt to yield

ln Ent � Eðln E ln Yntj Þ ¼ ½Xnt � EðX ln Yntj Þ�bþ ln Gnt

� Eðln Ĝj ln YntÞ þ e0nt:

ð3� 13Þ

After substituting the kernel estimates derived in Step 2 for

those conditional expectations in (3-13),6 parameters b can

be consistently estimated by the nonlinear least squares

method, since the new error component e0ntð¼ vnt þ Unt �
ltÞ has zero mean asymptotically. The nonlinear least

squares is required due to the nonlinearity of ln Gnt. This

distinguishes the current paper from Robinson (1988),

where the ordinary least squares apply.

Step 4 Let

ênt¼ ln Ent � Êðln E ln Yntj Þ � ½Xnt � ÊðX ln Yntj Þ�b̂� ln Ĝnt

þ Êðln Ĝj ln YntÞ þ lt ð3� 14Þ

Maximizing the log-likelihood function derived from (3-9)

with ent replaced by ênt over r2 and k, one obtains the

solution to r after tedious manipulation as

r̂ ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac
p

2a
ð3� 15Þ

where a ¼ 1� 2k2P
t g2

t =ðpTTÞ, TT ¼ T þ k2P
t g2

t ,

b ¼ �23=2k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ k2P

t g2
t Þ=p

q P
i

P
t eitgt=ðnTTÞ,

eit ¼ ln Ent � Êðln E ln Yntj Þ � ½Xnt � ÊðX ln Yntj Þ� b̂

�½ln Ĝnt � Ê ðln Gj ln YntÞ�,

and

c ¼ �ð1þ k2P
t g2

t Þ
P

i

P
t e2

it=ðnTTÞ:
In (3-15) notation ‘‘^’’ is added on r since the kernel and

NISUR estimators of Êð:jxitÞ and b̂ are used to replace their

respective true counterparts. For details, please see Deng

and Huang (2008) for a panel data setting with time variant

TI. Because r̂ is a function of k, c, and data, it can be

concentrated out of the log-likelihood function to reduce

the number of unknown parameters.

Step 5 Maximize the concentrated log-likelihood func-

tion of the expenditure equation over the remaining two

unknown parameters of k and c, where ent is replaced by

ênt in Step 4. The resulting pseudolikelihood estimates are

denoted by k̂ and ĉ. Substituting them into (3-15), we get

the estimate of r and still signify it by r̂: Plugging the three

estimates into (3-11) yields the estimate of lt, denoted by

l̂t. Finally, the nonparametric function M(ln Ynt) can be

consistently estimated by

M̂ðln YntÞ ¼ Êðln E ln Yntj Þ � ÊðX ln Yntj Þb̂
� Êðln Gj ln YntÞ � l̂t ð3� 16Þ

6 There is a concern with the referee’s suggestion that equation (3-

13) would be plus an extra term Eðln Ĝntj ln YntÞ � Eðln Gntj ln YntÞ,

Footnote 6 continued

which is non-zero. We can examine how fast it converges to zero as

either N or T grows by simulations. The results reveal that the bias

measures are small in all of the (N, T) combinations. In addition, the

biases decrease as either N or T grows, with the exception of the case

of (N, T) = (50, 20). This leads us to conclude that the extra term

Eðln Ĝntj ln YntÞ � Eðln Gntj ln YntÞ does converge rapidly.
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where b̂ comes from the estimates of Step 3.It is well

known that the maximum likelihood estimator of k and c
must be asymptotically unbiased and efficient if the

regularity conditions hold. Although the individual kernel

regression estimators of Step 2 have pointwise convergence

rates slower than root-NT (NT-1/2), where NT signifies the

sample size, the average quantities of the elements in

(3-15) have an order of Op(NT-1/2) under very weak

conditions. See, for example, Härdle and Stoker (1989) and

Fan and Li (1992). Fan et al. (1996) claimed that r̂2 � r2 ¼
OpðNT�1=2Þ under quite weak conditions. As estimator

M̂ðln YntÞ of (3-16) is a function of several kernel

regression estimators, having slower convergence rates

than NT-1/2, it consequently converges to M(ln Ynt) for

each nt at a slower rate than NT-1/2.

The foregoing five steps constitute the entire estimation

procedure and the resulting estimates can be further uti-

lized to evaluate, e.g., measures of AE and TE. In partic-

ular, the formula proposed by Battese and Coelli (1992) is

adopted to gauge each firm’s TE score. Based on (3-4), the

(log) cost of AI, denoted by uAI
nt , is defined as the difference

between the (log) shadow expenditure (ln C�ðY ;W�Þþ
ln
P

j H�1
j S�j ) and the (log) optimized cost (ln C(Y, W)) that

achieves AE, i.e.:

uAI
nt ¼ ln C� Ynt;W

�
nt

� �
þ ln G Ynt;W

�
nt

� �
� ln C Ynt;Wntð Þ;

ð3� 17Þ

which is a non-negative value by definition. The measure

of AE is then obtained by taking the natural exponent of

�uAI
nt , which ranges from zero to unity.

There are three attributes worth noting. First, the con-

sistent estimates of J - 1 relative allocative parameters Hj/

HJ (j = 1,…, J - 1) yielded in Step 1 are treated as given

throughout the remaining four steps. This avoids estimating

the whole cost system simultaneously by the maximum

likelihood and the difficulty in achieving convergence, on

the one hand. The number of parameters to be estimated in

later steps is largely decreased, on the other hand. Second,

despite the fact that ln Ĝnt can be computed in Step 1 and is

used to obtain kernel estimate Êðln Ĝj ln YntÞ in Step 2,

parameters included in ln Gnt of (3-13) need to be esti-

mated again along with b, even though they have already

been estimated in Step 1. Conversely, Kumbhakar and

Lovell (2000) suggested subtracting ln Ĝnt directly from

the dependent variable of (3-13), which may give rise to

undesirable estimation results. We will come back to this in

Sect. 5. Third, since Step 5 aims to estimate merely k and c,

the log-likelihood function is usually not very difficult to

converge.

4 Monte Carlo simulations

This section first proposes three models to be used to

compare the performance of their estimators. The next

subsection specifies an expenditure equation and addresses

the data generation processes for all variables involved.

4.1 Design of experiments

We plan to perform Monte Carlo simulations using three

models and evaluate the performance of their estimates in

terms of bias and mean square errors (MSE). Model A

follows the five steps addressed by the previous section.

Models B and C are simplified version of Model A for the

purpose of making comparisons among the three models.

At the outset, all of the three models have to estimate the

input share equations using the NISUR, i.e., carrying out

the first step. The J - 1 allocative parameter estimates are

next applied to estimate ln Gnt and AE, denoted by G1 and

AE1, respectively, while the subsequent steps of the three

models differ from one another. Note that the J - 1 allo-

cative parameters are treated as given thereafter. The three

models are as follows.

4.1.1 Model A

This preferred model follows exactly the above five steps.

Using the kernel estimates of Êðln E ln Yntj Þ; ÊðX ln Yntj Þ;
and Êðln Ĝj ln YntÞ from Step 2, we estimate Eq. (3-13) by

the NISUR in Step 3 to obtain the estimates of b. At the

same time, nonlinear function ln Gnt is assumed to be

unknown, i.e., all of the parameters shown in the para-

metric part of the cost function are jointly estimated, but

exclude the parameters associated with the distribution of v

and U. Estimates b̂ together with the J - 1 allocative

parameter estimates are employed to calculate new esti-

mates of ln Gnt and AE, denoted by G2A and AE2A. The

remaining parameters embedded in the distributions of v

and U are estimated in Steps 4 and 5.

4.1.2 Model B

This model is similar to Model A except that function ln

Gnt is treated in a different way from Model A. Specifi-

cally, the estimated ln Gnt, ln Ĝnt, derived from Step 1 is

viewed as fixed so that it can be subtracted from the

dependent variable. The new transformed equation

becomes

ln Ent � ln Ĝnt � Eðln E � ln Ĝ ln Yntj Þ
¼ ½Xnt � EðX ln Yntj Þ�bþ ê0nt ð4� 1Þ
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where the notations are similarly defined to (3-13). After

substituting the kernel estimates of Êðln E � ln Ĝ ln Yntj Þ
and ÊðX ln Yntj Þ for the corresponding conditional means in

(4-1), b is estimated simply by ordinary least squares

(OLS). This procedure is analogous to the one proposed by

Kumbhakar and Lovell (2000, pp. 295–296) in spirit, while

their underlying model is parametric. Estimates b̂ are next

used to compute ln Gnt and AE, denoted by G2B and

AE2B. Finally, Steps 4 and 5 are executed.

4.1.3 Model C

This model is further simplified from Model B and is

similar to the one suggested by Kumbhakar and Lovell

(2000, p. 165) in essence. Again, their underlying model is

parametric. Since the input share equations include vector

b, their consistent estimate b̂ from Step 1 can be treated as

fixed. In this manner, the new dependent variable turns out

to be ln Ent � ln Ĝnt � Xntb̂ with corresponding kernel

estimate Êðln E � ln Ĝ� Xb̂ ln Yntj Þ obtained by Step 2.

Step 3 is no longer needed and Eq. (3-14) of Step 4 is

modified accordingly as:

ênt ¼ ln Ent � ln Ĝnt � Xntb̂

� Êðln E � ln Ĝ� Xb̂ ln Yntj Þ þ lt

ð4� 2Þ

After concentrating out r2, we execute Step 5. This

completes the entire procedure.

It is seen that the major differences among the three

models stem from distinct treatments on ln Ĝnt and b̂: As a

result, we can compare the performance of the resulting

estimates among these models, including the distribution

parameters of v and U.

4.2 Model specifications

This subsection specifies the expenditure equation and the

data generation processes for all variables involved that

will be used to carry out Monte Carlo simulations to

investigate the finite-sample performance of the proposed

estimators in the last subsection. Since we are also inter-

ested in the effects of the number of firms (N) and time

periods (T) on the parameter estimates, we consider several

(N, T) combinations. Specifically, we choose N = 50, 100,

200 with T = 6, 10, 20.7 Following Olson et al. (1980) and

Fan et al. (1996), we consider three sets of variances and

variance ratios, viz. (r2, k) = (1.88, 1.66), (1.35, 0.83),

(1.63, 1.24). Finally, c = ± 0.025 are arbitrarily chosen.

The semiparametric cost frontier incorporating a single

output and three inputs is formulated as:

ln E ¼ Mðln YÞ þ Xbþ ln Gþ uþ v

¼ 2 lnð1þ y1Þ þ b2 lnðW�2 Þ þ b3 lnðW�3 Þ

þ 1

2
d22½lnðW�2 Þ�

2 þ 1

2
d33½lnðW�3 Þ�

2

þ d23 lnðW�2 Þ lnðW�3 Þ þ e12 ln y1 lnðW�2 Þ
þ e13 ln y1 lnðW�3 Þ þ ln Gþ uþ v

ð4� 3Þ

Here, smooth function Mð�Þ is arbitrarily assumed to be

equal to 2 ln (1 ? y1). Recall that a cost function is required to

be linearly homogeneous in input prices and symmetrical by

the microeconomic theory. We randomly pick W1 to

normalize dependent variable E and the other two input

prices to satisfy this requirement. The symmetry restriction is

already imposed on (4-3).8 To understand whether the

performance of the estimates is robust to changes in the

functional form of Mð�Þ, we specify an alternative form of

Mð�Þ ¼ 0:2y1. We also extend (4-3) to a two-output and three-

input case, assuming either Mð�Þ ¼ 2 lnð1þ y1Þ þ ln y2 or

Mð�Þ ¼ 2 ln y2þ
ffiffiffiffiffiffiffiffiffi
y1y2

p
. Note that in this extended case, the

parametric part of (4-3) has to contain extra terms involving

the cross products of ln y2 and (log) normalized input prices.

Input prices W1, W2, and W3 are randomly drawn from

dissimilar uniform distributions U(0, 1), U(0, 0.5), and

U(0.5, 1), respectively. The three-input and two-output

quantities of x1, x2, x3, y1, and y2 are independently gen-

erated from normal distributions N(5, 0.5), N(3, 0.1), N(5,

0.5), N(31, 10.1), and N(20, 0.8), respectively. Two-sided

error v is drawn from Nð0; r2
vÞ and one-sided error u from a

half-normal N?(0, ru
2). The simulations are executed 1000

times for each model and the bias and the MSE are com-

puted based on the 1000 replications. We set H2/H1 = 0.8

and H3/H1 = 1.2. The true values of the coefficients are as

follows: b2 = 0.3, b3 = 0.7, d22 = -0.05, d33 = -0.02,

d23 = 0.5, e12 = 0.7, e13 = 0.9, e22 = 0.3, and e23 = 0.5.

The corresponding input share equations can be deduced

by taking the first partial derivatives of ln E with respect to

ln Wi, i = 1, 2, 3. Although the functional form of an

expenditure equation is not unique, we recommend using

those such as (4-3). A prominent feature of (4-3) consists in

its smooth function being specified as a function of (log)

outputs only, i.e., the (shadow) input prices are excluded.

Otherwise, one is confronted with a problem on how to

7 To save space, the results for the case of N = 50 are not shown, but

available upon request from the authors.

8 We also check whether the other two regularity conditions are

satisfied, that is, a cost function is concave in input prices and the

marginal cost should be positive. The model now is specified with an

output (y) and two inputs (w1, w2) for simplicity. The result presents

that most of the simulated outcomes meet the requirements, although

the last condition performs a little worse for smaller sample. We

conclude that vast majority of the simulated results satisfy the

regularity properties.
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properly disentangle the allocative parameters contained in

Mð�Þ. More importantly, the share equations are unable to

be explicitly derived by taking partial derivatives due to the

unknown smooth function dependent of shadow prices.

This impedes a researcher from subsequently identifying

the allocative parameters.

5 Simulation results

This section compares the performance of the estimators

discussed in the previous section. Table 1 summarizes the

simulation outcomes of the empirical moments, i.e., bias

and MSE, from the estimators for the nine (N, T) combi-

nations. Let’s first look at the performance of the allocative

parameters, estimated in the first step. One thing that is

immediately noticeable is that H2/H1 and H3/H1 are well

estimated even for the case of the smallest sample size, i.e.,

(N, T) = (50, 6). Another desirable feature is that the bias

and the MSE fall when either N or T increases, aside from

the bias of H2/H1 when N = 200. Even in those excep-

tional cases the biases are negligible.

Table 2 reveals that in general the MSEs of the

parameter estimates of the parametric portion fall quickly

as either N or T grows. For instance, when fixing N = 50,

the MSE of the coefficient of ln(w3/w1) shrinks swiftly

from 0.2227 to 0.0579 (not shown) as T increases from 6 to

20. The figure continues to fall to 0.0142 when (N,

T) = (200, 20). In addition, the bias measures exhibit a

similar pattern. In summary, the estimators in the first step

work quite well as expected in terms of their biases and

MSEs, which improve with the increase in either N or T.

Table 3 presents the biases and MSEs of the parametric

part for Models A and B obtained from Step 3. Generally

speaking, these estimators perform poorly. Their biases and

MSEs are much larger than those derived from the first-

stage estimation. In addition, the biases and MSEs of

Model A decrease to some extent as the sample size

increases, while the biases of Model B are hardly altered

with the increase in the sample size. This leads us to

conclude that the computationally simple first-stage esti-

mators of the parametric part outperform the third-step

Table 2 The performance of the parameter estimates in Step 1 setting M(�) = 2 ln(1 ? y1)

(N, T) (100, 6) (100, 10) (100, 20)

Bias MSE Bias MSE Bias MSE

ln(w3/w1) -0.0179 0.0935 -0.0055 0.0579 -0.0082 0.0284

[ln(w3/w1)]2 0.0036 0.0025 0.0025 0.0014 0.0014 0.0007

ln(w2/w1) ln(w3/w1) 0.0015 0.0052 -0.0007 0.0036 0.0008 0.0016

ln y1 ln(w3/w1) 0.0046 0.0276 -0.0002 0.0178 0.0026 0.0083

ln(w2/w1) -0.0171 0.0679 -0.0049 0.0427 -0.0075 0.0211

[ln(w2/w1)]2 0.0011 0.0012 0.0010 0.0007 0.0006 0.0003

ln y1 ln(w2/w1) 0.0023 0.0157 -0.0016 0.0105 0.0015 0.0050

(N, T) (200, 6) (200, 10) (200, 20)

Bias MSE Bias MSE Bias MSE

ln(w3/w1) -0.0084 0.0489 -0.0082 0.0284 -0.0008 0.0142

[ln(w3/w1)]2 0.0026 0.0012 0.0014 0.0007 -0.0005 0.0003

ln(w2/w1) ln(w3/w1) -0.0004 0.0029 0.0008 0.0016 0.0003 0.0008

ln y1 ln(w3/w1) 0.0014 0.0148 0.0026 0.0083 -0.0009 0.0042

ln(w2/w1) -0.0033 0.0354 -0.0075 0.0211 -0.0022 0.0105

[ln(w2/w1)]2 0.0011 0.0006 0.0006 0.0003 -0.0001 0.0002

ln y1 ln(w2/w1) -0.0013 0.0087 0.0015 0.0050 -0.0003 0.0025

Table 1 The performance of the allocative parameter estimates set-

ting M(�) = 2 ln(1 ? y1)

H2/H1 H3/H1

(N, T) Bias MSE Bias MSE

(50, 6) 0.0006 0.0013 0.0048 0.0019

(50, 10) 0.0004 0.0007 0.0030 0.0010

(50, 20) 0.0001 0.0004 0.0026 0.0005

(100, 6) 0.0002 0.0006 0.0029 0.0009

(100, 10) 0.0001 0.0004 0.0026 0.0005

(100, 20) -0.0001 0.0002 0.0010 0.0002

(200, 6) -1.74E-06 0.0003 0.0021 0.0004

(200, 10) -0.0001 0.0002 0.0010 0.0002

(200, 20) 0.0003 0.0001 0.0004 0.0001
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Table 3 The performance of the parameter estimates from the third-stage setting M(�) = 2 ln(1 ? y1)

(r2, k) (1.88, 1.66) (1.35, 0.83) (1.63, 1.24)

Model A Model B Model A Model B Model A Model B

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

(N, T) = (100, 6)

ln(w3/w1) 0.8227 0.7571 -0.3908 0.4784 0.8286 0.8027 -0.3999 0.6393 0.8250 0.7712 -0.3944 0.5251

[ln(w3/w1)]2 -0.0078 0.0404 0.7216 0.8238 -0.0089 0.0500 0.7323 0.9832 -0.0081 0.0433 0.7258 0.8709

ln(w2/w1)

ln(w3/w1)

0.0083 0.0400 -0.5468 0.3606 0.0094 0.0482 -0.5441 0.3881 0.0085 0.0425 -0.5458 0.3682

ln y1 ln(w3/w1) -0.2446 0.0661 -0.9165 0.8992 -0.2462 0.0697 -0.9139 0.9232 -0.2452 0.0672 -0.9155 0.9056

ln(w2/w1) -0.8548 0.8141 0.1972 0.0970 -0.8587 0.8568 0.1945 0.1242 -0.8563 0.8271 0.1961 0.1048

[ln(w2/w1)]2 -0.0079 0.0440 0.7469 0.5831 -0.0091 0.0531 0.7501 0.5998 -0.0082 0.0467 0.7482 0.5883

ln y1 ln(w2/w1) 0.2536 0.0709 0.1990 0.0630 0.2548 0.0743 0.1953 0.0724 0.2541 0.0719 0.1975 0.0655

(N, T) = (100, 10)

ln(w3/w1) 0.6792 0.4909 -0.3976 0.2700 0.6828 0.5104 -0.3997 0.3295 0.6806 0.4967 -0.3984 0.2861

[ln(w3/w1)]2 -0.0019 0.0186 0.7234 0.6283 -0.0022 0.0221 0.7275 0.6892 -0.0019 0.0196 0.7250 0.6452

ln(w2/w1)

ln(w3/w1)

0.0028 0.0188 -0.5493 0.3237 0.0029 0.0220 -0.5464 0.3312 0.0028 0.0197 -0.5482 0.3253

ln y1 ln(w3/w1) -0.2019 0.0431 -0.9174 0.8632 -0.2029 0.0447 -0.9147 0.8688 -0.2023 0.0436 -0.9164 0.8642

ln(w2/w1) -0.7082 0.5319 0.1985 0.0602 -0.7098 0.5489 0.1956 0.0692 -0.7089 0.5368 0.1974 0.0625

[ln(w2/w1)]2 -0.0035 0.0208 0.7490 0.5698 -0.0036 0.0245 0.7501 0.5763 -0.0034 0.0218 0.7494 0.5718

ln y1 ln(w2/w1) 0.2103 0.0466 0.1987 0.0477 0.2108 0.0480 0.1970 0.0515 0.2105 0.0470 0.1980 0.0486

(N, T) = (100, 20)

ln(w3/w1) 0.5231 0.2817 -0.3974 0.1864 0.5242 0.2861 -0.3972 0.1949 0.5235 0.2829 -0.3974 0.1864

[ln(w3/w1)]2 0.0009 0.0076 0.7203 0.5472 0.0013 0.0081 0.7209 0.5566 0.0011 0.0077 0.7203 0.5472

ln(w2/w1)

ln(w3/w1)

-0.0017 0.0076 -0.5471 0.3047 -0.0020 0.0081 -0.5461 0.3052 -0.0018 0.0077 -0.5471 0.3047

ln y1 ln(w3/w1) -0.1552 0.0247 -0.9181 0.8483 -0.1556 0.0251 -0.9170 0.8477 -0.1554 0.0248 -0.9181 0.8483

ln(w2/w1) -0.5457 0.3055 0.1975 0.0441 -0.5458 0.3085 0.1964 0.0452 -0.5458 0.3063 0.1975 0.0441

[ln(w2/w1)]2 0.0021 0.0081 0.7496 0.5642 0.0023 0.0087 0.7498 0.5651 0.0022 0.0083 0.7496 0.5642

ln y1 ln(w2/w1) 0.1622 0.0269 0.1997 0.0421 0.1623 0.0272 0.1993 0.0426 0.1623 0.0270 0.1997 0.0421

(N, T) = (200, 6)

ln(w3/w1) 0.6314 0.4391 -0.3838 0.3063 0.6342 0.4613 -0.3847 0.3769 0.6325 0.4458 -0.3842 0.3260

[ln(w3/w1)]2 -0.0003 0.0184 0.7112 0.6546 0.0004 0.0226 0.7145 0.7277 0.0001 0.0196 0.7125 0.6755

ln(w2/w1)

ln(w3/w1)

0.0003 0.0181 -0.5413 0.3237 -5.45E-06 0.0219 -0.5389 0.3356 0.0001 0.0192 -0.5404 0.3269

ln y1 ln(w3/w1) -0.1877 0.0384 -0.9113 0.8611 -0.1886 0.0402 -0.9080 0.8685 -0.1880 0.0390 -0.9100 0.8626

ln(w2/w1) -0.6563 0.4722 0.1914 0.0661 -0.6566 0.4904 0.1884 0.0782 -0.6565 0.4774 0.1903 0.0695

[ln(w2/w1)]2 -0.0002 0.0201 0.7459 0.5689 -0.0005 0.0244 0.7469 0.5762 -0.0002 0.0213 0.7463 0.5712

ln y1 ln(w2/w1) 0.1948 0.0412 0.2014 0.0523 0.1951 0.0428 0.1998 0.0571 0.1949 0.0417 0.2008 0.0536

(N, T) = (200, 10)

ln(w3/w1) 0.5261 0.2911 -0.3955 0.2086 0.5274 0.3000 -0.3955 0.2355 0.5265 0.2936 -0.3955 0.2157

[ln(w3/w1)]2 0.0008 0.0083 0.7221 0.5714 0.0013 0.0099 0.7230 0.6002 0.0010 0.0088 0.7224 0.5792

ln(w2/w1)

ln(w3/w1)

0.0003 0.0084 -0.5484 0.3112 -0.0005 0.0097 -0.5456 0.3135 0.0000 0.0087 -0.5473 0.3114

ln y1 ln(w3/w1) -0.1563 0.0256 -0.9162 0.8497 -0.1566 0.0263 -0.9137 0.8503 -0.1564 0.0258 -0.9153 0.8494

ln(w2/w1) -0.5441 0.3102 0.1974 0.0488 -0.5444 0.3174 0.1946 0.0528 -0.5442 0.3122 0.1963 0.0498

[ln(w2/w1)]2 -0.0013 0.0094 0.7488 0.5648 -0.0006 0.0109 0.7493 0.5678 -0.0010 0.0098 0.7490 0.5657

ln y1 ln(w2/w1) 0.1615 0.0272 0.1989 0.0435 0.1617 0.0278 0.1982 0.0454 0.1616 0.0274 0.1986 0.0440

(N, T) = (200, 20)

ln(w3/w1) 0.4047 0.1674 -0.4005 0.1729 0.4054 0.1695 -0.4010 0.1792 0.4049 0.1680 -0.4007 0.1745
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estimators of Models A and B. Does this imply that Step 3

is redundant? The answer is no. It is necessary for the

estimation of the distribution parameters of v and U.

The distribution parameters are estimated in Step 5 by the

maximum likelihood, and Table 4 presents the results. The

estimators of Model C have larger biases and MSEs in com-

parison with those of Models A and B in most cases. We

therefore drop Model C from now on whenever not necessary

and focus our attention only on Models A and B. For the case

of (r2, k) = (1.88, 1.66), despite the fact that Model B’s

estimator of c has lower biases and MSEs than Model A does

in almost all cases, the differences are quite small. Model B’s

estimator of r2 performs slightly better than Model A’s, while

the reverse is true for the estimator of k. It is a caveat that

Model A’s estimator of r2 tends to have a larger variation

when the sample size is small. As far as the estimator of

smooth function M(�) is concerned, Model A is found to be

superior to Model B since the former yields much smaller

biases and MSEs than the latter does in most cases. Only for

the cases of a large time period (T = 20) are Model B’s biases

a little less than Model A. Turning to the cases of (r2,

k) = (1.35, 0.83) and (1.63, 1.24), the results are rather similar

to the preceding case.

Although both Models A and B perform reasonably

well, the simulation results appear to be in favor of an

advantage for Model A in general and for the estimation

of TE scores in particular (see Table 6 below). Comparing

(3-13) with (4-1), one can tell that their disparity originates

from how b and ln Gnt are estimated. For Model A, they

are estimated by NISUR viewing parameters contained in

ln Gnt as unknown, while for Model B, ln Gnt is replaced

by ln Ĝnt leaving b to be estimated by OLS. The superiority

of Model A may be explained by its allowance for the

presence of ln Gnt in the expenditure equation.

It is apparent from Table 4 that Model C gives rise to

undesirable estimators of (c, r2, k). This is mainly ascrib-

able to the fact that it overlooks Step 3 and proceeds from

Step 2 directly to Steps 4 and 5. By doing so, the residual of

(4-2) is indirectly derived using the NISUR estimates of

ln Ĝnt and b̂, which are obtained by simultaneously esti-

mating the (J - 1) share equations, instead of the expen-

diture equation. Conversely, the residuals of (3-13) and

(4-1) corresponding to Models A and B, respectively, are

directly deduced from estimating the expenditure equation.

Step 3 is thus necessary.

We have learned from Tables 2 and 3 that the parameter

estimates of the parametric part of the cost function

obtained in the first step outperform those obtained in the

third step. These estimates are applied to compute ln Gnt.

We now compare the performance of the estimated ln Gnt

to gain further insight into the properties of alternative

models. Not surprisingly, G1 has smaller biases and MSEs

than G2A and G2B, derived from Models A and B,

respectively, in almost all (N, T) and (r2, k) combinations.

The outcomes support the use of G1 as the estimate of

ln Gnt. The simulation results are available upon request

from the authors.

Table 5 shows the performance of the estimated AE

measures. Again, the biases of AE1 are found to be smaller

than both AE2A and AE2B, derived from Models A and B,

respectively, in most (N, T) and (r2, k) bundles, although

the biases of both AE2A and AE2B measures are already

tiny. In addition, those biases and MSEs are decreasing as

the sample size grows. One is led to conclude that AE1 is

superior to AE2A and AE2B as an estimate of the AE.

Given that technical efficiency often constitutes one of

the primary issues in empirical studies, we thereby inves-

tigate the performance of TE measures based on the three

models. It can be seen from Table 6 that the biases and

MSEs of Model C vary dramatically, implying that the

model is apt to yield uncertain and incredible TE measures.

However, the biases and MSEs of both Models A and B are

much less than those of Model C. The other two cases of

(r2, k) give similar implications. Comparing the first two

columns of Table 6 with the middle two columns of the

same table, we observe that the performance of the

Table 3 continued

(r2, k) (1.88, 1.66) (1.35, 0.83) (1.63, 1.24)

Model A Model B Model A Model B Model A Model B

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

[ln(w3/w1)]2 -0.0007 0.0036 0.7215 0.5323 -0.0011 0.0039 0.7224 0.5395 -0.0008 0.0037 0.7218 0.5343

ln(w2/w1)

ln(w3/w1)

-4.81E-05 0.0037 -0.5495 0.3044 0.0004 0.0039 -0.5497 0.3056 0.0001 0.0037 -0.5496 0.3047

ln y1 ln(w3/w1) -0.1199 0.0147 -0.9208 0.8503 -0.1201 0.0148 -0.9209 0.8515 -0.1200 0.0147 -0.9209 0.8506

ln(w2/w1) -0.4240 0.1835 0.2002 0.0424 -0.4243 0.1852 0.2003 0.0434 -0.4241 0.1840 0.2002 0.0426

[ln(w2/w1)]2 0.0007 0.0039 0.7501 0.5636 0.0002 0.0042 0.7502 0.5642 0.0005 0.0040 0.7501 0.5638

ln y1 ln(w2/w1) 0.1258 0.0161 0.1997 0.0408 0.1258 0.0162 0.1995 0.0412 0.4049 0.1680 -0.4007 0.1745
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Table 4 The performance of the estimators of (c, r2, k) setting M(�) = 2 ln(1 ? y1)

c r2 k M (�)

(N, T) Bias MSE Bias MSE Bias MSE Bias MSE

(c, r2, k) = (0.025, 1.88, 1.66)

Model A

(100, 6) 0.0007 0.0006 -0.1253 0.1108 -0.0808 0.0432 0.0147 0.0071

(100, 10) 0.0007 0.0001 -0.1207 0.1032 -0.0975 0.0377 0.0098 0.0037

(100, 20) 0.0012 1.48E-05 -0.1498 0.1007 -0.1758 0.0507 0.0087 0.0024

(200, 6) 0.0009 0.0003 -0.0877 0.0557 -0.0568 0.0224 0.0093 0.0040

(200, 10) 0.0005 0.0001 -0.0845 0.0497 -0.0685 0.0181 0.0066 0.0023

(200, 20) 0.0011 8.00E - 06 -0.1233 0.0540 -0.1467 0.0312 0.0077 0.0019

Model B

(100, 6) 0.0003 0.0007 -0.1101 0.1060 -0.0870 0.0433 0.1518 0.0363

(100, 10) 0.0004 0.0001 -0.1027 0.0979 -0.1046 0.0372 0.1073 0.0185

(100, 20) 0.0009 1.37E-05 -0.1307 0.0938 -0.1879 0.0530 0.0077 0.0039

(200, 6) 0.0006 0.0003 -0.0769 0.0535 -0.0598 0.0223 0.1472 0.0289

(200, 10) 0.0004 0.0001 -0.0729 0.0472 -0.0731 0.0181 0.1048 0.0152

(200, 20) 0.0010 7.45E-06 -0.1127 0.0506 -0.1552 0.0329 0.0067 0.0028

Model C

(100, 6) -0.4715 27.8117 0.5424 1.8874 -0.7704 0.9213 0.0787 0.2948

(100, 10) -0.1906 11.8544 0.3473 0.8185 -0.8647 1.0488 0.0727 0.2177

(100, 20) -0.0586 3.0532 0.1286 0.3725 -0.9295 1.1387 0.0438 0.1089

(200, 6) -0.1163 6.2152 0.2694 0.4872 -0.6770 0.7413 0.0625 0.1903

(200, 10) -0.0792 4.6876 0.1382 0.2180 -0.6909 0.7443 0.0329 0.1112

(200, 20) -0.0365 1.3757 0.0279 0.1321 -0.8049 0.8860 0.0368 0.0573

(c, r2, k) = (0.025, 1.35, 0.83)

Model A

(100, 6) 0.0020 0.0037 -0.0705 0.0730 -0.0245 0.0278 0.0118 0.0100

(100, 10) 0.0009 0.0006 -0.0689 0.0643 -0.0281 0.0176 0.0070 0.0046

(100, 20) 0.0012 5.46E - 05 -0.0912 0.0560 -0.0511 0.0127 0.0061 0.0022

(200, 6) 0.0020 0.0018 -0.0501 0.0357 -0.0187 0.0145 0.0067 0.0054

(200, 10) 0.0005 0.0003 -0.0478 0.0306 -0.0194 0.0085 0.0043 0.0027

(200, 20) 0.0012 2.85E-05 -0.0737 0.0286 -0.0436 0.0068 0.0054 0.0016

Model B

(100, 6) 0.0016 0.0037 -0.0647 0.0726 -0.0245 0.0279 0.1524 0.0403

(100, 10) 0.0005 0.0006 -0.0594 0.0629 -0.0270 0.0171 0.1108 0.0208

(100, 20) 0.0009 5.28E-05 -0.0792 0.0531 -0.0500 0.0119 0.0056 0.0039

(200, 6) 0.0016 0.0018 -0.0454 0.0355 -0.0180 0.0146 0.1497 0.0315

(200, 10) 0.0003 0.0003 -0.0413 0.0297 -0.0186 0.0083 0.10947 0.017091

(200, 20) 0.0010 2.77E-05 -0.0668 0.0272 -0.0430 0.0065 0.0046 0.0026

Model C

(100, 6) -0.8983 50.7877 0.6066 2.2731 -0.2619 0.2349 0.0408 0.2655

(100, 10) -0.6136 42.2780 0.4063 0.9710 -0.3193 0.2484 0.0555 0.1863

(100, 20) -0.1489 10.9556 0.1234 0.2132 -0.3376 0.1997 0.0260 0.0986

(200, 6) -0.1513 7.1550 0.3134 0.5957 -0.2163 0.1378 0.0387 0.1582

(200, 10) -0.0430 1.4204 0.1496 0.1566 -0.2203 0.1111 0.0160 0.0917

(200, 20) 0.0023 0.0051 0.0378 0.0537 -0.2761 0.1307 0.0216 0.0494

(c, r2, k) = (0.025, 1.63, 1.24)

Model A

(100, 6) 0.0010 0.0013 -0.1005 0.0906 -0.0471 0.0321 0.0132 0.0079
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Table 4 continued

c r2 k M (�)

(N, T) Bias MSE Bias MSE Bias MSE Bias MSE

(100, 10) 0.0008 0.0002 -0.0972 0.0825 -0.0568 0.0245 0.0085 0.0039

(100, 20) 0.0012 2.48E-05 -0.1220 0.0774 -0.1020 0.0249 0.0075 0.0023

(200, 6) 0.0012 0.0006 -0.0708 0.0450 -0.0343 0.0167 0.0081 0.0689

(200, 10) 0.0006 0.0001 -0.0680 0.0394 -0.0400 0.0117 0.0056 0.0023

(200, 20) 0.0012 1.32E-05 -0.1000 0.0407 -0.0855 0.0143 0.0067 0.0017

Model B

(100, 6) 0.0006 0.0013 -0.0892 0.0881 -0.0486 0.0319 0.1555 0.0386

(100, 10) 0.0004 0.0002 -0.0827 0.0791 -0.0579 0.0235 0.1108 0.2019

(100, 20) 0.0009 2.35E-05 -0.1058 0.0724 -0.1053 0.0242 0.0067 0.0038

(200, 6) 0.0008 0.0006 -0.0624 0.0438 -0.0345 0.0165 0.1518 0.0308

(200, 10) 0.0004 0.0001 -0.0586 0.0377 -0.0407 0.0114 0.10894 0.0163

(200, 20) 0.0010 1.26E-05 -0.0908 0.0383 -0.0880 0.0143 0.0058 0.0026

Model C

(100, 6) -1.1345 66.3433 0.3065 1.7909 -0.9243 1.0864 0.0648 0.2771

(100, 10) -0.4090 27.9652 0.1410 0.9314 -0.9896 1.1737 0.0681 0.2019

(100, 20) -0.1664 8.8257 -0.1376 0.2607 -1.0234 1.2005 0.0351 0.1006

(200, 6) -0.1698 7.2282 0.0542 0.6162 -0.8542 0.9065 0.0498 0.1772

(200, 10) -0.0697 2.3189 -0.1117 0.1607 -0.8494 0.8528 0.0201 0.0978

(200, 20) 0.1329 6.2066 -0.2256 0.1287 -0.9415 1.0193 0.0305 0.0568

Table 5 The performance of estimated AE setting M(�) = 2 ln(1 ? y1)

Model A Model B

AE1 AE2A AE2B

(N, T) Bias MSE Bias MSE Bias MSE

(c, r2, k) = (0.025, 1.88, 1.66)

(100, 6) 0.0004 0.0012 0.0023 0.0006 0.0017 0.0012

(100, 10) 0.0002 0.0007 0.0009 0.0004 0.0001 0.0007

(100, 20) 2.89E-06 0.0003 0.0008 0.0002 0.0001 0.0003

(200, 6) 0.0001 0.0006 0.0010 0.0003 0.0008 0.0006

(200, 10) 2.89E-06 0.0003 0.0006 0.0002 0.0001 0.0003

(200, 20) 0.0004 0.0002 0.0006 0.0001 0.0002 0.0002

(c, r2, k) = (0.025, 1.35, 0.83)

(100, 6) 0.0004 0.0012 0.0024 0.0007 0.0024 0.0014

(100, 10) 0.0002 0.0007 0.0010 0.0004 0.0005 0.0007

(100, 20) 2.89E-06 0.0003 0.0008 0.0002 0.0002 0.0003

(200, 6) 0.0001 0.0006 0.0011 0.0003 0.0012 0.0007

(200, 10) 2.89E-06 0.0003 0.0007 0.0002 0.0004 0.0004

(200, 20) 0.0004 0.0002 0.0006 0.0001 0.0002 0.0002

(c, r2, k) = (0.025, 1.63, 1.24)

(100, 6) 0.0004 0.0012 0.0023 0.0006 0.0019 0.0013

(100, 10) 0.0002 0.0007 0.0010 0.0004 0.0002 0.0007

(100, 20) 2.89E-06 0.0003 0.0008 0.0002 0.0001 0.0003

(200, 6) 0.0001 0.0006 0.0011 0.0003 0.0009 0.0006

(200, 10) 2.89E-06 0.0003 0.0006 0.0002 0.0002 0.0003

(200, 20) 0.0004 0.0002 0.0006 0.0001 0.0002 0.0002

J Prod Anal

123



estimated TE score from Model A surpasses that of Model

B in most (N, T) and (r2, k) bundles. Model B may be valid

only when T is greater than or equal to 20.9

We also conduct simulations assuming c = -0.025 and

the remaining parameter values are held intact. A negative

value of c implies that the TE score of a firm deteriorates

over time. The results are similar to the foregoing and are

not shown to save space. To understand the effects of

dimensionality of smooth function Mð�Þ on the perfor-

mance of the various estimators, we re-specify M as a

function of two variables, i.e., ln y1 and ln y2. Evidence is

found that the performance of the estimators under con-

sideration seems to be irrespective of the increase in the

dimension of M and the explanatory variables in the

parametric part. We further check the performance of our

proposed estimator in the context of cross sectional data.

Evidence is found that Model A performs at least as well as

Model B, while Model C acts badly. The results do not

change the previous findings except that TE scores of firms

cannot be consistently estimated, since the variance of the

conditional mean or the conditional mode for each indi-

vidual firm does not vanish as the size of the cross section

increases.

6 Conclusions

Since most economic relationships predicted by economic

theory are unknown, one has to count on a particular

parametric form, which may lead to a biased estimation

due to invalid model specification. The importance of

nonparametric and semiparametric regression techniques

has drawn much attention from econometricians and

applied researchers recently. These techniques allow the

functional form to be determined at least partially by the

data. Fan et al. (1996) and Deng and Huang (2008) gen-

eralized the conventional linear stochastic frontier model to

a semiparametric stochastic production frontier model. On

the basis of previous works, this article adds to the current

literature by considering both TE and AE in the context of

a semiparametric stochastic cost frontier model using panel

data.

Table 6 The performance of estimated TE scores setting M(�) = 2 ln(1 ? y1)

(N, T) Model A Model B Model C

Bias MSE Bias MSE Bias MSE

(c, r2, k) = (0.025, 1.88, 1.66)

(100, 6) 0.0022 0.0062 0.0704 0.0118 39.7962 5.79E ? 08

(100, 10) 0.0029 0.0027 0.0607 0.0069 0.0881 825.1991

(100, 20) 0.0204 0.0016 0.0204 0.0016 0.0373 0.0197

(200, 6) 0.0001 0.0059 0.0679 0.0110 0.0824 693.1477

(200, 10) 0.0012 0.0025 0.0589 0.0064 1.0285 1.94E ? 06

(200, 20) 0.0200 0.0016 0.0200 0.0015 0.0314 0.0119

(c, r2, k) = (0.025, 1.35, 0.83)

(100, 6) -0.0007 0.0121 0.0522 0.0149 9149.6239 3.47E ? 13

(100, 10) 0.0005 0.0059 0.0510 0.0087 0.0781 674.3316

(100, 20) 0.0175 0.0020 0.0177 0.0020 0.0274 0.0134

(200, 6) -0.0034 0.0114 0.0498 0.0140 18.5228 3.88E ? 08

(200, 10) -0.0012 0.0056 0.0496 0.0083 0.0115 0.0175

(200, 20) 0.0172 0.0019 0.0173 0.0019 0.0223 0.0105

(c, r2, k) = (0.025, 1.63, 1.24)

(100, 6) 0.0006 0.0085 0.0654 0.0133 6106.3710 2.03E ? 13

(100, 10) 0.0019 0.0038 0.0589 0.0077 0.0644 301.2878

(100, 20) 0.0192 0.0017 0.0192 0.0017 0.0303 0.0135

(200, 6) -0.0015 0.0081 0.0632 0.0125 53.6804 3.33E ? 09

(200, 10) 0.0002 0.0036 0.0573 0.0073 0.0245 108.7752

(200, 20) 0.0188 0.0017 0.0188 0.0016 0.0270 0.0088

9 We agree with the referee’s opinion that measures of scale

economies (SE) and cost elasticity (CE) are important topics

particularly in conventional performance analysis. Evidence is found

that the simulated estimates of the SE would accurately predict the

scope of the true SE and the predictability rises as the sample size

increases. Since the CE of outputs is the reciprocal of SE, its measure

has very similar performance to the SE. Viewed from this angle, our

modeling appears to provide satisfactory results.
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This paper intends to solve two major problems faced by

applied researchers. First, the cost system must be estimated

simultaneously, suffering from computational difficulties.

Second, the log-likelihood function of the expenditure

equation cannot be maximized due to the presence of the

nonparametric component. Even worse, the nonparametric

function is unable to be estimated by existing nonparametric

regression methods. We propose a five-step procedure to

cope with these problems. Evidence from a set of Monte

Carlo simulations tends to support the superiority of Model

A at least for a moderate sample size, while the performance

of Model B’s estimators is nearly as good as that of Model

A’s, particularly when the time period of the panel data is

long. In other words, Model B is appropriate for long panel

data.

The first step estimators of the cost share equations

perform reasonably well. We thus advocate using these

estimates to compute the AE measure and treat the esti-

mated allocative parameters as given in the following

steps. It is noticeable that despite the uselessness of the

parameter estimates obtained in the third step, this step is

necessary to yield the residuals and to concentrate out

variance r2. Otherwise, estimators of Step 5 will perform

poorly. Moreover, Models A and B are robust to the

inclusion of additional explanatory variables for both

parametric and nonparametric portions of the cost function.

When cross sectional data are available, the foregoing

conclusions continue to hold in general, except that the bias

of the estimated TE measure does not decrease as the

sample size increases.
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