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• We investigate a natural hedging strategy and attempt to find an optimal allocation of insurance products.
• We consider both variance and mispricing effects of longevity risk at the same time.
• This study employs the experienced mortality rates rather than population mortality data.
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a b s t r a c t

To offer a means for insurance companies to deal with longevity risk, this article investigates a natural
hedging strategy and attempts to find an optimal allocation of insurance products. Unlike prior research,
this proposed natural hedgingmodel can account for both the variance andmispricing effects of longevity
risk at the same time. In addition, this study employs experience mortality rates, obtained from life
insurance companies, rather than population mortality data for life insurance and annuity products.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The life expectancy of humans worldwide is expected to
continue increasing, by 0.2 years annually. As the mortality rate
improves, longevity risk, a potential risk that annuitants will
live longer than predicted by projected life tables, becomes an
increasingly important topic. Thus in the past two decades, a
wide range of mortality models have been proposed and discussed
(e.g., Lee and Carter, 1992; Brouhns et al., 2002; Renshaw and
Haberman, 2003; Koissi et al., 2006; Melnikov and Romaniuk,
2006; Cairns et al., 2006, 2009; Yang et al., 2010). Greater longevity
risk implies that life insurers earn profits but annuity insurers
suffer losses. More sophisticated mortality models that inform
pricing decisions might help companies hedge against longevity
risk, for both life insurance and annuity products. However, this
solution is often difficult to apply in practice because of the
challenges of market competition. That is, insurance companies
may have the ability to build accurate mortality models to account
for actual future improvements in mortality, but they may not
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be able to price and sell their annuity products using these
derived mortality rates. It would be too expensive to sell them
in competitive markets because most insurance companies might
assume that current static mortality tables (which ignore future
mortality improvements) will remain unchanged or decrease by a
constant percentage each year for all ages (e.g., 0.5%) when pricing
annuity products. This mispricing problem commonly exists in
the countries in which the official static life or annuity tables are
issued by governments or actuarial societies and used by insurance
companies to price life or annuity products (e.g., Taiwan, Korean,
Japan).1

Another possible solution uses mortality derivatives, such as
survival bonds (Blake and Burrows, 2001) and survival swaps
(Cairns et al., 2006; Dowd et al., 2006), which exchange future
cash flows on the basis of survivor indices. Although mortality
derivatives are convenient, they encounter obstacles in practice.
For example, to avoid using appropriate credit-enhancement

1 The official life or annuity tables can quickly fall out of date. For example, our
ownprofessional experience reveals that the annuity table currently used in Taiwan
was built 15 years ago, relying on data from before 1987—a 25 year gap between
the pricing and real experience bases. Similar situations appear in other countries
too.
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mechanisms tomanage credit risk, Blake et al. (2006) demonstrate
that the maximum maturity of longevity bonds is limited to that
of available government debt. However, empirical work by Cairns
et al. (2006) shows that a longevity bond horizon of 40–50 years
will provide a better hedge for annuity products based on a 65 year
old reference population than a longevity bond with a 25 year
horizon.

A third solution entails natural hedging. That is, insurance
companies might optimize the allocation of their products,
annuities, and life insurance offerings in such a way that they
hedge against longevity risk. This approach is internal to the
insurance company, whichmakes itmore convenient and practical
in practice. However, natural hedging remains a relatively new
topic in the actuarial field, and few papers have studied this issue.
Wang et al. (2003) investigate the influence of changes inmortality
factors and propose an immunization model to hedge against
mortality risks. Cox and Lin (2007) find that natural hedging
employs the interaction between life insurance and annuities
with a change in mortality to stabilize aggregate cash outflows.
Therefore, natural hedging appears feasible, and mortality swaps
can make it widely available. Wang et al. (2010) analyze an
immunization model and use effective duration and convexity to
find optimal product mixes. Tsai et al. (2010) employ a Conditional
Value-at-Risk Minimization (CVaRM) approach to construct an
insurer’s product mix for insurance companies to hedge against
the systematic mortality risk. However, they employ the same
mortality rate measure (population mortality rates) for both life
insurance and annuity products, because they lack actualmortality
data. In practice, life insurance products are typically offered in
accordance with the official life table, whereas annuity products
are based on the official annuity table, as is the case in Taiwan.
Insurance companies will not use the same mortality rate to price
both life insurance and annuity products.

For this study, we propose using experience mortality rates
from life insurance companies rather than population mortality
rates. These incidence data include more than 50,000,000 policies,
collected from all Taiwanese life insurance companies. Most life
insurance policies with heavy principal repayment contain more
than 80% saving premiums, so the pure risk is lower than 20% of
the total premiums. These policies are more like saving products
than life protection. Without access to real annuity mortality
data, we employ the experience mortality rates of life insurance
policies with heavy principal repayment (single endowment or
serial periodic endowments2) as the annuity mortality rates.3
In this data set, the time effect indices of experience mortality
rates with andwithout principal repayment are correlated, though
not perfectly negatively. Therefore, it is not possible to hedge
longevity risk perfectly when we consider both life and annuity
mortality rates (cf. Wang et al., 2010). We further investigate
pricing differences for insurance products that use a period-
mortality basis (without consideration of mortality improvement)
versus a cohort-mortality basis (with consideration of mortality
improvement). Thus, unlike previous literature, we consider a

2 The heavy principal repayment means that the proportion of the saving
premium is greater than 70%. Serial periodic endowments grant policyholders a
certain percentage of the face amount each year, such as 5% or 10% annually.
3 The Taiwan government is currently building a new annuity table, and one of

the authors is responsible for building it, using data about experienced mortality
rates from life insurance companies with more than 50,000,000 policies. In these
data, we find that the experience mortality rates of life insurance policies with
heavy principal repayment are lower than those without principal repayment.
Therefore, to build the official annuity table in Taiwan, we constructed the annuity
mortality rates according to the experience mortality rates of life insurance
policies with heavy principal repayment (single endowment or serial periodic
endowments).
‘‘variance’’ effect related to uncertainties in the mortality rate
and interest rate and a ‘‘mispricing’’ effect induced by mortality
improvement. We aim to minimize both variation in the change of
the total portfolio value and differences between the pricing bases
simultaneously. Using experience mortality rates, our proposed
model provides an optimal allocation of insurance products
and effectively applies a natural hedging strategy for insurance
companies.

The reminder of this article is organized as follows. In Section 2,
we review the mortality model and interest rate model, proposing
our portfolio model with variance and mispricing effects. In
Section 3, we calibrate a Lee–Carter model using the experience
mortality rates from the Taiwan Insurance Institute (TII). Section 4
contains the numerical analysis of ourmodel, and then in Section 5,
we summarize our findings and offer some conclusions and
suggestions for further research.

2. Model setting

Mortality risks and interest rate risks are two main concerns
for life insurance companies. As demonstrated by D’Amato et al.
(2009), one of the most popular methods for modeling the
death rates is the Lee–Carter model (1992), because it is easy
to implement and outperforms other models with respect to its
prediction errors (e.g., Koissi et al., 2006; Melnikov and Romaniuk,
2006). The Lee–Carter model has also been used widely for
mortality trend fitting and projection (Chen and Cox, 2009); even
the US Census Bureau relied on it as a benchmark for its long-run
forecast of US life expectancy (Hollmann et al., 2000). Therefore,
recent Social Security Technical Advisory Panels suggest adopting
this method or tactics consistent with it (Lee and Miller, 2001).
We accordingly adopt the classical Lee–Carter model to project the
mortality process.

Following Eq. (3) of Denuit et al. (2007, p. 92), the classical
Lee–Carter (LC) approach is a relational model assuming that, for
integer age x and calendar year t ,

ln(mx,t) = αx + βxkt , (1)

where mx,t is the central death rate for a person aged x at time
t; αx denotes the average age-specific mortality factor; βx is the
age-specific improving factor; and kt is the time-varying mortality
index. The parameters βx and kt are subject to


x βx = 1 and

t kt = 0, respectively, to ensure the model identification. The
time effect index kt can be estimated by using an ARIMA (0, 1, 0)
process, that is

kt − kt−1 = uk + et , (2)

where et is a normal distribution with zero mean and variance σ 2
k .

We fit the LC model using the close approximation to the singular
value decomposition (SVD) proposed by Lee and Carter (1992)
because we recognize some missing values in our data.

In addition, Cox et al. (1985) specify an instantaneous interest
rate that follows a square root process, also called the CIR process:

drt = a(b − rt)dt + σr
√
rtdZr(t), (3)

where a denotes the speed of the mean-reverting adjustment; b
represents the long-term mean of interest rates; σr is the interest
rate volatility; and (Zr(t))Tt=0 is a standard Brownian motion that
models the random market risk factor. In the CIR model, the
interest rate approaches the long-run level b with a speed of
adjustment governed by the strictly positive parameter a. We
assume that 2ab ≥ σ 2

r ; therefore, our model precludes an interest
rate of zero.

We further assume that the insurance company’s portfolio
contains zero-coupon bonds, annuities, and life insurance policies
for holders of different ages and genders. Specifically, we assume
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that at time 0, a group of annuities and life insurance policies gets
issued to different cohorts aged x, x ∈ ω, where ω is a set of all
possible ages of annuities and life insurance policyholders at time
0. The factors that affect the total value of this portfolio are the
mortality and interest rates. The model is therefore as follows:

V (t) =


s=A,L


g=1,2


x∈ω

N s,g
x V (ms,g

x (t), rt , t) + NBV B(rt , t), (4)

where V represents the value of the insurance portfolio; V B(rt , t) is
the value of one unit of a zero-coupon bond with face value equal
to 1; mx(t) = mx+t,t;mA,1

x (t) (mA,2
x (t)) denotes the mortality rate

of the male (female) annuity aged x+ t at time t;mL,1
x (t) (mL,2

x (t))
denotes the mortality rate of the male (female) life insurance aged
x+t at time t; V (mA,1

x (t), rt , t) (V (mA,2
x (t), rt , t)) denotes the value

of one unit of an annuity policy at time t issued to a cohort of
males (females) aged x at time0;V (mL,1

x (t), rt , t) (V (mL,2
x (t), rt , t))

denotes the value of one unit of a life insurance policy at time t
issued to a cohort ofmales (females) aged x at time 0;NB represents
the number of units invested in zero-coupon bonds; andNA,g

x (NL,g
x )

denotes the number of units allocated in annuity (life insurance)
policies for male or female policyholders.

In view of Eq. (2), the continuous time limit of the ARIMA (0,
1, 0) process of kt can be expressed as (see also Biffis et al., 2010,
p. 289)

dkt = ukdt + σkdZk(t), (5)

where (Zk(t))Tt=0 is a standard Brownian motion; we provide the
proof of Eq. (5) in Appendix A. Equivalently, for integer age y and
calendar year t ,

d ln(my,t) = ln(my,t+dt) − ln(my,t) = βy(kt+dt − kt)

= βydkt = βy(ukdt + σkdZk(t)). (6)

According to Ito’s lemma (Shreve, 2004, p. 148), we can transform
the dynamic logarithm of the mortality rate into the dynamic of
the mortality rate, as follows:

d(my,t) = d(eln(my,t )) = my,td(lnmy,t) +
1
2
my,td(lnmy,t)

2

= my,t(βyukdt + βyσkdZk(t)) +
1
2
my,t(β

2
yσ

2
k dt)

=


my,tβyuk +

1
2
my,tβ

2
yσ

2
k


dt + (my,tβyσk)dZk(t). (7)

If we let y = x + t and mx(t) = mx+t,t , we have

d(ms,g
x (t)) =


ms,g

x (t)βs,g
x+tu

s,g
k +

1
2
ms,g

x (t)(βs,g
x+t)

2(σ
s,g
k )2


dt

+ (ms,g
x (t)βs,g

x+tσ
s,g
k )dZ s,g

k (t) for s = L or A, g = 1 or 2. (8)

As pointed out by Li and Lee (2005), the populations of
the world are becoming more closely linked by communication,
transportation, trade, technology, and disease. Wilson (2001) also
documents global convergence in mortality levels, such that it
appears increasingly improper to prepare mortality forecasts for
individual national populations in isolation from one another, and
even more so for the regions within a country. Frees et al. (1996)
observe a portfolio of annuities for couples and conclude that the
times of death of the pair were highly correlated. Carriere (2000)
presents alternative models to model the dependence of the time
of death of couples and applies them to adata set froma life annuity
portfolio. Luciano et al. (2008) use copula methods to capture the
dependency between the survival times of members of a couple.
Accordingly, to capture the covariance structure of mortality rates
of female annuity, male annuity, female life insurance, and male
life insurance, we assume that the four mortality risk factors
ZA,2
k , ZA,1

k , Z L,2
k , and Z L,1

k , are dependent standard Brownianmotions
that satisfy


ZA,2
k (t)

ZA,1
k (t)

Z L,2
k (t)

Z L,1
k (t)

 ∼ N4


0
0
0
0

 ,

 1 ρ12 ρ13 ρ14
ρ12 1 ρ23 ρ24
ρ13 ρ23 1 ρ34
ρ14 ρ24 ρ34 1

 t

 , (9)

where N4(a, b) represents a four-dimensional, multi-normal dis-
tribution with mean vector a and covariance matrix b.

Following Shreve (2004, p. 171), we can decompose the cor-
related Brownian motions, ZA,2

k , ZA,1
k , Z L,2

k , and Z L,1
k , into a lin-

ear combination of four independent standard Brownian motions,
Zk1, Zk2, Zk3, and Zk4, using the Cholesky decomposition:


dZA,2

k (t)

dZA,1
k (t)

dZ L,2
k (t)

dZ L,1
k (t)

 =

 1 0 0 0
a21 a22 0 0
a31 a32 a33 0
a41 a42 a43 a44


dZk1(t)
dZk2(t)
dZk3(t)
dZk4(t)

 , (10)

where
i

n=1 ainajn = ρij for i, j = 1, . . . , 4. The proof of Eq. (10) is
in Appendix B.

Again using Ito’s lemma, we investigate the change in the total
insurance portfolio value with respect to the change of mortality
rate and interest rate, as follows:

dV (t) =


s=L,A


g=1,2

ω
x=i

N s,g
x

∂V s,g
x

∂ms,g
x

dms,g
x (t) +

∂V
∂r

drt

+


s=L,A


g=1,2

ω
x=i

1
2
N s,g

x
∂2V s,g

x

∂ms,g2
x

(dms,g
x (t))2 +

1
2

∂2V
∂r2

(drt)2

= Q0t dt +

4
i=1

Qit dZki(t) + Q5t dZr(t), (11)

where Q0t ,Q1t ,Q2t ,Q3t ,Q4t , and Q5t are given by

Q0t =


s=L,A


g=1,2


x∈ω


N s,g

x
∂V s,g

x

∂ms,g
x


ms,g

x (t)βs,g
x+tµ

s,g
k

+
1
2
ms,g

x (t)βs,g2
x+t σ

s,g2
k


+

1
2
N s,g

x
∂2V s,g

x

∂ms,g2
x

× (ms,g
x (t)βs,g

x+tσ
s,g
k )2


+

∂V
∂r

a(b − r)

+
1
2

∂2V
∂r2

σ 2
r r


, (12)

Q1t =


x∈ω

NA,2
x

∂V A,2
x

∂mA,2
x

mA,2
x (t)βA,2

x+tσ
A,2
k

+ a21

x∈ω

NA,1
x

∂V A,1
x

∂mA,1
x

mA,1
x (t)βA,1

x+tσ
A,1
k

+ a31

x∈ω

NL,2
x

∂V L,2
x

∂mL,2
x

mL,2
x (t)βL,2

x+tσ
L,2
k

+ a41

x∈ω

NL,1
x

∂V L,1
x

∂mL,1
x

mL,1
x (t)βL,1

x+tσ
L,1
k


, (13)
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Q2t =


a22

x∈ω

NA,1
x

∂V A,1
x

∂mA,1
x

mA,1
x (t)βA,1

x+tσ
A,1
k

+ a32

x∈ω

NL,2
x

∂V L,2
x

∂mL,2
x

mL,2
x (t)βL,2

x+tσ
L,2
k

+ a42

x∈ω

NL,1
x

∂V L,1
x

∂mL,1
x

mL,1
x (t)βL,1

x+tσ
L,1
k


, (14)

Q3t =


a33

x∈ω

NL,2
x

∂V L,2
x

∂mL,2
x

mL,2
x (t)βL,2

x+tσ
L,2
k

+ a43

x∈ω

NL,1
x

∂V L,1
x

∂mL,1
x

mL,1
x (t)βL,1

x+tσ
L,1
k


, and (15)

Q4t =


a43

x∈ω

NL,1
x

∂V L,1
x

∂mL,1
x

mL,1
x (t)βL,1

x+tσ
L,1
k


, (16)

Q5t =


∂V
∂r

σr
√
rt


. (17)

The proof of Eq. (11) appears in Appendix C. Furthermore, the
∂V/∂r and ∂2V/∂r2 are of the form

∂V
∂r

=


s=L,A


g=1,2


x∈ω

N s,g
x

∂V s,g
x

∂r
+ NB

∂V B

∂r
, and (18)

∂2V
∂r2

=


s=L,A


g=1,2


x∈ω

N s,g
x

∂2V s,g
x

∂r2
+ NB

∂2V B

∂r2
. (19)

With the assumption that mortality risks and financial risks are
independent, the terms dZkidZr , i = 1, 2, 3, and 4, equal zero in our
model. We therefore apply the concepts of effective durations and
convexities to estimate the first- and second-order derivatives:

∂V
∂m

=
V (m+, r) − V (m−, r)

2 V (m, r)1m
, (20)

∂V
∂r

=
V (m, r+) − V (m, r−)

2 V (m, r)1r
, (21)

∂2V
∂m2

=
V (m+, r) + V (m−, r) − 2 V (m, r)

V (m, r)(1m)2
, and (22)

∂2V
∂r2

=
V (m, r+) + V (m, r−) − 2 V (m, r)

V (m, r)(1r)2
, (23)

where m+
= m + 1m,m−

= m − 1m, r+
= r + 1r , and

r−
= r − 1r; 1m (1r) represents a positive small change for

the mortality rate (interest rate). By virtue of Eq. (11), the variance
of the change of total insurance portfolio value is

Var(dV (t)) =

5
j=1

(Qj t)
2, (24)

which is determined by the parameters of the Lee–Carter and CIR
models, as well as the first- and second-order derivatives defined
in Eqs. (20)–(23).

Insurers attempt to minimize the variance of their portfolio
returns with respect to changes in mortality and interest rates,
because their portfolios, containing zero-coupon bonds, annuities,
and life insurance policies, are influenced by longevity and interest
rate risks. Therefore, we incorporate the variance in Eq. (24)
– the variance effect – into the objective function for the
optimal allocation of an insurance portfolio across annuity and life
insurance policies.

Furthermore, we consider different pricing bases that reflect
period mortality and cohort mortality. The mortality rate without
an improvement effect is the period mortality rate, which many
insurance companies apply to price their insurance policies. The
mortality rate with an improvement effect, or cohort mortality
rate, contains trends in the future mortality rates. Therefore, the
difference of the portfolio values estimated with these two bases
represents mispricing error. The relative pricing difference for this
portfolio takes the form

D =


s=A,L


g=1,2


x∈ω

N s,g
x

×


Vperiod(m

s,g
x (t), rt , t) − Vcohort(m

s,g
x (t), rt , t)

Vcohort(m
s,g
x (t), rt , t)


, (25)

where Vperiod(m
s,g
x (t), rt , t) denotes the policy value on a period-

mortality basis, and Vcohort(m
s,g
x (t), rt , t) denotes the policy value

on a cohort-mortality basis. We thus incorporate the pricing
difference, or mispricing effect, in our objective function.

There aremany setups of objective functions that seek a feasible
policy allocationwithin the risk profile of insurance companies and
minimize both the variance effect and the mispricing effect. For
analytical tractability, the objective function f is of the form

f (N s,g
x ,NB) = min

Ns,g
x ,NB

(1 − θ)

5
j=1

(Qj t)
2
+ θD2,

s = A, L, g = 1, 2, and x ∈ ω. (26)
In view of Eq. (26), if insurance companies put more emphasis on
the variance effect, they control for the change in the insurance
portfolio due to unexpected shocks in the mortality and interest
rates by decreasing the weight θ . If they put more emphasis on
the mispricing effect, they aim to minimize mispricing error by
increasing the weight θ .

3. Mortality data

The mortality data, collected from the Taiwan Insurance
Institute (TII), include more than 50,000,000 policies issued by life
insurance companies in Taiwan.4 The original data are categorized
by age, gender, and sorts (i.e., different types of insurance, such
as life insurance products with or without repayments). We use
these original data to construct four Lee–Carter mortality tables:
female annuity (fa), male annuity (ma), female life insurance (fl),
and male life insurance (ml). The maximal age of a policyholder in
the original data is 85 years. We calibrate the parameters of our
model using the approximation method,5 as we depict in Fig. 1.

To be consistent with the pricing basis with those in practice,
we extend the maximal age from 85 to 100 years.6 To forecast
the future mortality rate, in Table 1 we also calculate the standard
deviation (σk) of kfat , kma

t , kflt , and kml
t .

4 For data characteristics and limitations, please see Yue and Huang (2011).
5 The percentages of mortality data missing are 25.27%, 24.24%, 37.66% and

29.87% for fa, ma, fl, and ml, respectively.
6 We forecast themortality rates of ages from 1 to 85 using calibrated parameters

of the Lee–Carter model and extend the future mortality rates of ages from 86
to 100 according to the Gompertz (1825) mortality model, which has been used
overwhelmingly tomodel elderlymortality rates in previous decades (Dickson et al.,
2009). In actuarial notation, the formula for the Gompertz Law can be expressed as
µx = BCx , where B > 0, C > 1, x > 0, andµx is the force ofmortality at age x. With
the Gompertz assumption, the (conditional) probability that a person individual
now aged x survives to age x + 1, denoted by px , is px = exp(−

 x+1
x µtdt) =

exp(−BCx(C − 1)/ log C). Because exposures of the elderly – that is, the number
of days (or years) they have left to live – vary greatly across different ages, we
adapt a nonlinear maximization weighted least squares procedure to estimate B and
C,minB,C


x wx(px−exp(−BCx(C−1)/ log C))2 , wherewx is the populationweight

of age.We use the function ‘‘fmincon’’ inMATLAB to solve for the parameters B and C
for each year, using a different set of future predicted mortality rates for ages 1–85.
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Fig. 1. Parameter estimates of αx, βx and kt in the Lee–Carter model.

Next, we used a Cholesky decomposition to transform the de-
pendent random variables into a linear combination of indepen-
dent random variables. First, we computed the correlation matrix
(M) of kfat , kma

t , kflt , and kml
t :
Table 1
Standard deviation of kt in four mortality groups.

κ fa
t κma

t κ fl
t κml

t

SD 9.34057 10.75928 9.89995 8.66247

M =

 1 0.7740 −0.0922 0.2438
0.7740 1 −0.1304 0.3583

−0.0922 −0.1304 1 0.4558
0.2438 0.3583 0.4558 1

 . (27)

Second, the Cholesky decomposition refers to a symmetric
positive-definite matrix M with real entries into the product of a
lower triangular matrix R and its conjugate transpose RT , that is,
M = R × RT . In view of Eq. (28), R can be expressed as follows:

R =

 1.0000 0 0 0
0.7740 0.6332 0 0

−0.0922 −0.0933 0.9914 0
0.2438 0.2679 0.5076 0.7818

 . (28)

Therefore, using the lower triangular matrix (R), we rewrite
Eq. (10) as

dZA,2
k (t)

dZA,1
k (t)

dZ L,2
k (t)

dZ L,1
k (t)

 =

 1.0000 0 0 0
0.7740 0.6332 0 0

−0.0922 −0.0933 0.9914 0
0.2438 0.2679 0.5076 0.7818



×

dZk1(t)
dZk2(t)
dZk3(t)
dZk4(t)

 . (29)

4. Numerical analysis

4.1. Scenario 1: θ = 0 (variance effect)

If we assume that the weight θ is zero, we can observe the
variance effect alone. We begin with a simple case, in which
there are only two policies in the portfolio: an annuity and a life
insurance policy. Let a = 0.1663, b = 0.0606, and σr = 4.733% for
the parameters of the CIR model. We find the optimal value (unit)
of a life insurance hedge against a one-unit value of the annuity due
and capture the corresponding hedging relation from these simple
cases.

Let υ be the percentage shift in the mortality rate (interest
rate). Taking a life insurance policy of a woman of age 30 (fl30)
as an example, Table 2 exhibits that the effective duration and
convexity change only slightly whenwe vary υ from 5% to 15%. For
example, when υ increases from 5% to 15% for the mortality rates,
the effective duration and convexity for the mortality rates change
from 10.9178 to 10.9863 and from −201.8964 to −203.8521,
respectively. Similarly, when υ increases from 5% to 15% for
the interest rates, the effective duration and convexity for the
interest rates only slightly change from−46.8364 to−48.3241 and
−2455.374 to −2498.901, respectively.

Table 3 lists the optimal units of life insurance to hedge against a
one-unit value of annuitywith 5%, 10%, and 15% shifts. The variance
of the change of the total insurance portfolio value defined in
Eq. (24) slightly changes with varying levels of υ , which in
turn leads to an insignificant change in the optimal units of life
insurance needed to hedge against a one-unit value of annuitywith
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Table 2
Effective duration (dur) and convexity (conv) with different υ (5%, 10%, 15%).

fl30 υ = 5% υ = 10% υ = 15%

dur (m) 10.9178 10.9434 10.9863
dur (r) −46.8364 −47.3903 −48.3241
conv (mm) −201.8964 −202.6282 −203.8521
conv (rr) 2455.374 2471.613 2498.901

Note: fl30 is female life insurance at age 30. dur (m) and dur (r) denote the effective
durations for themortality rate and spot rate in Eqs. (20) and (21), respectively. Then
conv (mm) and conv (rr) denote the effective convexities for the mortality rate and
spot rate in Eqs. (22) and (23), respectively.

Table 3
Optimal units of life insurance to hedge against one unit of annuity with different
υ (θ = 0).

1 unit fa60

fl30 ml30

υ = 5% N 7.4418 × 10−9 0.1223
f (N) 8.4347 × 10−8 7.7291×10−8

υ = 10% N 2.6829 × 10−8 0.1221
f (N) 8.4467 × 10−8 7.7401×10−8

υ = 15% N 7.3427 × 10−9 0.1233
f (N) 8.4669 × 10−8 7.7587×10−8

1 unit ma60

υ = 5% N 2.1111 × 10−9 0.4218
f (N) 6.2997 × 10−7 5.4603×10−7

υ = 10% N 2.1031 × 10−9 0.4214
f (N) 6.3100 × 10−7 5.4693×10−7

υ = 15% N 2.0897 × 10−9 0.4205
f (N) 6.3274 × 10−7 5.4843×10−7

Notes: fa60 (ma60) is the female (male) annuity with age 60. fl30 (ml30) is the
female (male) life insurance with age 30. N is the optimal units of life insurance
policy to hedge against one unit of annuity product. f (N) is the objective function
defined in Eq. (26).

different unexpected change rates.7 For demonstration purposes,
we use 10% shifts for both mortality and interest rates in the
scenario analyses.

We calculate corresponding optimal units for life insurance for
different genders and ages to hedge against one unit of female
annuity with age 60 (fa60). As Table 4 exhibits, to hedge against
one unit of fa60, the optimal units of female life insurance policies
for different ages approach zero, which indicates that we cannot
reduce the total variance by holding female life insurance policies
to hedge against the fa60. However, we can reduce the total
variance by holding male life insurance policies to hedge against
one unit of the fa60. That is, the variances of the portfolio of female
annuity and male life insurance policies are smaller than those of
the portfolio of female annuity and female life insurance policies.

Similarly, with Table 5 we investigate the optimal units of life
insurance policies for different genders and ages to hedge against
one unit ofmale annuity at age 60 (ma60). The results in Table 5 are
similar to those in Table 4; comparing the right-hand side of Table 4
with Table 5, we note that, compared with a hedge against one
unit of fa60, a higher level of optimal units of male life insurance is
needed to hedge against one unit of ma60.

Using Eqs. (13)–(16), we determine the main components of
the variance effect according to the effective durations of the
annuity and life insurance products, as well as the coefficients of
the Cholesky decomposition. We expect to hedge the longevity
risk of annuity products by holding some units of life insurance,

7 As Wang et al. (2010, p. 491) indicate, in Tables 8 and 9, the impact of different
mortality shocks (10%–25%) on insurers remain relatively small, because their
model can help hedge against unexpected mortality shocks.
Table 4
Optimal units of life insurance to hedge against one unit of fa60 (θ = 0).

1 unit fa60

N f (N)

fl30 7.4 × 10−9 8.45×10−8

fl40 6.87 × 10−8 8.45×10−8

fl50 1.55 × 10−9 8.45×10−8

fl60 1.67 × 10−9 8.45×10−8

ml30 0.1221 7.74×10−8

ml40 0.0844 7.74×10−8

ml50 0.0348 7.74×10−8

ml60 0.0335 7.74×10−8

Notes: fa60 is the female annuity with age 60. flx (mlx) is the female (male) life
insurance with age x. N is the optimal units of life insurance policy to hedge one
unit of annuity product. f (N) is the objective function defined in Eq. (26).

Table 5
Optimal units of life insurance to hedge against one unit of ma60 (θ = 0).

1 unit ma60

N f (N)

fl30 2.10 × 10−9 6.31×10−7

fl40 8.99 × 10−8 6.31×10−7

fl50 1.45 × 10−9 6.31×10−7

fl60 1.56 × 10−9 6.31×10−7

ml30 0.4214 5.46×10−7

ml40 0.2923 5.46×10−7

ml50 0.1203 5.46×10−7

ml60 0.1155 5.46×10−7

Notes: ma60 is the male annuity with age 60. flx (mlx) is the female (male) life
insurance with age x. N is the optimal units of life insurance policy to hedge one
unit of annuity product. f (N) is the objective function defined in Eq. (26).

Table 6
Effective duration and mortality rate of each product (insured).

Effective duration

Age 30 40 50 60

fa −2.1416 −2.0101 −1.6590 −1.2928
ma −2.6402 −2.5003 −2.0483 −1.5060
fl 10.9434 9.3589 7.3291 5.7600
ml 10.6281 8.6618 6.5503 4.8508

Mortality rate

fa 0.000116 0.000168 0.000424 0.001306
ma 0.000121 0.000436 0.001125 0.003044
fl 0.000174 0.000398 0.001207 0.002715
ml 0.000261 0.001 0.002606 0.006274

Notes: fa (ma) denotes the female (male) annuity. fl(ml) denotes the female (male)
life insurance.

because we know that the effective durations of annuity and life
insurance products exhibit opposite signs, as Table 6 shows. In
view of Eq. (28), we cannot obtain a hedging effect by holding
female life insurance, because the coefficients of the Cholesky
decomposition between female life insurance and female (male)
annuity are −0.0922 (−0.0933). However, the coefficients of the
Cholesky decomposition between male life insurance and female
(male) annuity are 0.2438 (0.2679), so it is possible to minimize
the variance effect by holding somemale life insurance policies. In
addition, we would need to hold more units of male life insurance
to hedge ma60 than fa60, because the magnitude of the male
annuity’s durations and mortality rates are greater than those of
parallel female products, as Table 6 shows.

We also compare the differences of optimal hedging strategies
between holding one unit of annuity due and one unit of deferred
annuity (see Tables 7 and 8). For deferred annuities, we need
to hold less life insurance to hedge the mortality uncertainty.
In addition, with increasing insured ages, we need fewer life
insurance units to hedge against the corresponding annuities.
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Table 7
Optimal units of male life insurance to hedge one unit of fa60 and one unit of fa30
with 30 years deferred (θ = 0).

(a) Female annuity due

1 unit fa60

N f (N)

ml30 0.1221 7.7401 × 10−8

ml40 0.0844 7.7402 × 10−8

ml50 0.0348 7.7401 × 10−8

ml60 0.0335 7.7401 × 10−8

(b) Female deferred annuity

1 unit fa30 with 30 years deferred

ml30 0.0155 8.9079×10−10

ml40 0.0085 8.8841×10−10

ml50 0.0060 9.1811×10−10

ml60 0.0041 8.8982×10−10

Notes: fax is the female annuity with age x. mlx is themale life insurancewith age x.
N is the optimal units of life insurance policy to hedge one unit of annuity product.
f (N) is the objective function defined in Eq. (26).

Table 8
Optimal units ofmale life insurance to hedge one unit ofma60 and one unit ofma30
with 30 years deferred (θ = 0).

(a) Male annuity due

1 unit ma60

N f (N)

ml30 0.4848 5.4884×10−7

ml40 0.2924 5.4693×10−7

ml50 0.1204 5.4693×10−7

ml60 0.1156 5.4693×10−7

(b) Male deferred annuity

1 unit ma30 with 30 years deferred

ml30 0.0336 3.5081×10−9

ml40 0.0224 3.5093×10−9

ml50 0.0097 3.5081×10−9

ml60 0.0092 3.5081×10−9

Notes: max is the male annuity with age x. mlx is the male life insurance with age x.
N is the optimal units of life insurance policy to hedge one unit of annuity product.
f (N) is the objective function defined in Eq. (26).

Although the duration of younger policyholders’ life insurance is
longer than that of older holders, the latter’s mortality rate ismuch
higher. Therefore, the insurance company is more likely to suffer
an instant claim by an older policyholder, and it needs fewer units
of older life insurance policies to offset the longevity risk of the
corresponding annuities.

4.2. Scenario 2: θ = 1 (mispricing effect)

We now ignore the variance effect and discuss the mispricing
effect alone. The value of the objective function then is given by

f (N s,g
x ,NB) = min

Ns,g
x ,NB

D2, s = A, L, g = 1, 2 and x ∈ ω. (26′)

In Fig. 2, according to the experience mortality data from
Taiwanese life insurance companies (50,000,000 policies), we
reveal the levels of underpricing for annuity policies (life insurance
policies with heavy principal repayment) and overpricing for life
insurance policies for different ages if we ignore the impacts
of mortality improvement (cohort-mortality basis) on these
products. By excluding the variance effect in the objective function,
we can obtain an optimal strategy, such that the mispricing effect
in Eq. (26′) is zero. That is, the value of the objective function
is always zero in the optimal situation. In the following analysis,
we show just the optimal units of the life insurance policies,
M
is

pr
ic

in
g

Fig. 2. Pricing differences of each product between period and cohort bases. Notes:
fa (ma) is the female (male) annuity. fl (ml) is the female (male) life insurance.

Table 9
Optimal units of female life insurance to hedge one unit of fa60 and ma60 (θ = 1).

1 unit fa60

fl N ml N

fl30 0.2489 ml30 0.1423
fl40 0.3629 ml40 0.2000
fl50 0.5811 ml50 0.3113
fl60 0.9896 ml60 0.4869

1 unit ma60

fl30 0.4360 ml30 0.2493
fl40 0.6358 ml40 0.3504
fl50 1.0180 ml50 0.5454
fl60 1.7338 ml60 0.8531

Notes: fa60 (ma60) is the female (male) annuity with age 60. fl x (mlx) is the female
(male) life insurance with age x. N is the optimal units of life insurance policy to
hedge one unit of annuity product. f (N) is the objective function defined in Eq. (26).

which correspond to holding one unit of an annuity policy. In
addition, according to our experience mortality data, Fig. 2 reveals
that for annuity products (life insurance policies with heavy
principal repayment), because the ma curve is below the fa curve,
underpricing is a more serious problem for male policyholders
than for female holders. In parallel, for life insurance products
in our experience mortality data, because the ml curve is above
the fl curve, overpricing is more serious among male than among
female policyholders. Finally,we observe that themagnitude of the
mispricing problem decreases as the issuance age increases.

According to Tables 9 and 10 but in contrast with our previous
results, we can hedge the mispricing effect of the longevity
risk of annuity products with female life insurance products.
However, as the issuance age increases, the optimal units of the
hedging mispricing effect increase as well, an outcome that differs
completely from the results provided in Scenario 1. Therefore,
according to the experience mortality data from Taiwanese life
insurance companies, we demonstrate that insurance companies
probably need different hedging strategies to reduce the variance
effect versus the mispricing effect.

4.3. Scenario 3: 0 < θ < 1

In practice, insurance companies must take both variance and
mispricing effects into account simultaneously to hedge longevity
risk. Therefore, the value of θ should be between 0 and 1 but not
equal to 0 or 1. In this section, we take weight θ = 0.001 as
an example and find that there exists an interaction of optimal
hedging strategies between the two effects on average. First, when
we consider the variance effect, the optimal units of life insurance
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Fig. 3. Optimal units of male and female life insurance to hedge against one unit of annuity for different ages and genders (θ = 0.001). Note: fax (max) is the female (male)
annuity with age x. flx (mlx) is the female (male) life insurance with age x.
Table 10
Optimal units of female life insurance to hedge one unit of fa30 and ma30 with
30 years deferred (θ = 1).

1 unit fa30 with 30 years deferred

fl N ml N

fl30 0.7082 ml30 0.4049
fl40 1.0327 ml40 0.5691
fl50 1.6535 ml50 0.8859
fl60 2.8160 ml60 1.3856

1 unit ma30 with 30 years deferred

fl30 1.3481 ml30 0.7708
fl40 1.9659 ml40 1.0834
fl50 3.1476 ml50 1.6864
fl60 5.3606 ml60 2.6377

Notes: fa30 (ma30) is the female (male) annuity with age 30. fl x (ml x) is the female
(male) life insurance with age x. N is the optimal units of life insurance policy to
hedge one unit of annuity product.

decrease as the age of the life insurer increases. However, when
we consider the mispricing effect, the optimal units increase as
the age of the life insurer increases. Therefore, as shown in Fig. 3,
the trade-off contributes to a humped curve for the relationship
between the optimal units of male or female life insurance needed
to hedge against one unit of annuity for different ages and genders.

Second, the results for the optimal units of male and female
life insurance to hedge against one unit of annuity for different
ages and genders, as expressed in Fig. 3, show similar patterns
across different ages and genders. The main differences entail the
magnitude of the optimal units. In general, the optimal units of
male life insurance to hedge against one unit of annuity are slightly
greater than those for female life insurance. Optimal units of male
or female life insurance to hedge against an annuity for a younger
age also are greater than those to hedge against an older age. In
addition, the optimal units of male or female life insurance to
hedge against one unit of male annuity are greater than those for a
female annuity.

5. Conclusions and suggestions

The natural hedging model we propose can account for two
important effects of longevity risk at the same time. The first is
variance in the change of the total portfolio value, and the second is
themispricing effect.We can hedge against variations in the future
mortality rate and interest rate with the first effect and against
present mispricing with the second effect.

Previous research on natural hedging has only addressed the
variance effect, but in practice, insurance companies also have
a mispricing problem due to mortality improvements over time.
We contribute to the existing literature by confirming that it
is not reasonable to ignore the mispricing effect when hedging
longevity risk. Unlike the previous literature, instead of using
the same population mortality rates for both life and annuity
policies, we employ the experiencemortality rates of life insurance
policies with heavy principal repayment as the proxy for annuity
mortality rates, because most life insurance policies with heavy
principal repayment contain more than 80% saving premiums.
Using experience mortality rates, we separate the mortality rate
by gender and use correlations across these four types of mortality
rates to hedge against variations in the future mortality rate.

In addition, Wang et al. (2010) investigate the natural hedging
strategy to deal with longevity risks for life insurance companies
under a constant interest rate environment. We integrate the
interest rate dynamic into the natural hedging strategy by
assuming that the interest rate follows the CIRmodel,which avoids
the problem of a negative nominal interest rate. These differences
make our model more general and easier to implement.

We employ a Lee–Carter model to forecast future mortality
rates and calculate the level of mispricing in practice. Unlike
Wang et al. (2010), we consider a ‘‘variance’’ effect related
to uncertainties in the mortality rate and interest rate and a
‘‘mispricing’’ effect induced by mortality improvement. Therefore,
this approach can help insurance companies determine the
relative significance of variance and mispricing effects according
to a weight θ . In this sense, we provide an alternative natural
hedging strategy for life insurance companies. When we consider
the variance effect only, the optimal units of life insurance
depend mainly on the effective duration and mortality rate.
Thus, according to the experience mortality rates, the numerical
examples show that as the age of a man increases, the optimal
units of male life insurance to hedge one unit of the annuity
policy decrease if we consider the variance effect only. However,
when we consider the mispricing effect only, the optimal units
are determined totally by the period–cohort pricing difference
of each product. The optimal allocation strategy, obtained by
considering the variance effect, arrives at an opposite conclusion
for the mispricing effect, based on our experience mortality data.
We obtain optimal allocation solutions for both effects to hedge
against longevity risk.

Cairns et al. (2009) compare eight stochastic mortality models
and find that thosewith cohort effects, such as the cohort extension
of Cairns et al.’s (2006) model and Renshaw and Haberman’s
(2006) model, provide the best fits to data from England and
Wales and USmen, respectively. Consequently, in further research,
the natural hedging strategy should be examined by various
age–period–cohort mortality models that seek to handle longevity
risks for insurance companies.
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Appendix A. Proof of Eq. (5)

We can rewrite equation (2) as follows:

kt+n − kt+n−1 = uk + σkεt+n, n = 1, . . . , T − t, (A.1)

where εt+n, n = 1, . . . , T − t , are independent standard normal
random variables. If we sum Eq. (A.1) with n = 1, . . . , T − t

kT − kt = (T − t)uk + σk

T−t
n=1

εt+n

= (T − t)uk + σk
√
T − t ε̃, (A.2)

where ε̃ is a standard normal random variable. In view of Eq. (A.2),
if we let T = t + dt , we obtain

dkt = kt+dt − kt = ukdt + σk
√
dt ε̃. (A.3)

As Tsay (2002, p. 223) shows, a standard Brownian motion {Zk}
satisfies dZk(t) =

√
dt ε̃. Therefore, we obtain

dkt = kt+dt − kt = ukdt + σkdZk(t). (A.4)

This completes the proof of Appendix A.

Appendix B. Proof of Eq. (10)

Let ZA,2
k (t) = Z̃1(t), Z

A,1
k (t) = Z̃2(t), Z

L,2
k (t) = Z̃3(t), and Z L,1

k (t)
= Z̃4(t). In view of Eq. (10), we know Z̃i(t) =

i
h=1 aihZkh(t).

Because Zkj(t), j = 1, . . . , 4, are independent, the covariance of
Z̃i(t) and Z̃j(t) is

ρijt = Cov(Z̃i(t), Z̃j(t)) = E(Z̃i(t)Z̃j(t))

=

i
n=1

ainajnE(Z2
kn(t)) =

i
n=1

ainajnt. (B.1)

Thus,
i

n=1 ainajn = ρij for i, j = 1, . . . , 4. For example, when
i = j = 1, we know a11 = ρ11 = 1. Similarly, we obtain a21 =

ρ12 when i = 1 and j = 2 and a22 =


1 − ρ2

12 when i = 2

and j = 2. Equivalently, Z̃1(t) = Zk1(t) and Z̃2(t) = ρ12Zk1(t) +
1 − ρ2

12Zk2(t), consistent with Shreve’s (2004, p. 171) results.

Appendix C. Proof of Eq. (11)

According to Ito’s lemma, because mortality risks and financial
risks are independent, the instantaneous change in the total
insurance portfolio value is of the form

dV (t) =


s=L,A


g=1,2

ω
x=i

N s,g
x

∂V s,g
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∂r2
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Substituting Eqs. (3) and (8) into Eq. (C.1) yields

dV (t) =


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According to Eq. (10), we have ZA,2
k (t) = Zk1(t), Z

A,1
k (t) =

2
j=1 a2j

Zk j(t), Z
L,2
k (t) =

3
j=1 a3jZk j(t) and Z L,1

k (t) =
4

j=1 a4jZk j(t). Thus,
Eq. (C.2) can be rewritten as
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This completes the proof of Appendix C.
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