
Acta Mathematica Scientia 2011,31B(5):1749–1764

http://actams.wipm.ac.cn

A MATHEMATICAL MODEL OF ENTERPRISE

COMPETITIVE ABILITY AND PERFORMANCE

THROUGH A PARTICULAR EMDEN-FOWLER

EQUATION∗

Pai Jente1 Li Mengrong2† Chang Yueloong3 Chiu Sumiao2

1. Department of Land Economics, National Chengchi University. Taipei 116, Taiwan, China

E-mail: brianpai@nccu.edu.tw

2. Department of Mathematical Sciences, National Chengchi University, Taipei 116, Taiwan, China

E-mail: liwei@math.nccu.edu.tw; hierteliwei@gmail.com

3. Department of Phychology, National Chengchi University, Taipei 116, Taiwan, China

E-mail: cyl.88054@gmail.com
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0 Introduction

How to improve the performance and competitiveness of the company is the critical issue

of Industrial and Organizational Psychology in Taiwan. We try to design an appropriate math-

ematical model of the competitiveness and the performance of the 293 benchmark enterprises

out of 655 companies.

Unexpectedly, we discover the corelation of performance and competitiveness is extremely

high. Some benchmark enterprises present the following phenomena.

Competitive ability (force, F (P (n))) is a cubic function of the performance (P (n)); that

is, there exist positive constant performance P0 > 0, and a positive constant k > 0 such that

F (P (n)) = k (P (n)− P0)
3
,

where n is the surveying rod enterprise’s composition department number or the main unit

commanders counts, the performance P (n) of the rod enterprise is larger than P0 and F is

proportional to the second-order derivative of P with respect to n.
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Solar Company.
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Although the relation between F (P (n)) and P (n) is non-linear but not the same as the

previous type, there exist positive constant performances P0 > 0, P1 > 0 and a positive

constant k (n) > 0 such that

F (P (n)) = k (P (n)− P1) (P (n)− P0)
2
.

F and the P relations present the following punishment type, there exist positive constant

performances P0 > 0, P1 > 0, P2 > 0 and a positive constant k (n) > 0 such that

F (P (n)) = k (P (n)− P2) (P (n)− P1) (P (n)− P0) .

Now we consider the special case 1. For F (P (n)) = M
d2P (n)

dn2 , let u (n) :=
√

k
M
(P (n)− P0)

≥ 0, then we obtain a stationary one-dimensional semilinear wave equation with initial condition⎧⎪⎨
⎪⎩

u′′ − u3 = 0, n ≥ n0,

u (n0) = u0 =

√
k

M
(P (n0)− P0) , u′ (n0) = u1.

(0.1)

It is clear that the function u3 is locally Lipschitz, hence by the standard theory, the local

existence of classical solutions is applicable to problem (0.1).

We would use our methods used in [1–11] to discuss problem (0.1) in two parts: blow-up

time and “the singularity and regularity of solution for higher order derivatives”.

In Section 1, we would deal with the estimates for the existence interval of the solutions of

(0.1); in Section 2, with the blow-up rate and blow-up constant; in Section 3, with the global

existence, critical point and the asymptotic behavior; in Section 4, with the null points (zero)

and triviality; in Section 5 with the stability and instability. In Sections 6 and 7, we would

study the blow-up behavior of u(k) and the regularity of the solution u of (0.1).

Notations and Fundamental Lemmas For a given function u in this work, we use

the following abbreviations:

au (n) = u (n)
2
, Eu (n0) = u2

1 −
1

2
u4

0, Ju (n) = au (n)
− 1

2 .

Definition A function g : R → R with a blow-up rate q means that g exists only in a

finite time, that is, there is a finite number T ∗ such that

lim
t→T∗

g (t)
−1

= 0 (0.2)

and there exists a non-zero β ∈ R with

lim
t→T∗

(T ∗ − t)
q
g (t) = β, (0.3)

in this case β is called the blow-up constant of g.

According to the uniqueness of the solutions to (0.1), we can rewrite au (n) = a (n) , Ju (n) =

J (n) and Eu (n) = E (n) . After some elementary calculations we obtain the following:

Lemma 1 Suppose that u is the solution of (0.1) , then we have

E (n) = u′ (n)2 − 1

2
u (n)

4
= E (n0) , (0.4)
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6u′ (n)2 = 4E (n0) + a′′ (n) , (0.5)

J ′′ (n) = 2E (n0) J (n)
3
, (0.6)

J ′ (n)2 = J ′ (n0)
2 − E (n0)J (n0)

4
+ E (n0)J (n)

4
, (0.7)

and

a′ (n) = a′ (n0) + 2E (n0) (n− n0) + 3

∫ n

n0

u (r)
4
dr. (0.8)

The following lemmas are easy to prove, so we omit their proofs.

Lemma 2 Suppose that r and s are real constants and u ∈ C2 (R) satisfies

u′′ + ru′ + su ≤ 0, u ≥ 0,

u (0) = 0, u′ (0) = 0,

then u must be null: u ≡ 0.

Lemma 3 If g (t) and h (t, r) are continuous with respect to their variables and

lim
t→T

∫ g(t)

0

h (t, r) dr

exists, then

lim
t→T

∫ g(t)

0

h (t, r) dr =

∫ g(T )

0

h (T, r) dr.

1 Estimates for the Life-Spann

To estimate the existence interval of the solution of (0.1) , we separate this section into

three parts: E (n0) < 0, E (n0) = 0 and E (n0) > 0. Here the existence interval N of u means

that u exists and makes sense only in the interval [n0, N) such that problem (0.1) possesses the

solution u ∈ C̄2 (n0, N) .

1.1 Estimates for the Existence Intervals Under E(n0) ≤ 0

We deal with two cases, E (n0) < 0, and E (n0) = 0 and a′ (n0) > 0 in this subsection, but

the case E (n0) = 0 and a′ (n0) ≤ 0 will be considered in Sections 3 and 4. Here we have the

following result.

Theorem 4 If N is the existence interval of the solution u to (0.1) with E (n0) < 0, then

N is finite. Further, for a′ (n0) ≥ 0 we have the estimate

N ≤ N∗
1 = n0 +

∫ J(n0)

0

dr√
1
2 + E (n0) r4

(1.1)

for a′ (n0) < 0,

N ≤ N∗
2 = n0 +

⎛
⎜⎜⎝
∫ ( 1

2
−1

E(n0)

) 1
4

0

+

∫ (
1
2

−1
E(n0)

) 1
4

J(n0)

⎞
⎟⎟⎠ dr√

1
2 + E (n0) r4

, (1.2)
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where α =
(

1
2
−1

E(n0)

) 1
4

. Furthermore, if E (n0) = 0 and a′ (n0) > 0, then

N ≤ N∗
3 := n0 +

2a (n0)

a′ (n0)
. (1.3)

Proof For E (n0) < 0, we know that a (n0) > 0; otherwise we would get a (n0) = 0, that

is, u0 = 0, then E (n0) = u2
1 ≥ 0, this contradicts E (n0) < 0. In this situation we separate the

proof of this Theorem into two subcases, a′ (n0) ≥ 0 and a′ (n0) < 0.

(i) a′ (n0) ≥ 0. By (0.5) and (0.7), we find that⎧⎨
⎩a′ (n) ≥ a′ (n0)− 4E (n0) (n− n0) ∀n ≥ n0,

a (n) ≥ a (n0) + a′ (n0)n− 2E (n0) (n− n0)
2 ∀n ≥ n0,

(1.4)

J ′ (n) = −
√
1

2
+ E (n0)J (n)

4 ≤ J ′ (n0) ∀n ≥ n0 (1.5)

and J (n) ≤ a (n0)
− 1

2 − 1
2a (n0)

− 3
2 a′ (n0) (n− n0) ∀n ≥ n0. Thus, there exists a finite number

N∗
1 (u0, u1) ≤ n0 +

2a(n0)
a′(n0) = n0 +

u0

u1
such that J (N∗

1 (u0, u1)) = 0 and so a (n) → ∞ as n

→ N∗
1 (u0, u1) . This means that N ≤ N∗

1 (u0, u1) . Now we estimate N∗
1 (u0, u1) . By (1.5) and

J (N∗
1 (u0, u1)) = 0 we find that

∫ J(n0)

J(n)

dr√
1
2 + E (n0) r4

= n− n0, ∀n ≥ n0 (1.6)

and hence we get estimate (1.1) .

(ii) a′ (n0) < 0. By (1.4), a′ (n0) < 0 and the convexity of a, we can find a unique finite

number n1 = n1 (u0, u1) such that⎧⎨
⎩ a′ (n) < 0 = a′ (n1) for n ∈ (n0, n1) ,

a′ (n) > 0 for n > n1,
(1.7)

and a (n1) > 0. If not, then u (n1) = 0, thus E (n) = E (n1) = u′ (n1)
2 ≥ 0; yet this is

a contradiction to E (n0) < 0. Hence, we conclude that a (n) > 0, ∀n ≥ n0, u′ (n1) = 0,

E (n0) = − 1
2u (n1)

4
and J (n1)

4
= −1

2E(n1)
.

After arguments similar to the step (i), there exists an N∗
2 := N∗

2 (u0, u1) such that the

life-spann N of u is bounded by N∗
2 , that is, N ≤ N∗

2 . By an analogous argument, using (1.7),

(0.7) and the fact that J (n1)
4
= −1

2E(n0)
and J (N∗

2 ) = 0, we conclude that

J ′ (n)2 = −E (n0)
(
J (n1)

4 − J (n)4
)

, ∀n ≥ n1,

J ′ (n)2 = E (n0)
(
J (n1)

4 − J (n)
4
)

, ∀n ∈ [n0, n1] ,

J ′ (n) = −
√
1

2
+ E (n0)J (n)

4
, ∀n ≥ n1, (1.8)

J ′ (n) =

√
1

2
+ E (n0)J (n)

4
, ∀n ∈ [n0, n1] , (1.9)
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∫ J(n1)

J(n)

dr√
1
2 + E (n0) r4

= n− n1, ∀n ≥ n1, (1.10)

∫ J(n1)

J(n0)

dr√
1
2 + E (n0) r4

= n1 − n0, (1.11)

and

N∗
2 = n1 +

∫ ( −1
2E(n0)

) 1
4

0

dr√
1
2 + E (n0) r4

. (1.12)

Estimate (1.12) is equivalent to (1.2) .

(iii) For E (n0) = 0, by (0.6) and a′ (n0) > 0, we get that J ′ (n0) < 0, J ′′ (n) = 0 and

J (n) = a (n0)
− 3

2
(
a (n0)− 1

2a′ (n0) (n− n0)
)
, ∀n ≥ n0. Thus we conclude that

a (n) = a (n0)
3

(
a (n0)− 1

2
a′ (n0) (n− n0)

)−2

, ∀n ≥ n0 (1.13)

and (1.3) is proved.

1.2 Estimates for the Life-Spann under E(n0) > 0

In this subsection we consider the case E (n0) > 0. We have the following blow-up result.

Theorem 5 If N∗ is the existence interval of u which solves problem (0.1) with E (n0) >

0, then N∗ is finite. Further, in case of a′ (n0) > 0, we have

N∗ ≤ N∗
4 (u0, u1) = n0 +

∫ J(n0)

0

dr√
1
2 + E (n0) r4

. (1.14)

In the case of a′ (n0) = 0 we have

N∗ ≤ N∗
5 (u0, u1) = n0 +

∫ ∞
0

dr√
1
2 + E (n0) r4

. (1.15)

For a′ (n0) < 0 and z (u0, u1) given by

z (u0, u1) = n0 +

∫ √a(n0)

0

dr√
E (n0) +

1
2r4

(1.16)

is the zero of a. Further we have

N∗ ≤ N∗
6 (u0, u1) := (z +N∗

5 ) (u0, u1) . (1.17)

Proof The case of a zero for u is postponed to Section 4.

i) For a′ (0) > 0, by (0.6) we have⎧⎨
⎩

mJ ′′ (n) = (mJ (n))
3
,

mJ (n0) = ma (n0)
− 1

2 , mJ ′ (n0) =
−1
2

ma (n0)
− 3

2 a′ (n0) ,

where m := (2E (n0))
1
2 . Now we set

Ẽ (n) := 2E (n0)J
′ (n)2 − 2E (n0)

2
(mJ (n))

4
. (1.18)
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From some calculations, we see that Ẽ (n) is a constant and by using (0.8) we obtain that

Ẽ (n) =
1

2
m2 = Ẽ (n0) = E (n0) , (1.19)

1

2
= J ′ (n)2 − E (n0)J (n)

4
,

a′ (n) ≥ a′ (n0) + 2E (n0) (n− n0) > 0 ∀n ≥ n0, (1.20)

J ′ (n) < 0 ∀n ≥ n0,

J ′ (n) = −
√
1

2
+ E (n0)J (n)

4 ∀n ≥ n0, (1.21)

and ∫ J(n0)

J(n)

dr√
1
2 + E (n0) r4

= n− n0 ∀n ≥ n0. (1.22)

By (1.21) , there exists a finite number N∗
4 (u0, u1) such that J (N∗

4 (u0, u1)) = 0, and from

(1.22), estimate (1.14) follows easily.

ii) From a′ (n0) = 0 = u0, E (n0) = u2
1 and (0.8) we obtain

a′ (n) = 2E (n0)n+ 3

∫ n

n0

u (r)4 dr ∀n ≥ n0, (1.23)

a (n) > 0 ∀n ≥ n0,

thus J (n) can be defined for each n > n0 and J ′ (n) < 0, ∀n > n0.

Using (0.6) , we conclude that, for each ň > n0,

J ′ (n) = −
√

J ′ (ň)2 − E (n0)
(
J (ň)

4 − J (n)
4
)
, ∀n ≥ ň, (1.24)

lim
ň→0

J ′ (ň)2 − u2
1J (ň)

4
=
1

2
, (1.25)

thus after inducing (1.24) and (1.25), estimate (1.15) follows.

(iii) For a′ (n0) < 0, by (1.20) we have a′ (n) ≥ 0 for large n.

Suppose z is the first positive number n so that a′ (n) = 0, then u (z) = 0; otherwise,

u′ (z) = 0 and E (z) = − 1
2u (z)

4
< 0, this contradicts the assumption E (n0) = E (z) > 0. After

the time n = z, same as the procedures given in the proof of (i) , using (1.22) we obtain (1.17).

1.3 Some Properties Concerning the Life-Spann N∗

1
(u0, u1)

In principle, N∗
1 (u0, u1) depends on three variables u0 and u1. Set ck :=

2u2
1

u4
0

, then

N∗
1 (u0, u1) =

√
2u−1

0

(
3
√
1− ck

)−1
∫ 4
√

1−ck

0

dr√
1− r4

.

For convenience, we consider the case u1 = 0,

N∗
1 (u0, 0) =

√
π

2
√
2
u−1

0

Γ
(

1
4

)
Γ
(

3
4

) .
Using Maple we obtain the graphs of N∗

1 (u0, 0) below:
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To grasp the property of the existence interval N∗
1 := N∗

1 (u0, u1) is very difficult, after

some computations we get

N∗
1 =

√
2
(
u4

0 − 2u2
1

)− 1
4

∫ 4

√
1− 2

u4
0

u2
1

0

dr√
1− r4

.

By the experience of studying the existence interval N∗
1 , we consider its properties with

a′ (n0) ≥ 0 in three cases:

Case 1 0 < u4
0 − 2u2

1 < 1. In this situation we find that

(i) for fixed u1, u0
∂

∂u0
N∗

1 < 0.

(ii) for fixed u0, the life-spann N∗
1 (u0, u1) decreases in u2

1.

Case 2 u4
0−2u2

1 > 1. The life-spann N∗
1 (u0, u1) = N∗

1 (s, u0) decreases in s = 4

√
1− 2

u4
0
u2

1

for fixed u0.

Case 3 u
p+1
0 − 2u2

1 = 1. On the region
{
(u0, u1) ∈ R

2
∣∣u4

0 − 2u2
1 = 1

}
, we find that

N∗
1 (u0, u1) = N∗

1 (u0) =
√
2

∫ u
−1
0

0

1√
1− r4

dr,

and that N∗
1 (u0) is monotone decreasing in u0.

2 Blow-up Rate and Blow-up Constant

In this section we study the blow-up rate and blow-up constant for a, a′ and a′′ under the
conditions in Section 1. We have got the following results.

Theorem 6 If u is the solution of the problem (0.1) with one of the following properties:

(i) E (n0) < 0,

(ii) E (n0) = 0, a′ (n0) > 0,

(iii) E (n0) > 0.

Then the blow-up rate of a is 2, and the blow-up constant K1 of a is 2, that is, for m =

1, 2, 3, 4, 5, 6,

lim
n→N ∗

m

(N∗
m − n)

2
a (n) = 2. (2.1)

The blow-up rate of a′ is 3, and the blow-up constant K2 of a
′ is 4, that is, for m = 1, 2, 3, 4, 5, 6,

lim
n→N∗m

(N∗
m − n)3 a′ (n) = 4. (2.2)
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The blow-up rate of a′′ is 4, and the blow-up constant K3 of a′′ is 12, that is, for m =

1, 2, 3, 4, 5, 6,

lim
n→N∗m

a′′ (n) (N∗
m − n)

4
= 12. (2.3)

Proof (i) Under this condition, E (n0) < 0, a′ (n0) ≥ 0 by (1.1), (1.6) and Lemma 4,

we get ∫ J(n)

0

1

N∗
1 − n

dr√
1
2 + E (n0) r4

= 1 ∀n ≥ n0, (2.4)

lim
n→N∗1

√
2

J (n)

N∗
1 − n

= 1. (2.5)

Identity (2.5) is equivalent to (2.1) for m = 1.

For E (n0) < 0, a′ (n0) < 0, by (1.9) we have also

∫ J(n)

0

dr√
1
2 + E (n0) r4

= N∗
2 − n, ∀n ≥ n0. (2.6)

Through Lemma 4 and (2.6) , therefore we get (2.1) for m = 2.

Seeing (1.5) and (1.8) , we find

lim
n→N∗m

J ′ (n) = −1
2

√
2, (2.7)

lim
n→N∗m

a′ (n) (N∗
m − n)

3
= 4, (2.8)

lim
n→N∗m

u′ (n)2 (N∗
m − n)

4
= 2 (2.9)

for m = 1, 2. Using (0.5) and (2.9) we obtain, for m = 1, 2,

lim
n→N∗m

a′′ (n) (N∗
m − n)

4
= 6 lim

n→N∗m

u′ (n)2 (N∗
m − n)

4
. (2.10)

Thus, (2.10) and (2.3) are equivalent.

(ii) For E (n0) = 0, a′ (n0) > 0, by (1.1) we get, for m = 1, 2,

a (n) = a (n0)
3

(
1

2
a′ (n0)

)−2

· (N∗
3 − n) ∀n ≥ n0. (2.11)

Therefore, estimates (2.1) , (2.2) and (2.3) for m = 3 are followed from (2.11).

(iii) For E (n0) > 0, estimates (2.1) , (2.2) and (2.3) for m = 4, 5, 6, are similar to the

above arguments (i) in the proof of this theorem.

3 Global Existence and Critical Point

In this section we study the following case that E (n0) = 0 and a′ (n0) < 0.

Here we take the global existence of the solutions to the problem (0.1) in the following

sense:

J (n) > 0, a′ (n)−2
> 0, a′′ (n)−2

> 0 ∀n ∈ [n0, N ] ,
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where N is the time that u exists, in other words, in any finite time u does not blow up in C2

sense, even though u blows up in a finite time in some sense, for example, Ck or Lk for some

k ≥ 3.

By [12, p.151] every positive proper solution of problem (0.1) has the asymptotic form

u (n) ∼ cn−1.

This result could happen and will be explained below only in the case that E (n0) =

0 and a′ (n0) < 0. Under the condition it is easy to see that J (n) > 0 ∀n ∈ (n0, N), and

a (n) = a (n0)
3

(
a (n0)− 1

2
a′ (n0) (n− n0)

)−2

, ∀n ∈ (n0, N) ,

a′ (n)−2
= a (n0)

−6
a′ (n0)

−2

(
a (n0)− 1

2
a′ (n0) (n− n0)

)6

> 0, ∀n ∈ (n0, N) ,

a′′ (n)−2 =
4

9
a (n0)

−6
a′ (n0)

−4

(
a (n0)− 1

2
a′ (n0) (n− n0)

)8

> 0, ∀n ∈ (n0, N) .

Hence we find lim
n→∞

a (n) = 0, lim
n→∞

a′ (n) = 0, lim
n→∞

a′′ (n) = 0 and

lim
n→∞

(n− n0)
2
a (n) = a (n0)

3

(
1

−2a′ (n0)

)−2

=
u4

0

u2
1

, (3.1)

lim
n→∞

(n− n0)
3
a′ (n) = a (n0)

3
a′ (n0)

(
1

−2a′ (n0)

)−3

= −2u
4
0

u2
1

, (3.2)

lim
n→∞

(n− n0)
4
a′′ (n) =

3

2
a (n0)

3
a′ (n0)

2

(
1

−2a′ (n0)

)−4

=
3

32

u4
0

u2
1

. (3.3)

Theorem 7 Suppose that u is the solution of problem (0.1) with E (n0) = 0 and a′ (n0) <

0, then u can be defined globally and estimates (3.1) , (3.2) and (3.3) are valid.

4 Existence of Zero and Triviality

In this section we discuss the triviality of the solution for problem (0.1) under the case

that E (n0) = 0, a′ (n0) = 0.

Proposition If u is the solution of problem (0.1) with E (n0) = 0and a′ (n0) = 0, then

u must be null.

Proof Under the conditions E (n0) = 0, a′ (n0) = 0, by using (0.5) , it is easy to see that

u0 = 0 = u1, herein the supremum below exists:

n1 := sup {α : a (n) ≤ 1, ∀n ∈ [n0, α]} ,

and then 2u′ (n)2 = u (n)
4 ≥ 0, a′′ (n) = 6u′ (n)2 = 3u (n)

4
= 3

2a (n)
2
. By Lemma 2 we

conclude that

a′′ (n) ≤ 6a (n) , a (n) ≡ 0 ≡ u (n) in [n0, n1] .

Continue these steps we get the assertion of this theorem.

For the case that E (n0) > 0 > a′ (n0) , we have the following result.
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Theorem 8 Suppose that u is the solution to problem (0.1) with E (n0) > 0 > a′ (n0)

and z (u0, u1) given by

z (u0, u1) = n0 +

∫ √a(n0)

0

dr√
E (n0) +

1
2r4

, (4.1)

then z (u0, u1) is the zero of a. Furthermore, we have

lim
n→z−(u0,u1)

a (n)
(
z (u0, u1) −n

)−2

= E (n0)
2
, (4.2)

lim
n→z−(u0,u1)

(
z (u0, u1) −n

)−1

a′ (n) = −2E (n0)
3
2 , (4.3)

lim
n→z−(u0,u1)

a′′ (n) = 2E (n0) . (4.4)

Proof 1) For E (n0) > 0 > a′ (n0) , by (0.4) we obtain that

a′ (n) = −2
√

E (n0) a (n) +
1

2
a (n)

3
, (4.5)

z (u0, u1) = n0 +

∫ a(n0)

0

dr

2
√

E (n0) r +
1
2r3

, (4.6)

n = n0 +

∫ a(n0)

a(n)

dr

2
√

E (n0) r +
1
2r3

, (4.7)

and

z (u0, u1) = n0 +

∫ a(n0)

0

dr

2
√

r

√
E (n0) +

1
2r2

= n0 +

∫ √a(n0)

0

dr√
E (n0) +

1
2r4

= n0 + 2
1
4 E (n0)

−1
2

∫ (2E(n0))
−1
4
√

a(n0)

0

dr√
1 + r4

. (4.8)

Thus, (4.1) is proved.

2) To claim (4.2), by (4.6), (4.7) and Lemma 3, it induces that

z (u0, u1)− n =

∫ a(n)

0

dr

2
√

E (n0) r +
1
2r3

= 2
1
4 E (n0)

−1
4

∫ (2E(n0))
−1
4
√

a(n)

0

dr√
1 + r4

,

(z (u0, u1)− n)
−1
∫ (2E(n0))

−1
4
√

a(n)

0

dr√
1 + r4

=
4

√
E (n0)

2
,

4

√
E (n0)

2
= lim

n→z−(u0,u1)
(z (u0, u1)− n)−1

∫ (2E(n0))
−1
4
√

a(n)

0

dr√
1 + r4

= lim
n→z−(u0,u1)

(z (u0, u1)− n)
−1
(2E (n0))

−1
4

√
a (n)

· lim
n→z−(u0,u1)

∫ 1

0

ds√
1 +
(
(2E (n0))

−1
4
√

a (n)s
)4

= lim
n→z−(u0,u1)

(z (u0, u1)− n)
−1
(2E (n0))

−1
4

√
a (n). (4.9)
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Thus we get conclusion (4.2).

3) Using (4.8) and (4.5) we obtain that

lim
n→z−(u0,u1,p)

(z (u0, u1, p)− n)
−1

a′ (n)

= −2 lim
n→z−(u0,u1,p)

√
a (n) (z (u0, u1, p)− n)−2

(
E (0) +

2

p+ 1
a (n)

p+1
2

)

= −2E (0)
3
2 .

4) Applying (0.5) , (4.2) and (4.3) , we find

lim
n→z−(u0,u1)

a (n) (z (u0, u1)− n)
−2

a′′ (n)

=
3

2
lim

n→z−(u0,u1)

(
a′ (n) (z (u0, u1)− n)

−1 )2 − 4E (n0) lim
n→z−(u0,u1)

a (n) (z (u0, u1)− n)
−2

= 2E (n0)
3
.

Hence (4.4) is proved.

5 Stability, Instability and Asymptotic Analysis

We now consider the applications of the theorems above to the stability theory for the

problem ⎧⎨
⎩u′′ (n) = u (n)

3
,

u (n0) = ε1, u
′ (n0) = ε2.

(5.1)

We say problem (5.1) is stable under condition F, if any nontrivial global solution u ∈
C2 (R+) of (5.1) under condition F satisfies ‖u‖C2 → 0 for |ε1| + |ε2| → 0. According to

Theorems 4–8 we have the following result.

Corollery 9.1 Problem (5.1) is stable under Eu (n0) = 0, ε1ε2 < 0, and unstable under

one of the followings:

(i) Eu (n0) < 0,

(ii) Eu (n0) = 0 < ε1ε2,

(iii) Eu (n0) > 0.

According to Theorems 4 and 5, we can obtain the following conclusions, when we recon-

sider the problem ⎧⎨
⎩u′′ (n) = u (n)3 ,

u (n0) = εu0, u
′ (n0) = ε2u1, ε > 0.

(5.2)

Theorem 9.2 If Nε is the existence interval of the solution uε to (5.2) with E (n0) < 0,

then Nε is finite. Further, for a′ (n0) ≥ 0, we have the estimate Nε ≤ N∗
1,ε = n0+ε−1 (N∗

1 − n0)

for a′ (n0) < 0,

Nε ≤ N∗
2,ε = n0 + ε−1 (N∗

2 − n0) .

Furthermore, if E (n0) = 0 and a′ (n0) > 0, then

Nε ≤ N∗
3 := n0 + ε−1 (N∗

2 − n0) . (5.3)
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Theorem 9.3 If N∗
ε is the existence interval of u which solves problem (5.2) with

E (n0) > 0, then N∗
ε is finite. Further, in case of a′ (n0) > 0 we have

N∗
ε ≤ N∗

4,ε (u0, u1) = n0 + ε−1 (N∗
4 − n0) .

In the case of a′ (n0) = 0 we have

N∗
ε ≤ N∗

5,ε (u0, u1) = n0 + ε−1 (N∗
5 − n0) .

For a′ (n0) < 0, zε (u0, u1) given by

zε (u0, u1) = n0 + ε−1 (z (u0, u1)− n0)

is the zero of uε. Further we have

N∗
ε ≤ N∗

6,ε
(u0, u1) :=

(
zε +N∗

5,ε

)
(u0, u1) .

6 Regularity of Solution to (0.1)

In this section we study the regularity of the positive solution u of the nonlinear problem

(0.1) . Using (0.4) we have

u′ (n)2 = E (n0) +
1

2
u (n)

4
, (6.1)

where E (n0) = u2
1 − 1

2u4
0.

6.1 Regularity of Solution to (0.1)

Now consider the regularity of the positive solution u of problem (0.1). We have the

following results.

Theorem 10 If u is the positive solution of problem (0.1) with the life-spann N∗, then
u ∈ Cq (n0, N

∗) for any q ∈ N and

u(2k) =

[
Ck,0

4

]∑
i=0

Ek,iu
Ck,i , (6.2)

u(2k+1) =

[
Ck,0

4

]∑
i=0

Ek,iCk,iu
Ck,i−1u′ =

[
Ck,0

4

]∑
i=0

Ok,iu
Ck,i−1u′ (6.3)

for positive integer k, where
[

Ck,0

4

]
denotes the Gaussian integer number of

Ck,0

4 ,

Ck,i = 4 (k − i)− 2n+ 1, Ok,i = Ek,iCk,i, E0,0 = 1,

Ek,0 = Ok−1,0

[
1

2
(Ck−1,0 + 1)

]
= Ek−1,0Ck−1,0

[
1

2
(Ck−1,0 + 1)

]
,

Ek,k−1 = Ok−1,k−2 (Ck−1,k−2 − 1)E (0)

= Ek−1,k−2Ck−1,k−2 (Ck−1,k−2 − 1)E (0) ,
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and

Ek,l = Ok−1,l−1 (Ck−1,l−1 − 1)E (0) +Ok−1,l

[
1

2
(Ck−1,l + 1)

]

= Ek−1,l−1Ck−1,l−1 (Ck−1,l−1 − 1)E (0) +Ek−1,lCk−1,l

[
1

2
(Ck−1,l + 1)

]

for positive integer l, 0 < l < k.

Proof Let vk be the k-th derivative of u; that is vk := u(k), and denote vk
0 = uk, v0 = u,

v1 = u′, v2 = u′′, v2
1 = (u′)2, etc. Now let us use the mathematical induction to prove (6.2).

When k = 1, we have

v2 =

[
C1,0

4

]∑
i=0

E1,iu
C1,i = E10u

C1,0 = v3
0

and

C0,0 = 1, C1,0 = 3, E1,0 = E0,0C0,0

[
1

2
(C0,0 − 1) + 1

]
= 1.

Suppose that k ∈ N and v2k =

[
Ck,0

4

]∑
i=0

Ek,i · vCk,i

0 . Then by (6.1) we obtain

v2k+1 =

[
Ck,0

4

]∑
i=0

Ek,iCk,iv
Ck,i−1
0 v1,

v2k+2 =

[
Ck,0

4

]∑
i=0

Ek,iCk,iv
Ck,i−1
0 v2 +

[
Ck,0

4

]∑
i=0

Ek,iCk,i (Ck,i − 1) v
Ck,i−2
0 v2

1 ,

v2k+2 =

[
Ck,0

4

]∑
i=0

Ok,i

[
1

2
(Ck,i + 1)

]
v

Ck,i+2
0 +

[
Ck,0

4

]∑
i=0

Ok,i (Ck,i − 1)E (0) v
Ck,i−2
0

=

[
Ck,0

4

]∑
i=0

Ok,i

[
1

2
(Ck,i + 1)

]
v

Ck+1,i

0 +

[
Ck,0

4

]∑
i=0

Ok,i (Ck,i − 1)E (0) v
Ck+1,i+1

0

= Ok,0

[(
1

2
(Ck,0 + 1)

)]
v

Ck+1,0

0 +Ok,0 (Ck,0 − 1)E (0) v
Ck+1,1

0

+Ok,1

[(
1

2
(Ck,1 + 1)

)]
v

Ck+1,1

0 +Ok,1 (Ck,1 − 1)E (0) v
Ck+1,2

0

+Ok,2

[(
1

2
(Ck,2 + 1)

)]
v

Ck+1,2

0 + · · ·

+O
k,
[

Ck,0
4

]
(

C
k,
[

Ck,0
4

] − 1

)
E (0) v

C
k+1,

([
Ck,0

4

]
+1

)
0 .

Hence

v2k+2 =

[
Ck+1,0

4

]∑
i=0

Ek+1,i · vCk+1,i

0 ,

which completes the induction, and we obtain (6.2). Using (6.2), we get (6.3).
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7 The Blow-up Rate and Blow-up Constant for u(k)

Finding out the blow-up rate and blow-up constant of u(k) of (0.1) is our main result.

Theorem 11 If u is the solution of problem (0.1) with one of the following properties

that:

(i) E (n0) < 0,

(ii) E (n0) = 0, a′ (n0) > 0,

(iii) E (n0) > 0.

Then the blow-up rate of u(2k) is 1 + 2k, and the blow-up constant of u(2k) is
∣∣∣Ek,0

(√
2
)1+2k

∣∣∣;
that is, for k ∈ N, m ∈ {1, 2, 3, 4, 5, 6} ,

lim
n→N ∗

m

u(2k) (n) (N∗
m − n)

1+2k
= (±1)Ck,0 Ek,0

(√
2
)1+2k

:= K2k. (7.1)

The blow-up rate of u(2k+1) is 2k+2, and the blow-up constant of u(2k+1) is
∣∣∣Ek,0Ck,0

(√
2
)2k+1

∣∣∣;
that is, for k ∈ N, m ∈ {1, 2, 3, 4, 5, 6} ,

lim
n→N ∗

m

u(2k+1) (n) (N∗
m − n)

2+2k
= (±)Ck,0 Ek,0Ck,0

(√
2
)2k+1

:= K2k+1, (7.2)

where Ck,0 = 2k + 1, Ek,0 =
k−1∏
i=0

[
4i2+5i+2

2

]
.

Proof Under condition (i), E (n0) < 0, a′ (n0) ≥ 0 by (1.6) and (1.1), we get

∫ J(n)

0

1

N∗
1 − n

dr√
1
2 + E (n0) r4

= 1, ∀n ≥ n0. (7.3)

Using Lemma 3 and (1.6) , we obtain lim
n→N∗1

√
2 J(n)

N∗1−n
= 1, in other words,

lim
n→N∗1

a (n) (N∗
1 − n)

2
= 2, (7.4)

and then

lim
n→N∗1

u (n) (N∗
1 − n) = ±

√
2. (7.5)

Here Ck,i = 2k+1−4i, hence we have Ck,i > Ck,j as i < j. From (6.1) and (7.5) , it follows

lim
n→N∗1

u(2k) (n) (N∗
1 − n)

Ck,0 = (±1)Ck,0 Ek,0

(√
2
)Ck,0

.

Since Ck,0 = 1 + 2k, we get (7.1) for m = 1.

By (1.5) , (7.4) and (6.2) we find that

lim
n→N∗1

J ′ (n) = − 1√
2
, (7.6)

√
2 = lim

n→N∗1

(
a (n) (N∗

1 − n)
2
)− 3

2 · lim
n→N∗1

a′ (n) (N∗
1 − n)

3
,

lim
n→N∗1

u′ (n) (N∗
1 − n)

2
= ±

√
2, (7.7)
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and

lim
n→N∗1

u(2k+1) (n) (N∗
1 − n)

Ck,0+1

= lim
n→N∗1

k−1∑
i=0

Ek,iCk,iu
Ck,i−1 (n) · u′ (n) · (N∗

1 − n)
Ck0+1

= lim
n→N∗1

Ek,0Ck,0u
Ck,0−1 (n) · u′ (n) · (N∗

1 − n)
Ck,0+1

= lim
n→N∗1

Ek,0Ck,0u
Ck,0−1 (n) · (N∗

1 − n)
Ck,0−1 · u′ · (N∗

1 − n)
2

= (±)Ck,0 Ek,0Ck,0

(√
2
)Ck,0

,

thus (7.2) is proved for m = 1.

For E (0) < 0, a′ (0) < 0, by (1.9) we have

∫ J(n)

0

dr

(N∗
2 − n)

√
1
2 + E (n0) r4

= 1 ∀n ≥ n0. (7.8)

Using Lemma 3, (7.8) and (6.1), therefore we gain the estimate (7.1) for m = 2, and by

(1.8) we get estimate (7.2) for m = 2.

Under (ii) , E (n0) = 0, a′ (n0) > 0, we have

a (n) = a (n0)
3

(
1

2
a′ (n0) (N

∗
3 − n)

)−2

∀n ≥ n0. (7.9)

In view of (7.9) and (6.1) , we get estimate (7.1) for m = 3. Also, we have J ′ (n) =
J ′ (n0) , ∀n ≥ n0 and lim

n→N∗1

a (n)
− 3

2 a′ (n) = − 1
2a (n0)

− 3
2 a′ (n0) .

By (7.9) and (6.2) , estimate (7.2) for m = 3 is completely proved.

Under (iii) , the proofs of estimates (7.1) and (7.2) for m = 4, 5, 6 are similar to the above,

we omit the argumentation.

Theorem 12 If u is the solution of problem (0.1) with E (n0) > 0 and a′ (n0) < 0, then

we have

lim
n→z−(u0,u1)

u(2k) (n) (z (u0, u1)− n)
−Ck,k−1 = (±)Ck,k−1 Ek,k−1E (n0)

Ck,k−1
2 (7.10)

and

lim
n→z−(u0,u1)

u(2k+1) (n) (z (u0, u1)− n)−Ck,k−1+1 = Ek,k−1Ck,k−1E (n0)
Ck,k−1−1 (7.11)

for k ∈ N, where z is the null point (zero) of u and

Ck,k−1 = 5− 2n, Ek,k−1 =
k−1∏
i=0

(5− 2i) (4− 2i)E (n0)
k−1

.

Proof For E (n0) > 0 and a′ (n0) < 0, we have

lim
n→z−(u0,u1)

u(2k) (n) (z (u0, u1)− n)
−Ck,k−1
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= lim
n→z−(u0,u1)

k−1∑
i=0

Ek,iu
Ck,i (n) (z (u0, u1)− n)

−Ck,k−1

= lim
n→z−(u0,u1)

Ek,k−1u
Ck,k−1 (n) (z (u0, u1)− n)−Ck,k−1

= (±1)Ck,k−1 Ek,k−1E (n0)
Ck,k−1

2 .

Therefore, (7.10) is proved.

From (6.2) , we obtain that

lim
n→z−(u0,u1)

u(2k+1) (n) (z (u0, u1)− n)
−Ck,k−1+1

= lim
n→z−(u0,u1)

k−1∑
i=0

Ek,iCk,iu
Ck,i−1 (n)u′ (n) (z (u0, u1)− n)−Ck,k−1+1

= lim
n→z−(u0,u1)

Ek,k−1Ck,k−1u
Ck,k−1−1 (n)u′ (n) (z (u0, u1)− n)−Ck,k−1+1

= Ek,k−1Ck,k−1E (n0)
Ck,k−1 .

Thus, (7.11) is obtained.
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