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ABSTRACT

This article provides an iterative fitting algorithm to generate maximum
likelihood estimates under the Cox regression model and employs non-
Gaussian distributions—the jump diffusion (JD), variance gamma (VG), and
normal inverse Gaussian (NIG) distributions—to model the error terms of
the Renshaw and Haberman (2006) (RH) model. In terms of mean absolute
percentage error, the RH model with non-Gaussian innovations provides
better mortality projections, using 1900–2009 mortality data from England
and Wales, France, and Italy. Finally, the lower hedge costs of longevity
swaps according to the RH model with non-Gaussian innovations are not
only based on the lower swap curves implied by the best prediction model,
but also in terms of the fatter tails of the unexpected losses it generates.

INTRODUCTION

Longevity represents an increasingly important risk for defined benefit pension plans
and annuity providers, because life expectancy is dramatically increasing in
developed countries. In 2007, exposures to improved life expectancy amounted to
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$400 billion for pension funds and insurance companies in the United Kingdom and
United States (see Loeys, Panigirtzoglou, and Ribeiro, 2007). Stochastic mortality
models quantify mortality and longevity risks, which makes mortality risk
management possible and provides the foundation for pricing and reserving.
Among all stochastic mortality models, the Lee-Carter (LC) model, proposed in 1992,
is one of the most popular choices because of its ease of implementation and
acceptable prediction errors in empirical studies. Various modifications of the LC
model have been extended by Brouhns, Denuit, and Vermunt (2002), Renshaw and
Haberman (2003, 2006), Cairns, Blake, and Dowd (2006), Li and Chan (2007), Biffis,
Denuit, and Devolder (2010), and Hainaut (2012) to attain a broader interpretation.
Cairns, Blake, and Dowd (2006) propose a two-factor stochastic mortality model, the
CBDmodel, inwhich a first factor affectsmortality at all ages, whereas a second factor
affectsmortality at older agesmuchmore than at younger ages.Modeling the number
of deaths with the Poisson model, Cairns et al. (2009) classify and compare eight
stochastic mortality models, including an extension of the CBDmodel, withmortality
data fromEngland andWales and theUnited States. They find that an extension of the
CBD model that incorporates the cohort effect fits the English and Welsh data best,
whereas for the U.S. data, the Renshaw andHaberman (2006) (RH)model, which also
allows for a cohort effect, provides the best fit (Cairns et al., 2009). In addition to the
cohort effect, short-term catastrophic mortality events, such as the influenza
pandemic in 1918 and the Tsunami in December 2004, may lead to much higher
mortality rates. Using empirical data from 1900 to 1984, we find that the residuals in
the RH model for England and Wales, France, and Italy exhibit leptokurticity. It is
crucial to address such mortality jumps in age–period–cohort mortality models. The
main goal of this study is to incorporate non-Gaussian innovations into the RHmodel.

To take heavy-tailed distributions into account in stochastic mortality models,
Milidonis, Lin, and Cox (2011) use a Markov regime-switching model to analyze the
1901–2005 U.S. population mortality data and price mortality securities. In contrast,
Biffis (2005) employs affine jump diffusions to model asset prices and mortality
dynamics and thus addresses the risk analysis and market valuation of life insurance
contracts. For Italian mortality data, Luciano and Vigna (2005) demonstrate that a
diffusion process with a jump component (JD) provides a better fit than does a
diffusion component in stochastic mortality processes. Cox, Lin, and Wang (2006)
employ the JD process tomodel age-adjustedmortality rates for theUnited States and
United Kingdom and to evaluate the first pure mortality security: the Swiss Re Vita
bond. In addition, Lin and Cox (2008) combine a Brownian motion and a discrete
Markov chain with a log-normal jump size distribution to price mortality-based
securities in an incomplete market framework. Incorporating a jump process into the
LC model, Chen and Cox (2009) forecast mortality rates and analyze mortality
securitization. That is, these contributions use diffusion processes with jump
components, one of the finite-activity Lévy processes, to describe the dynamics of
mortality rates.

Hainaut and Devolder (2008) were the first to apply a-stable subordinators—which
are strictly positive Lévy processes—to model mortality rates. Giacometti, Ortobelli,
and Bertocchi (2009) employ the normal inverseGaussian (NIG) distribution tomodel
both the error distributions of the LC model, observing that the NIG distributional
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assumption for the residuals of the LC model is better than the Gaussian one for
certain age groups. Wang, Huang, and Liu (2011) fit the LC model with heavy-tailed
distributions to mortality rates from 1900 to 1999 and demonstrate that for
applications of the LC model, the heavy-tailed distributions appear to be the most
appropriate choices formodeling long-termmortality data. However, as proposed by
Pitacco (2004), various disadvantages arise in connection with the LC model. To
improve the LC model, it is possible to model the number of deaths as a Poisson
model, as commonly employed in the literature on mortality modeling (e.g.,
Wilmoth, 1993; Brouhns, Denuit, and Vermunt, 2002; Renshaw and Haberman, 2006;
Cairns et al., 2009; Haberman and Renshaw, 2009). However, with the Poisson error
structure, the intensity at age x and time t is determined by the death rate at age x and
time t, which is broadly described by stochastic mortality models. Consequently,
instead of using a Poisson model with a deterministic intensity function, an
alternative means of fitting the number of deaths is to specify a doubly stochastic
Poisson process, or Cox process (Cox, 1955), to capture the stochastic intensity.
Biffis, Denuit, and Devolder (2010) first implement a doubly stochastic setup in the
LC model, introducing a class of equivalent probability measures for pricing
life insurance liabilities and mortality-indexed securities. Following the double
stochastic setup proposed by Biffis, Denuit, and Devolder (2010), the second goal of
this article is to provide an iterative fitting algorithm for estimating the Cox regression
model in which mortality rates adhere to the RH model with non-Gaussian
innovations.

We use three mortality data sets—England and Wales, France, and Italy—from 1900
to 2009 as the observed data. We first fit the model to the mortality rates from 1900 to
1984 using the normal, JD, variance gamma (VG), andNIG distributions, and thenwe
forecast the development of the mortality curve for the subsequent 25 years.
According to the Jarque–Bera statistical test, the assumption of normality must be
rejected for the logarithm of mortality rates. Finally, according to the mean absolute
percentage errors (MAPEs) of themortality projections, our empirical results indicate
that the RHmodel with non-Gaussian innovations is the most appropriate choice for
modeling long-term mortality data. In addition, as an application for England and
Wales, we provide the fair values of longevity swaps and their value at risk (VaR) and
conditional tail expectations (CTE). According to the RH model with non-Gaussian
innovations, the swap premiums are lower, but the VaR and CTE are higher, which
means that the lower price of the hedge is not only based on the lower swap curves
implied by the best prediction model, but also in terms of the fatter tails of the
unexpected losses it generates.

The remainder of this article is organized as follows. In the second section, we provide
an iterative fitting algorithm to generate themaximum likelihood estimates of the Cox
regression model in which the residuals of the RH model, the mortality indices, and
the cohort effects adhere to heavy-tailed distributions. Third section empirically tests
the goodness of fit of stochastic mortality models with JD, VG, andNIG distributions;
it also offers mortality projections. In the fourth section, we employ the RH model
with non-Gaussian innovations to price a longevity swap and calculate its VaR and
CTE using England and Wales mortality data. The last section draws some
conclusions about our findings.
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STOCHASTIC MORTALITY MODELS WITH COX ERROR STRUCTURES

In this section, we first review the RHmodel, in which the mortality index and cohort
effect follow ARIMA models with normal innovations. However, according to the
mortality data, the residuals exhibit non-Gaussian distribution. Consequently, we
assume that the number of deaths follows a Cox process and that the death rates
adhere to the RH model in which the residuals, the mortality indices, and the cohort
effects follow three non-Gaussian distributions: JD, VG, andNIG.We also develop an
iterative process for calibrating the corresponding parameters of the Cox processwith
leptokurtic intensity.

RH Model
We analyze changes in mortality as a function of both age x and time t. For mortality
forecasting, the cohort-based extension to the LC model proposed by Renshaw and
Haberman (2006) is as follows:

lnðmx;tÞ ¼ ax þ bxkt þ hxgt�x þ ex;t; ð1Þ

wheremx,t is the death rate for age x in calendar year t, defined as running from time t
to time t þ 1; ax describes the average pattern of mortality over an age group; kt
explains the time trend of the general mortality level; bx represents age-specific
patterns of mortality change, indicating the sensitivity of the logarithm of the force of
mortality at age x to variations in kt; gt�x is a cohort effect; hx controls age-specific
cohort contributions to the mortality projection; and ex,t represents the error term,
which is normally distributedwithmean 0 and variance s2

e . This structure is designed
to capture age–period–cohort effects.

To forecast future mortality dynamics, the mortality index kt follows a one-
dimensional random walk with drift (Lee and Carter, 1992), as follows:

kt � kt�1 ¼ mþ et; ð2Þ

where m is a drift term and et is a sequence of independent and identically zero-mean
Gaussian random variables. Let the year of birth be equal to c ¼ t � x. Following the
model setup of Renshaw and Haberman (2006) and Cairns et al. (2010), we model the
cohort factor gc as an ARIMA(1,1,0) process that is independent of kt:

Dgc ¼ mg þ agðDgc�1 � mgÞ þ sgzc; ð3Þ

where zc is a sequence of independent and identically standard normal random
variables.

Normality Test for the RH Model
According to Table 1 in Dowd et al.’s (2010) article, the residuals of the RH model
exhibit leptokurticity. In this subsection, we therefore apply the JB statistic (Jarque
and Bera, 1980) to test empirically the normality of the three mortality data sets from
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England andWales, France, and Italy for subjects aged 60–89 years during the period
1900–1984. The mortality data came from the Human Mortality Database website.1

Table 1 contains the results of the JB test for the residuals of the RH model, the first
difference of the three countries’ mortality indices, and the corresponding cohort
effects from 1900 to 1984. The JB statistic rejects the assumption of normality for the
residuals of the RH model and the cohort effects. Therefore, we use the heavy-tailed
distributions—JD, VG andNIG—tomodel the non-Gaussian nature of the error terms
of the RH model.

Heavy‐Tailed Distributions
We model the error terms of the RH model, ex,t, et, and zt�x, using the three heavy-
tailed distributions: JD, VG, and NIG. In the subsequent subsection, we take ex,t as an
example to describe the properties of these heavy-tailed distributions; analogous
results are obtained for et, and zt�x. If ex,t adheres to a JD distribution, then

ex;t ¼ �lNmY þ szþ
XN
i¼1

Yi; ð4Þ

where N is the Poisson distribution with intensity lN, z is a standard normal
random variable, and each Yi, independent of z and N, is a normal distribution with
mean mY and variance d2Y. The setup in Equation (4) satisfies Eðex;tÞ ¼ 0
and Vðex;tÞ ¼ s2 þ lNðm2

Y þ d2YÞ. The probability density function (pdf) of ex,t is of
the form:

f JDex;tðyjs; lN;mY; dYÞ ¼
X1
n¼0

lnN e�lN

n!
Fðyjðn� lNÞmY; s

2 þ nd2YÞ; ð5Þ

where Fðyj~m; ~s2Þ is the normal pdf evaluated at y with mean ~m and variance ~s2. The
moment-generating function of the JD distribution is

TABLE 1
The Jarque–Bera Test

England and Wales France Italy

Residuals of the RH model 388.341 [<0.001] 1572.824 [<0.001] 15984.422 [<0.001]
First difference in mortality
indices

1.161 [0.484] 0.767 [0.500] 2.180 [0.233]

Residuals of cohort effects 370.387 [<0.001] 41.441 [<0.001] 323.478 [<0.001]

Note: The p-values of the Jarque–Bera test are in brackets.

1See http://www.mortality.org/.
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MJD
ex;tðuÞ ¼ Eðexpðuex;tÞÞ ¼ exp½�ulNmY þ 0:5u2s2 þ lNðeumYþ0:5u2d2Y � 1Þ�: ð6Þ

When the residuals follow an NIG distribution, the pdf of ex,t instead is of the
form:

fNIG
ex;t ðyja; b; d; uÞ ¼ ad

p
exp d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q
þ bðy� uÞ

� �K1 a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ ðy� uÞ2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ ðy� uÞ2

q ; ð7Þ

where Kg is the modified Bessel function of the second kindwith index g, d is the scale
parameter, u is the shift parameter, and a and b determine the shape of the NIG
distribution. To ensure Eðex;tÞ ¼ 0, we have u ¼ �bd=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
. The parameters must

fulfill two constraints: d � 0 and a > bj j. The moment-generating function of the NIG
distribution is

MNIG
ex;t ðuÞ ¼ Eðexpðuex;tÞÞ ¼ exp � ubdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2
p þ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � bþ uð Þ2

q� � !
:

ð8Þ

The NIG distribution is one of the most promising distributions for asset
returns proposed in the prior literature, with several attractive theoretical properties
and analytical tractability. It therefore has been used repeatedly for financial
applications as the unconditional return distribution (Eberlein and Keller, 1995;
Prause, 1997; Rydberg, 1997; Bølviken and Benth, 2000; Lillestøl, 2000) and for
stochastic mortality modeling (Giacometti, Ortobelli, and Bertocchi, 2009; Wang,
Huang, and Liu, 2011).

When the residuals follow a VG distribution, the pdf of ex,t is of the form:

fVGex;t ðyja;b; g; uÞ ¼
ða2 � b2Þg y� uj jg�0:5Kg�0:5ða y� uj jÞffiffiffi

p
p ð2aÞg�0:5GðgÞ expðb y� uð ÞÞ: ð9Þ

Similarly, u is the shift parameter that satisfied Eðex;tÞ ¼ 0, and g, a, and b determine
the shape of the VG distribution. The parameters must fulfill the following
constraints: g � 0 and a > bj j. The moment-generating function of the VG
distribution is given by

MVG
ex;t ðuÞ ¼ Eðexpðuex;tÞÞ ¼ exp � 2ubg

a2 � b2

� �
a2 � b2

a2 � ðbþ uÞ2
 !g

: ð10Þ

Note that when a ¼ ðGþMÞ=2, b ¼ ðG�MÞ=2, and g ¼ C, we obtain the VG
distribution, which is a special case of the CGMY distribution defined by Carr et al.
(2002).
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A Cox Process With Leptokurtic Intensity
We assume that Dx,t, or the number of deaths at age x during year t, adheres to a Cox
process, also known as a doubly stochastic Poisson process. That is, Dx;t � Coxðlx;tÞ,
where lx;t ¼ Ex;tmx;t is a nonnegative stochastic intensity process, and Ex,t is the
exposure to risk at age x during year t. When death rates adhere to the RHmodel, lx,t
can be modeled as

lx;t ¼ Ex;tmx;t ¼ Ex;t expðax þ bxkt þ hxgt�x þ ex;tÞ; ð11Þ

where ex,t is assumed to be an age- and period-homogeneous heavy-tailed
distribution that captures leptokurticity. Let dx,t be the corresponding number of
deaths actually observed. Conditional on ex,t ¼ y, the number of deathsDx,t becomes a
Poisson distribution with intensity Ext expðax þ bxkt þ hxgt�x þ yÞ. As a result, the
log-likelihood function based on the Cox regression model is defined as

LLF ¼
X
x;t

Z 1

�1
log f ðDx;t ¼ dx;tjex;t ¼ yÞf ex;tðyÞ dy; ð12Þ

where

log f ðDx;t ¼ dx;tjex;t ¼ yÞ
¼ dx;t logðEx;t exp ax þ bxkt þ hxgt�x þ yð ÞÞ � Ex;t expðax þ bxkt

þ hxgt�x þ yÞ � logðdx;t!Þ: ð13Þ

Thus, to find the maximum likelihood estimates of the parameters of the RH model,
we can maximize Equation (12) with respect to ax, bx, kt, hx, gt�x, and the error term
distribution parameters. The closed-form solution of the log-likelihood function in
Equation (12) is derived as follows:

LLF ¼
X
x:t

½dx;tðax þ bxkt þ hxgt�xÞ � ðEx;t expðax þ bxkt þ hxgt�xÞÞMex;tð1Þ� þ C; ð14Þ

where Mex;tðuÞ is the moment-generating function of ex;t, and C represents a constant
term equal to

P
x:t½dx;t log Ex;t � logðdx;t!Þ�. The proof of Equation (14) is in Appendix

A. Note that when ex;t is ignored while modeling the number of deaths (i.e.,
Mex;tð1Þ ¼ 1), the log-likelihood function defined in Equation (14) is precisely the same
as that proposed by Wilmoth (1993), Brouhns, Denuit, and Vermunt (2002), and
Cairns et al. (2009).

Similar to the two-step procedures of Lee and Carter (1992), Brouhns, Denuit, and
Vermunt (2002), andRenshaw andHaberman (2006),we first calibrate the parameters
ax, bx, kt, hx, and gt�x with an updating scheme. Then, we estimate m, mg , ag , sg , and
the distribution parameters of the residuals of themortality indices and cohort effects.
In the first step, there are six sets of parameters, namely, the ax, bx, kt, hx, and gt�x
parameters, as well as the ex;t distribution parameters. Following Brouhns, Denuit,
and Vermunt (2002) and Renshaw and Haberman (2006), we use the following
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updating scheme: Let nx be the total number of ages. Starting with hx ¼ 1=nx and
gt�x ¼ 0 and then obtaining ax, bx, and kt from the approximation method of the LC
model, we calibrate the corresponding ex;t distribution parameters bymaximizing the
sample log-likelihood function:

LLFex;t ¼
X
x;t

logðf ðextjax; hx; gt�x;bx; ktÞÞ: ð15Þ

Then, with the ex;t distribution parameters estimated from Equation (15), we employ
an iterating method to estimate the corresponding parameters of the RH model
according to the elementary Newton method (Goodman, 1979; Brouhns, Denuit, and
Vermunt, 2002; Renshaw and Haberman, 2006).

Following the estimating procedure of Renshaw and Haberman (2006), the
parameters are estimated by iteration. In each iteration step, we update a single
set of parameters; the other parameters are fixed at their current estimates using the
following updating scheme:

updateðuÞ ¼ uðuÞ ¼ u � @LLF=@u
@2LLF=@u2

: ð16Þ

Consequently, the updating scheme is as follows:

uðaxÞ ¼ ax þ
P
t
½dx;t � Ex;t expðax þ bxkt þ hxgt�xÞMex;tð1Þ�P
t
½Ex;t expðax þ bxkt þ hxgt�xÞMex;tð1Þ�

; ð17Þ

uðgzÞ ¼ gz þ

P
x;t

z¼t�x

½dx;thx � Ex;thx expðax þ bxkt þ hxgzÞMex;tð1Þ�
P
x;t

z¼t�x

½Ex;th2x expðax þ bxkt þ hxgzÞMex;tð1Þ�
; ð18Þ

uðhxÞ ¼ hx þ
P
t
½dx;tgt�x � Ex;tgt�x expðax þ bxkt þ hxgt�xÞMex;tð1Þ�P

t
½Ex;tg

2
t�x expðax þ bxkt þ hxgt�xÞMex;tð1Þ�

; ð19Þ

uðktÞ ¼ kt þ
P
x
½dx;tbx � Ex;tbx expðax þ bxkt þ hxgt�xÞMex;tð1Þ�P

x
½Ex;tb

2
x expðax þ bxkt þ hxgt�xÞMex;tð1Þ�

; ð20Þ

and

uðbxÞ ¼ bx þ
P
t
½dx;tkt � Ex;tkt expðax þ bxkt þ hxgt�xÞMex;tð1Þ�P

t
½Ex;tk2t expðax þ bxkt þ hxgt�xÞMex;tð1Þ�

: ð21Þ
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We repeat the updating cycle (Equations (15) to (21)) and stopwhen the change in the
log-likelihood function in Equation (14) is relatively small.2 Model identification can
be conveniently achieved with parameter constraints:

P
t kt ¼ 0,

P
x bx ¼ 1,P

x hx ¼ 1, and
P

t gt�x ¼ 0.3

After obtaining the mortality indices and cohort effects, we can calculate the
parameters of Equations (2) and (3) by maximizing the log-likelihood function, as
follows:

X
t

logðf ðetÞÞ and
X
s¼t�x

logðf ðzsÞÞ; ð22Þ

where f ðetÞ and f ðzsÞ are the probability density functions of et and zs, respectively.

EMPIRICAL ANALYSIS

In this section, we investigate the goodness-of-fit distributions for the number of
deaths, the first differences of the mortality indices, and the cohort effects. Using the
mortality data from 1900 to 1984,4 we fit the residuals of the RH model to four
distributions: normal, JD, VG, and NIG. We then fit the mortality indices and cohort
effects from the best fitting model according to the Bayesian information criterion
(BIC) to the same four distributions. Finally, we project the subsequent 25-year
mortality rates (1985–2009).

In‐Sample Goodness of Fit
Using mortality data from 1900 to 1984, we first investigate the goodness-of-fit
distributions of the number of deaths for England and Wales, France, and Italy.
Table 2 presents the LLF, Akaike information criterion (AIC), and BIC statistics5 for
the number of deaths atwhich the residuals of the RHmodel adhere to the normal, JD,
VG, and NIG models. All three criteria indicate that the normal distribution is the
worst fitting model for the number of deaths. They also indicate that the VGmodel is
consistently the best model for the number of deaths in the three mortality data sets.

2We adopt 10�7 as the default value.
3Similar to Brouhns, Denuit, andVermunt (2002), after updating the kt parameters, we impose a
centering constraint

P
t kt ¼ 0 by removing

P
t kt from kt. After updating the bx parameters, a

scaling constraint
P

x bx ¼ 1 must be imposed by dividing the estimates for bx by
P

x bx and
multiplying the estimates for kt by the same number. Following the analogical procedure, the
constraints of hx and gt�x are also achieved.

4To account mortality jumps—which might be caused by 1918 influenza pandemic, wars, or
natural catastrophes such as tsunamis, Lin and Cox (2008) and Chen and Cox (2009)
employ U.S. mortality data starting from 1900 to analyze mortality securitization. Along this
line, we also use mortality data from 1900 to 2009 for in-sample goodness of fit and mortality
projection.

5AIC ¼ �LLFþNP and BIC ¼ �LLFþ 0:5�NP� logðNSÞ, where NP is the effective number
of parameters being estimated and NS is the number of observations.
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Therefore, we use the mortality indices and cohort effects obtained from the
VG model to investigate the pattern of the error terms of the time and cohort
effects.

The test results for the first difference in mortality indices are in Table 3, which
contains the LLF, AIC, and BIC statistics for the normal, JD, VG, and NIG
distributions. The Gaussian model is the worst according to the LLF criterion, which
also indicates that the best fit for the three mortality data sets derives from the JD
model. The best in-sample goodness of fit formortality indices changes for the normal
distribution of all mortality data, because the BIC introduces a penalty term for the
effective number of parameters.

In Table 4 we present the LLF, AIC, and BIC statistics for the normal, JD, VG, andNIG
distributions for cohort effects. The LLF, AIC, and BIC statistics consistently indicate
that the best fit for Italy derives from the JD model, but for England and Wales and
France, it derives from the VG model. All three criteria indicate that the normal
distribution is the worst fitting model for the cohort effects. Consequently, with
mortality data from three countries over the period 1900–1984, in-sample model
selection criteria indicate a preference formodeling the RHmodel with non-Gaussian
innovations.

TABLE 3
Goodness‐of‐Fit Tests for the First Difference in Mortality Indices

Model

England and Wales France Italy

LLF AIC BIC LLF AIC BIC LLF AIC BIC

Normal �166.73 168.73 171.16 �175.85 177.85 180.28 �182.00 184.00 186.43
JD �163.96 168.96 175.03 �175.44 180.44 186.51 �181.02 186.02 192.10
VG �164.66 168.66 173.53 �175.60 179.60 184.46 �181.11 185.11 189.98
NIG �165.39 169.39 174.25 �175.59 179.59 184.45 �181.12 185.12 189.98

Note: The bold italic values represent the bestmodels for the first difference inmortality indices.

TABLE 2
Goodness‐of‐Fit Measures for the Number of Deaths

Model

England and Wales France Italy

LLF AIC BIC LLF AIC BIC LLF AIC BIC

Normal �32,911 33,197 34,033 �30,594 30,880 31,716 �45,472 45,758 46,593
JD �32,889 33,178 34,022 �30,470 30,759 31,604 �44,040 44,329 45,173
VG �32,744 33,032 33,874 �30,317 30,605 31,446 �43,164 43,452 44,294
NIG �32,894 33,182 34,024 �30,476 30,764 31,605 �44,623 44,911 45,753

Note: The bold italic values represent the best models for the number of deaths.

784 THE JOURNAL OF RISK AND INSURANCE



Mortality Projection
To assess out-of-sample performance, we apply the parameters estimated from the
time period 1900–1984 to obtain 25-year mortality projections, calculating the MAPE
as follows:

MAPE ¼ 1

n

Xn
i¼1

Ai � Fi
Ai

����
����; ð23Þ

where Ai is the logarithm of the historical mortality rate, Fi is the natural logarithm of
the forecast mortality rate, and n is the number of observations.

By applying the calibrated parameters of the RH model to the VG innovations (the
best model according to BIC), we reveal the impact of the different distributions on
themortality projection forMAPE from 1985 to 2009 (Table 5). A lower value indicates
better predictive power for the distribution. For comparison, we also provide the

TABLE 5
MAPE of Logarithm of Mortality Projection in 1985–2009 (Unit: %)

Model England and Wales France Italy

Original RH–normal 4.6383 4.4374 6.0001
Original RH–JD 4.6515 4.4539 5.9488
Original RH–VG 4.7143 4.4348 5.9399
Original RH–NIG 4.6529 4.4550 5.9218
VG–normal 4.5255 4.4066 5.8332
VG–JD 4.5382 4.4222 5.7841
VG–VG 4.5235 4.4379 5.7752
VG–NIG 4.5392 4.4236 5.7586

Note: Original RH–normal is the same asM2 of Cairns et al. (2009). The X–Ymodel corresponds
to an X error term in the RH model and to Y distributions for the time and cohort effects. The
bold italic values represent the best mortality projections for the mortality data, in terms of the
MAPE criterion.

TABLE 4
Goodness‐of‐Fit Tests for the Residuals of Cohort Effects

Model

England and Wales France Italy

LLF AIC BIC LLF AIC BIC LLF AIC BIC

Normal �97.09 100.09 104.17 �108.57 111.57 115.65 �130.57 133.57 137.65
JD �84.99 90.99 99.14 �98.89 104.89 113.05 �109.45 115.45 123.60
VG �83.92 88.92 95.71 �98.73 103.73 110.53 �116.86 121.86 128.65
NIG �84.07 89.07 95.86 �99.41 104.41 111.21 �114.48 119.48 126.27

Note: The bold italic values represent the best models for the residuals of cohort effects.
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mortality projection of the original RH model with four forecasting distributions—
normal, JD, VG, and NIG (the original RH–normal model corresponds to the M2
model of Cairns et al., 2009). The VG–VG model6 is the best mortality projection for
the mortality data of England and Wales. The VG–normal model provides the best
one for the mortality data from France, and the VG–NIG model is the best one for
Italy. As a result, in terms of the MAPE criterion, the RH model with non-Gaussian
innovations provides better mortality projection than that obtained from the original
RH model with normal innovations.

APPLICATION: THE VALUATION OF LONGEVITY SWAPS

In this section, we first price a longevity swap. Using the mortality data of England
and Wales from 1900 to 2009, we then refit the RH model to attain the fair swap
premium of the longevity swap for both the original RH model (M2) and the best
projection model. Finally, we provide the VaR and CTE of the longevity swaps.

Pricing Longevity Swaps
The traditional method of transferring longevity risk in a pension plan or an annuity
book is to sell the liability through an insurance or reinsurance contract, known as
pension buyouts. These tactics have attracted increasing attention since 2006,
especially in the United Kingdom. However, such transactions involve the transfer of
all risks, including longevity and investment risk. To transfer longevity risk only to
capital markets, Blake and Burrows (2001) first advocate the use of longevity bonds,
whose coupon payments depend on the proportion of the population surviving to
particular ages. The EIB/BNP longevity bond was the first securitization instrument
designed to transfer longevity risk but ultimately was withdrawn. The lack of success
in issuing longevity bonds led to new securitization instruments, such as longevity
swaps,7 which first reached the public domain with a transaction between JPM and
Canada Life in July 2008. As Blake et al. (2012) show, 16 publicly announced longevity
swaps were executed between 2007 and 2012 in the United Kingdom. In this context,
the valuation of longevity swaps represents an important research topic for
developing capital market solutions for longevity risk.

Longevity swaps have beenwidely explored in the prior literature (Dawson, 2002; Lin
and Cox, 2005; Dowd et al., 2006; Dawson et al., 2010; Biffis et al., 2011; Wang and
Yang, Forthcoming). Dowd et al. (2006) introduce the mechanism for transferring
longevity risk; this instrument involves exchanging actual pension payments for a
series of preagreed fixed payments. On each payment date, the fixed-rate payer (e.g.,
pension plan) receives from the hedge supplier a random mortality-dependent
payment and, in return, makes a fixed payment to the hedge supplier. Dowd et al.
(2006) demonstrate that the hedge is almost perfect when the reference index is based
on the survivor experience of the insurer’s annuity book. If the expected reference

6AVG–NIGmodel corresponds to aVGerror term in theRHmodel and toNIGdistributions for
the time and cohort effects.

7For the recent development of longevity-linked securities, see Blake et al. (2012) and references
therein.
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indices and insurers’ own survivor experiences are highly correlated, the longevity
swap can still hedge the insurer against a considerable amount of the aggregate
longevity risk it faces. In this article, following the vanilla longevity swap structure
analyzed by Dowd et al. (2006) and Dawson et al. (2010), we discuss a T-year bespoke
longevity swap linked to a benchmark cohort of a given initial age for the England and
Wales mortality data.8

For a given time horizon T, we consider a filtered probability space ðV; F; fF tgTt¼0;PÞ
on which the death time is modeled as a stopping time twith respect to F ¼ fF tgTt¼0.
As mentioned by Biffis, Denuit, and Devolder (2010) and Hainaut (2012), F is the

enlarged filtration H _G where H ¼ f�tgTt¼0 is the filtration related to risk factors

and G ¼ fGtgTt¼0 is such that F is the minimal enlargement of H ensuring that t is an
F-stopping time. Conditional on the path followed by the mortality rates, the t-year
survival probability that a 65-year-old person in calendar year 2009 þ t reaches age
65 þ t is of the form:

SðtÞ ¼ Pðt > tj�TÞ ¼ exp �
Z t

0

m65þs;2009þs ds
� �

: ð24Þ

We assume that the mortality rates are constant within certain age and timewindows
but may vary from one window to the next. Specifically, given any integer age x and
calendar year t, we presume that

mxþj;tþt ¼ mx;t for 0 � j; t < 1: ð25Þ

Thus,

SðtÞ ¼ exp �
Xt�1

h¼0

m65þh;2009þh

 !
: ð26Þ

To transfer longevity risk, on each of the payment dates t, the fixed-rate payer pays the
notional principal multiplied by a prespecified fixed proportion ð1þ pÞHðtÞ to the
floating-rate payer and receives the notional principal multiplied by SðtÞ, where HðtÞ
is anticipated by using the best estimate of the underlying mortality model, and p is
the swap premium that would be set so that the initial value of the swap is zero for
each party.

The distribution function of SðtÞ under the real-world (physical) probability
measure P is

FtðyÞ ¼ ProbPðSðtÞ � yÞ: ð27Þ

8To bear no basis risk, the variable payments in bespoke longevity swaps are designed tomatch
precisely the mortality experience of each individual hedger.
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Wang (2000) proposes a distortion operator to change the probability measure from
the real-world probabilitymeasure P to an equivalentmartingalemeasureQ, with the
following transformation:9

~FtðyÞ ¼ FðF�1ðFtðyÞÞ þ lðtÞÞ; ð28Þ

where lðtÞmay be interpreted as themarket price of longevity risk associatedwith the
survival probability SðtÞ,10 and F is the standard normal distribution function.
Therefore, as shown by Denuit, Devolder, and Goderniaux (2007), the expectation
value of SðtÞ associated with lðtÞ under the equivalent martingale measure Q is
defined as

EQ½SðtÞ� ¼
Z 1

0

ð1� ~FtðyÞÞ dy ¼
Z 1

0

ð1�FðF�1ðFtðyÞÞ þ lðtÞÞÞ dy: ð29Þ

Let M be the total annuities issued to an initial population that consists of persons
aged 65 years who also are alive in 2009. Under the equivalent martingale measureQ,
from the point of view of the hedger with a pay-fixed longevity swap, the fair value at
issue year 2010, denoted by LS0, can be calculated as

LS0 ¼ EQ

XT
t¼1

exp �
Z t

0

rðuÞ du
� �

MðSðtÞ � ð1þ pÞHðtÞÞ
" #

; ð30Þ

where r(t) is the risk-free rate. We also consider the term structure of the interest rate
in our valuation framework. Let B(t, T) denote the price of a zero-coupon bond issued
at time t that pays $1 at time T, t � T. With the assumption that mortality rates and
financial risk are independent, the fair value of a pay-fixed longevity swap takes the
form:

LS0 ¼ M
XT
t¼1

Bð0; tÞEQ½SðtÞ� �Mð1þ pÞ
XT
t¼1

Bð0; tÞHðtÞ: ð31Þ

The fair swap premium p, which is set when the initial value of the swap equals zero,
is given by

9The Wang transform represents only one possible choice among several incomplete market
pricing methods. For example, Biffis et al. (2010) provide the equivalent changes of measures
that preserve the structure of the LC model and the tractability of the doubly stochastic setup.
The specification of both a real-world and an equivalentmartingalemeasure raises the issue of
whether the doubly stochastic setting applies under the twomeasures. Formore details, please
refer to the Proposition 3.2 in Biffis et al. (2010).

10For simplicity, let lðtÞ be constant in the numerical examples.
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p ¼
PT
t¼1

Bð0; tÞEQ½SðtÞ�
PT
t¼1

Bð0; tÞHðtÞ
� 1: ð32Þ

The analytical computation ofEQ½SðtÞ� is difficult to implement.We explain briefly the
Monte Carlo algorithm to compute the expected value of the t-year survival
probability under the equivalent martingale measure Q in Appendix B.

Numerical Analysis
To simulate the mortality rates, we first refit the RH model with four distributions—
normal, JD, VG, and NIG—to the mortality data of England and Wales over the two
periods 1900–2009 and 1960–2009 in Table 6. Similar to the results based on the 1900–
1984 period, the best model for England and Wales is still the VG model.
Consequently, applying the calibrated parameters over the period 1900–2009, we
use the best predictionmodels presented in Table 5 to simulate mortality rates, which
is the VG–VG model for England and Wales.

In this section, we provide a numerical example of the longevity swaps based on a
cohort of 65-year-old persons in calendar year 2009. The initial term structure is
obtained from the U.S. Department of the Treasury.11 We also assume that M ¼ 1.
Figure 1 depicts the swap premium curve by varying the level of the risk-adjustment

TABLE 6
Goodness‐of‐Fit Measures for the Number of Deaths

Model

England and Wales

LLF AIC BIC

Period: 1900–2009
Normal �42042 42378 43403
JD �41894 42233 43267
VG �41795 42133 43165
NIG �41819 42157 43188

Period: 1960–2009
Normal �13351 13567 14140

JD �13338 13557 14139
VG �13333 13551 14131
NIG �13336 13554 14133

Note: The bold italic values represent the best models for the number of deaths.

11See http://www.treasury.gov/resource-center/data-chart-center/interest-rates/pages/
TextView.aspx?data¼yieldYear&year¼2009. The 1-year, 2-year, 3-year, 5-year, 7-year, 10-
year, 20-year, and 30-year yield rates are 0.47, 1.14, 1.7, 2.69, 3.39, 3.85, 4.58, and 4.63 percent
onDecember 31, 2009, respectively.We use the linear interpolation to obtain other yield rates.

MORTALITY MODELING WITH NON‐GAUSSIAN INNOVATIONS AND APPLICATIONS 789



parameter l. The fair swap premium is higher for a longer duration swap, because
long-duration contracts are usually more expensive for covering longevity risk. In
addition, the fair swap premiums of the RH model (the M2 model of Cairns
et al., 2009) are higher than those of the best prediction model.

Table 7 reveals the fair swappremiumswith time tomaturity equal to 25 yearswhen l

is�0.1,�0.15, and�0.2, with parallel shifts upward of 0, 2, and 4 percent in the yield
curve. From Table 7, we see that the lower the l and the interest rates are, the higher is
the fair swap premium. Similarly, the fair swap premiums of the RHmodel are higher
than those of the best prediction model, even when the yield curve moves up in
parallel.

TABLE 7
Swap Premiums for Different Interest Rates (Units: bps)

Yield Rates Model l ¼ �0.1 l ¼ �0.15 l ¼ �0.2

Original yield curve RH 5.75 15.77 25.74
Best 4.63 15.01 25.31

Parallel shift up of 2% RH 4.92 13.49 22.01
Best 3.95 12.82 21.63

Parallel shift up of 4% RH 4.22 11.53 18.80
Best 3.38 10.95 18.47

Note: Time to maturity is 25 years.

FIGURE 1
Swap Premium Curves for Distinct Level of Risk‐Adjusted Parameter l
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As market conditions change (e.g., mortality patterns, a parallel shift in yield curve),
the marking-to-market (MTM) procedure could mean that the longevity swap
switches status in the hedger’s balance sheet between that of an asset and that of a
liability. Assume that l is�0.1 and the maturation time is 25 years, as in our baseline
case. The initial swap premiums are 5.75 and 4.63 bps for the RH and best prediction
models in the baseline case, respectively. In Table 8, applying Equation (31), we report
the impacts of market condition changes (a parallel shift in yield curve and different
risk-adjustment parameters l) on the MTM profits or losses of the longevity swaps.
When the yield curve moves up in parallel, ceteris paribus, the fair value of the
longevity swapdecreases,whichmeans that a parallel shift up in the yield curve leads
to a loss for the hedger. In addition, a lower level of the risk-adjustment parameter
results in a higher expected value of survival probability (higher mortality
improvement), which in turn leads to a higher value of the longevity swap. Note
that, as shown in Table 8, the risk-adjustment parameter has a larger impact than the
parallel shift up in the yield curve on the fair value of the longevity swap.
Consequently, as life expectancy increases dramatically in developed countries, it is
reasonable to find the recent surge in transactions in longevity swaps.

From the point of view of the hedger, the unexpected loss at time t is of the form:

LðtÞ ¼ M ð1þ pÞHðtÞ � SðtÞð Þ; t ¼ 1; . . . ;T: ð33Þ

The present value of the total unexpected loss, denoted as PVL, is given by

PVL ¼
XT
t¼1

Bð0; tÞLðtÞ: ð34Þ

Figure 2 depicts the pdf of PVL for the RH model and the best prediction model of
England andWales mortality data; it also marks the areas for the other three subplots
in the upper left-hand panel.We find that the pdf of PVL for the best predictionmodel
possesses leptokurticity. In addition, Table 9 presents the VaR and CTE of the PVL
withmaturation times of up to 25 years. It is clear that, compared to the RHmodel, the

TABLE 8
The MTM Values of Longevity Swaps

Model Yield Rates

l

�0.1 �0.15 �0.2

RH Original yield curve 0 0.0134 0.0267
Parallel shift up of 2% �0.0009 0.0086 0.0181
Parallel shift up of 4% �0.0014 0.0055 0.0123

Best Original yield curve 0 0.0139 0.0276
Parallel shift up of 2% �0.0008 0.0091 0.0189
Parallel shift up of 4% �0.0012 0.0060 0.0130

Note: Assume that l is �0.1 and maturation time is 25 years in the baseline case.
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best prediction model has higher VaR and CTE. Because shorter-duration contracts
cover less longevity risk, the VaR and CTE values are smaller for shorter duration
longevity swaps. The differences of RH and the best prediction model are larger for
longer durations. Therefore, the loss distribution of longevity swaps is centralized

FIGURE 2
Probability Density Functions of Present Value of the Losses (l ¼ �0.1, T ¼ 25)
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TABLE 9
The VaR and CTE of the Losses for Different Maturation Times (l ¼ �0.1)

Time to Maturity Model VaR95 VaR99 CTE95 CTE99

10 RH 0.0685 0.0999 0.0878 0.1163
Best 0.0715 0.1126 0.0970 0.1377

15 RH 0.1679 0.2427 0.2146 0.2859
Best 0.1744 0.2708 0.2344 0.3298

20 RH 0.3094 0.4477 0.3959 0.5266
Best 0.3225 0.4942 0.4279 0.5981

25 RH 0.4761 0.6861 0.6063 0.8021
Best 0.4939 0.7459 0.6504 0.8980
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and heavy tailed, which leads to lower price of the hedge but fatter tails of the
unexpected losses. It is critical to have a good mortality model to calculate accurate
loss distributions.

CONCLUSIONS AND SUGGESTIONS

Many researchers have examinedmortality rates and explored various models. Some
studies have demonstrated that improvements in the LC model occur when the
model is adjusted by fitting the Poisson regressionmodel to the number of deaths and
considering an age–period–cohort extension of the LC model. Under the Poisson
error structure though, intensity consists of the death rate, which is commonly
modeled by stochastic mortality models. In addition, empirical results demonstrate
that mortality rate improvements exhibit jump properties. We therefore attempt to
provide an iterative fitting algorithm for estimating the Cox regression model, under
which death rates adhere to the RHmodel with three heavy-tailed distributions—JD,
VG, and NIG.

Using three mortality data sets from England and Wales, France, and Italy, we find
consistent support for the non-Gaussian residuals of the RH model. Specifically,
whenwe calibrate the parameters of the RHmodel, the VGmodel provides the best fit
for the three countries according to the BIC criterion. Formortality projection from the
three mortality data sets, we find that the normal distribution provides weak
mortality projection performance, whereas the non-Gaussian distributions provide
good mortality projections. In the longevity swap application, we demonstrate that
the swap curves of the original RHmodel are higher than those of the RHmodel with
non-Gaussian innovations. In addition, the VaR andCTE of the original RHmodel are
lower than those of the RH model with non-Gaussian innovations. The lower hedge
cost according to the RHmodel with non-Gaussian innovations is not only due to the
lower swap curves, but also in terms of the fatter tails of the unexpected losses it
generates. As a result, choosing an appropriate leptokurtic model is critical to
mortality projection and securitization of longevity risk.

APPENDIX A

THE PROOF OF THE LOG‐LIKELIHOOD FUNCTION

When the death rates follow the RHmodel, the explicit solution of the log-likelihood
function in Equation (12) can be rewritten as follows:

LLF ¼
X
x;t

Z 1

�1
log f Dx;t ¼ dx;tjex;t ¼ y

� �
f ex;tðyÞ dy

¼
X
x:t

� Z 1

�1
dx;t log Ex;t þ ax þ bxkt þ hxgt�x þ y
� 	

f ex;tðyÞ dy

�
Z 1

�1
Ex;t expðax þ bxkt þ hxgt�xÞ expðyÞf ex;tðyÞ dy� logðdx;t!Þ: ðA1Þ
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Because Eðex;tÞ ¼ 0, we have

LLF ¼
X
x;t

dx;tðlog Ex;t þ ax þ bxkt þ hxgt�xÞ



� Ex;t expðax þ bxkt þ hxgt�xÞ
Z 1

�1
expðyÞf ex;tðyÞ dy� logðdx;t!Þ

�
¼
X
x:t

dx;tðax þ bxkt þ hxgt�xÞ � ðEx;t expðax þ bxkt þ hxgt�xÞÞMex;tð1Þ

 �

þ
X
x:t

dx;t log Ex;t � logðdx;t!Þ

 �

: ðA2Þ

This completes the proof of Equation (14).

APPENDIX B

EXPECTED VALUE OF SURVIVAL PROBABILITY UNDER Q
The procedure of computing the expected value of the t-year survival probability
under the equivalent martingale measure Q is as follows:

Step 1: After calibrating the parameters of the RH model, we use a Monte Carlo
simulation with N iterations to generate the futures mortality rates and the survival
probabilities under the real-worldprobabilitymeasureP. According to theN simulated
values of t-year survival probabilities, we can construct the corresponding empirical
cumulative distribution function (cdf) Ftð	Þ and its inverse cdf F�1

t ð	Þ under P.
Step 2: We know that the probability-integral transform of a random variable is
distributed as standard uniform. Consequently, we have, according to Equation (28),

~FtðSðtÞÞ ¼ U ¼ FðF�1ðFtðSðtÞÞÞ þ lÞ; ðB1Þ

where U is a standard uniform random variable. Rearranging Equation (B1) and
drawing N random numbers from a standard uniform distribution, we can generate
N possible values of the t-year survival probabilities under the equivalent martingale
measure Q, as follows:

SðtÞ ¼ F�1
t ðFðF�1ðUÞ � lÞÞ: ðB2Þ

Averaging the N values of the t-year survival probabilities produces the expected
value of t-year survival probability under Q. A higher value of N leads to a more
precise setup for Ftð	Þ, F�1

t ð	Þ, and EQ SðtÞ½ �. We use N ¼ 100,000.
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