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Abstract. We study the non-equilibrium dynamics of a quasiperiodic quantum
Ising chain after a sudden change in the strength of the transverse field at zero
temperature. In particular, we consider the dynamics of the entanglement entropy
and the relaxation of the magnetization. The entanglement entropy increases
with time as a power law, and the magnetization is found to exhibit stretched-
exponential relaxation. These behaviors are explained in terms of anomalously
diffusing quasiparticles, which are studied in a wave packet approach. The non-
equilibrium magnetization is shown to have a dynamical phase transition.
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1. Introduction

The recent experimental progress in ultracold atomic gases in optical lattices [1–10] has opened
up fascinating new perspectives on research in the field of isolated quantum systems, both
in equilibrium and out of equilibrium. In experiments, the form of atomic interactions can
be suddenly changed by tuning an applied magnetic field near a Feshbach resonance, which
is known as a global quantum quench. On the theoretical side, one is interested in the time
evolution of different observables, such as the order parameter or some correlation function,
after a quench. The fundamental questions concerning quantum quenches include (i) the
functional form of the relaxation process in early times and (ii) the properties of the stationary
state of the system after a sufficiently long time.

Many results for quantum quenches have been obtained for homogeneous systems [11–32];
for example, the relaxation of correlation functions in space and time is generally in an
exponential form, which defines a quench-dependent correlation length and a relaxation (or
decoherence) time. Many basic features of the relaxation process can be successfully explained
by a quasiparticle picture [14, 33, 34]: after a global quench quasiparticles are created
homogeneously in the sample and move ballistically with momentum-dependent velocities.
The behavior of observables in the stationary state is generally different in integrable and
non-integrable systems. For non-integrable models, thermalization is expected [12–22] and
the distribution of an observable is given by a thermal Gibbs ensemble; however, in some
specific examples this issue has turned out to be more complex [23–25, 31]. By contrast, it was
conjectured that stationary state averages for integrable models are described by a generalized
Gibbs ensemble [12], in which each integral of motion is separately associated with an effective
temperature.

Concerning quantum quenches in inhomogeneous systems, there have been only a few
studies in specific cases; for example, entanglement entropy dynamics in random quantum
chains [35–37] and in models of many-body localization [38, 39]. In some of these cases the
eigenstates are localized, which prevents the system from reaching a thermal stationary state.
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A special type of inhomogeneity, interpolating between homogeneous and disordered
systems, is a quasicrystal [40, 41] or an aperiodic tiling [42]. Quasicrystals are known to have
anomalous transport properties [43, 44], which is due to the fact that in these systems the long-
time motion of electrons is not ballistic, but an anomalous diffusion described by a power law.
One may expect that the quasiparticles created during the quench have a similar dynamical
behavior, which in turn affects the relaxation properties of quasicrystals.

Quasicrystals of ultracold atomic gases have been experimentally realized in optical lattices
by superimposing two periodic optical waves with different incommensurate wavelengths. An
optical lattice produced in this way realizes a Harper’s quasiperiodic potential [47, 48], for
which the eigenstates are known to be either extended or localized depending on the strength
of the potential. Different phases of the Bose–Hubbard model with such a potential have been
experimentally investigated [45, 46]. There have also been theoretical studies concerning the
relaxation process in the Harper potential [49, 50].

In this paper, we consider the non-equilibrium quench dynamics of the quantum Ising
chain in one-dimensional quasicrystals. The quantum Ising chain in its homogeneous version
is perhaps the most studied model for non-equilibrium relaxation [34, 51–66]. Our study
extends previous investigations in several respects and seeks to obtain new insights into quench
dynamics in inhomogeneous systems. We focus on the Fibonacci lattice, for which many
equilibrium properties of the quantum Ising model are known [67–73]; to our knowledge, this is
the first study of quantum quenches in such a lattice. Using free-fermionic techniques [75], we
numerically calculate the time dependence of the entanglement entropy as well as the relaxation
of the local magnetization for large lattices. The numerical results are interpreted by a modified
quasiparticle picture, in which the quasiparticles are represented by wave packets; we also obtain
diffusive properties of the wave packets.

The structure of this paper is as follows. The quasiperiodic quantum Ising model and its
equilibrium properties are described in section 2. The global quench process and some known
results for homogeneous and random chains are presented in section 3. Our numerical results
for the quasiperiodic chain are presented and interpreted in section 4. This paper is concluded
with a discussion; some details of the free-fermionic calculation of the local magnetization are
presented in the appendix.

2. The model and its equilibrium properties

We consider the quantum (or transverse) Ising model defined by the Hamiltonian

H= −
1

2

[∑
i

Jiσ
x
i σ x

i+1 + h
∑

i

σ z
i

]
, (1)

where σ x
i and σ z

i are Pauli matrices at site i . The interactions, Ji , are generally site dependent,
which are parameterized as

Ji = Jr fi , (2)

where r > 0 is the amplitude of the inhomogeneity, and the integers fi are taken from a
quasiperiodic sequence.
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Quasiperiodic lattices can be generated in different ways, such as by the cut-and-project
method. Here, we use the following algebraic definition for a one-dimensional quasiperiodic
sequence:

fi = 1 +

[
i

ω

]
−

[
i + 1

ω

]
, (3)

where [x] denotes the integer part of x and ω > 1 is an irrational number. The Fibonacci
sequence generated by the substitution rule: 0 → 01 and 1 → 0 starting with 0 corresponds
to the formula in (3) with the golden mean ω = (

√
5 + 1)/2. The parameter J in (2) is fixed with

J = r−ρ , where

ρ = lim
L→∞

∑L
i=1 fi

L
= 1 −

1

ω
(4)

is the fraction of units 1 in the infinite sequence. Note that r = 1 represents the homogeneous
lattice.

The essential technique in the solution of H is the mapping to spinless free fermions
[75, 76]. First, we express the spin operators σ

x,y,z
i in terms of fermion creation (annihilation)

operators c†
i (ci ) by using the Jordan–Wigner transformation [74]: c†

i = a+
i exp[π ı

∑i−1
j a+

j a
−

j ]

and ci = exp[π ı
∑i−1

j a+
j a

−

j ]a−

i , where a±

j = (rx
j ± ıry

j )/2. Here and throughout the paper, we

denote the imaginary unit
√

−1 by ı to avoid confusion with the integer index i . The Ising
Hamiltonian in (1) can then be written in a quadratic form in fermion operators:

H= −

L∑
i=1

h

(
c†

i ci −
1

2

)
−

1

2

L−1∑
i=1

Ji(c
†
i − ci)(c

†
i+1 + ci+1) +

1

2
JL(c†

L − cL)(c†
1 + c1) exp(ıπN ),

(5)

where N =
∑L

i=1 c†
i ci is the number of fermions. The Hamiltonian (5) can be diagonalized

through a canonical transformation [75], in which a new set of fermion operator ηk is introduced
by

ηk =

L∑
i=1

[
1

2
(8k(i) + 9k(i)) ci +

1

2
(8k(i) − 9k(i)) c†

i

]
, (6)

where the 8k(i) and 9k(i) are real, and normalized by
L∑

k=1

8k(i)8k( j) =

L∑
k=1

9k(i)9k( j) = δi j . (7)

We then obtain the diagonal form of H:

H=

L∑
k=1

εk

(
η

†
k ηk −

1

2

)
(8)

in terms of the new fermion creation (annihilation) operators η
†
k (ηk). The energies of free

fermionic modes, εk , and the components, 8k(i) and 9k(i), can be obtained from the solutions
of the eigenvalue problem:

εk9k(i) = − h8k(i) − Jk8k(i + 1),

εk8k(i) = − Jk−19k(i − 1) − h9k(i). (9)
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The spectrum of free-fermionic excitations, εk in (8), plays a key role in equilibrium and non-
equilibrium properties of the system. In equilibrium and in the thermodynamic limit the model
has a quantum critical point at h = hc, the properties of which are controlled by the low-
energy excitations. The value of hc is determined by the equation [76] ln hc = ln J , where the
overbar denotes an average over all sites. With the parameterization given above, the critical
point is given by hc = 1, independently of r . The lowest gap, 1E = ε1, is zero for h < hc,
and vanishes as 1E ∼ (hc − h)ν , as h approaches hc. The singularity of the gap, measured
by the gap-exponent ν = 1, does not depend on r ; the same is true for the singularity of the
specific heat: Cv ∼ ln |h − hc|. Thus the transition belongs to the Onsager [77] universality class,
irrespectively of r . This means that the quasiperiodic modulation of the couplings represents
an irrelevant perturbation at the critical point of the homogeneous model [78]. For h < hc

the system is in the ordered phase, so that the local magnetization at site l is ml > 0. Upon
approaching the critical point, the local magnetization goes to zero following a power law:
the bulk magnetization mb decays as mb(h) ∼ (hc − h)1/8, which defines the critical exponent
βb = 1/8, while the surface magnetization m1 vanishes as m1(h) ∼ (hc − h)βs with βs = 1/2.
For h > hc the system is in the disordered phase and the local magnetization vanishes in the
thermodynamic limit.

While in equilibrium only the low-energy excitations are of importance, the complete
energy spectrum contributes to non-equilibrium properties, which are investigated in this paper.

3. Non-equilibrium properties of homogeneous and random chains

We consider a quench process in which at time t = 0 the strength of the transverse field is
changed suddenly from h0 to another value, say h. The initial Hamiltonian with h0 for t < 0 is
denoted by H0, and its ground state is |9

(0)

0 〉. For t > 0 the new Hamiltonian H with h governs
the coherent time evolution of the system; for example, an observable, represented by the
operator Â, has the time evolution in the Heisenberg picture as: Â(t) = exp(ı tH) Â exp(−ı tH),
and its expectation value for t > 0 is given by A(t) = 〈9

(0)

0 | Â(t)|9(0)

0 〉. Dynamics of the system
out of equilibrium is governed by the complete spectrum of H and not only by the lowest
excitations. Therefore, Hamiltonians with different spectral properties will have completely
different non-equilibrium properties.

The form of the inhomogeneity in the couplings is generally crucial to the spectrum of a
Hamiltonian. For example, the spectrum of the homogeneous quantum Ising chain is absolutely
continuous; thus all the eigenstates are extended. In contrast, the random chain has a singular
point spectrum and the eigenstates are localized. The spectrum of quasiperiodic chains lies
between the above-mentioned two limiting cases [79, 80]; for example, the spectrum of the
Fibonacci chain defined in (1) is given by a Cantor set of zero Lebesgue measure, signaling
that the spectrum is of a multifractal type, and it is called purely singular continuous [81] in the
mathematical denotation. See [79] for precise mathematical definitions of different spectra.

Below we first briefly review non-equilibrium properties of the entanglement entropy and
local magnetization after a quench in the homogeneous chain and in random chains.

3.1. Entanglement entropy

The entanglement entropy, S`(t), of a block of the first ` sites in the chain is defined as
S`(t) = Tr`[ρ`(t) ln ρ`(t)] in terms of the reduced density matrix: q`(t) = Tri>`|90(t)〉〈90(t)|.
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Here |90(t)〉 denotes the ground state of the complete system at time t > 0. The details of the
calculation of S` (t) in the free-fermion representation can be found in the appendix of [82].

For the homogeneous chain (corresponding to the case with r = 1 in (2)) in the limit
L → ∞ and for ` � 1, the results can be summarized as follows [33, 36]:

S`(t) =

{
αt t < `/vmax,

β` t � `/vmax,
(10)

where vmax is a maximum velocity. For a quench to a quantum critical point, the result in (10) is
the consequence of conformal invariance [33]; for the other cases, this behavior can be explained
in the framework of a semiclassical (SC) theory [33, 34]: entanglement between the subsystem
and its environment arises when two quantum entangled quasiparticles, which are emitted at
t = 0 and move ballistically with opposite velocities, arrive in both the subsystem and the
environment simultaneously. The prefactors α = α(h0, h) and β = β(h0, h) have been exactly
calculated [54] and these agree with the results obtained from the SC theory [34]. In [83],
α(h0 = 0, h) has been evaluated in a closed formula, which is a continuous function of h, but at
the critical point h = 1, its second derivative is logarithmically divergent.

In the random chain the excitations are localized and therefore the dynamical entangle-
ment entropy approaches a finite limiting value. When the quench is performed to the
random quantum critical point, the average entropy increases ultra-slowly as log[log(t)]
[36]. This behavior can be explained in terms of the strong disorder renormalization group
[36, 39, 84, 85].

3.2. Local magnetization

Another quantity we consider is the local magnetization, ml(t), at a position, l, of an open chain.
Following Yang [86], this is defined for large L as the off-diagonal matrix element:

ml(t) = 〈9
(0)

0 |σ x
l (t)|9(0)

1 〉, (11)

where |9
(0)

1 〉 is the first excited state of the initial Hamiltonian. The calculation of the
magnetization in terms of free fermions is outlined in the appendix.

For the homogeneous chain the time dependence of the local magnetization has been
numerically calculated in [34, 58]. For the quench performed within the ordered phases, h0 < 1
and h < 1, the results in the limit L → ∞ and l � 1 are given by

ml (t) ∼

{
exp(−t/τ) t < l/vmax,

exp(−l/ξ) t � l/vmax,
(12)

where the relaxation (decoherence) time τ and the correlation length ξ depend on the quench
parameters h0 and h. Exact expressions for these quantities were derived recently [61, 63, 64].
In the small h0 and h limit, accurate results can also been obtained from the SC theory [34, 87].
In this framework, the quasiparticles in terms of the σ operators are represented by ballistically
moving kinks. Each time a kink passes a site l, the σ z

l operator changes sign; thus kinks that
pass a site an even number of times have no effect on the local magnetization. Summing up
the contributions of all kinks, we obtain the functional form in (12). If the quench is performed
close to the critical point, the kinks have a finite width; this effect can be taken into account in
a modified SC theory [34, 65], which provides exact results.
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For quenches involving the disordered phase with h0 > 1 and/or h > 1, the results obtained
numerically [34, 58] or analytically by the form-factor approach [61, 63, 64] indicate that for
bulk spins in large systems the first equation of (12) is modified as

ml (t) ' A(t) exp(−t/τ), (13)

where the prefactor A(t) changes sign during the relaxation process, say A(t) > 0 for ti < t <

ti+1, A(t) < 0 for ti+1 < t < ti+2, etc. The period of these oscillations: tper(h) ' (ti+1 − ti) defines
a characteristic time scale, which increases and becomes divergent as h → 1+. This is a signal
of a dynamical phase transition in the system. The order parameter can be defined as

O = lim
t→∞

1

t

∫ t

0
[|A(t ′)| − A(t ′)]dt ′, (14)

which is positive (O > 0) in the oscillatory phase and O = 0 in the non-oscillatory phase.
In a disordered chain away from the random quantum critical point the bulk magnetization

approaches a finite limiting value, which reflects the localized nature of the excitations. After a
quench performed to the critical point, the average bulk magnetization has been found to vanish
asymptotically in a very slow way [88], mb(t) ∼ [ln(t)]−A, where A > 0 is a disorder-dependent
constant.

4. The results for quasiperiodic chains

In this section, we present our results for the quasiperiodic quantum Ising chain after a global
quench, obtained by numerical calculations based on the free-fermion representation of the
model. We concentrate on the Fibonacci chain with the parameter ω defined in (3) being the
golden mean. We consider finite chains with a length fixed at a Fibonacci number Fn. We
have calculated the entanglement entropy and the local magnetization for system sizes up
to L = F17 = 1597. For the numerical calculation, we solved Hermitian and anti-Hermitian
eigenvalue problems, and calculated the complex determinants using the LAPACK routine. For
a given set of parameters (h0, h and r ) the time dependence of the entropy or the magnetization
of a chain with L = 1597 was obtained in about 1 day of CPU time on a 2.5 GHz processor.

Below we present the results for these two quantities separately.

4.1. Entanglement entropy

For a chain of total length Fn with periodic boundary conditions, we have calculated the
entanglement entropy S` between a block of length ` = Fn−2 and its environment that has a
length of Fn−1. Various values of 0 < r < 1 for the inhomogeneity amplitude were considered.
We start our numerical calculations from the fully ordered state with h0 = 0 to a state with h > 0
in both the ordered and the disordered phases, as well as at the critical point. The numerical
results for S`(t) −S`(0) are shown in figure 1. For all the cases considered, S`(t) exhibits two
time regimes: in the late-time regime, the entropy is saturated to an L-dependent value, similar
to the behavior for the homogeneous chain; in the early-time regime, it increases with time as a
power-law form:

S(t) ∼ tσ (15)

with some exponent σ < 1. Our numerical results show that the exponent σ depends on the value
of the transverse field in the final state, while it does not vary (significantly) with the initial h0.
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Figure 1. Dynamical entropy after a quench from h0 = 0 to various values
of h at the aperiodicity parameters (a) r = 0.75, (b) r = 0.5 and (c) r = 0.25.
The solid lines are the results for L = F16 = 987, and the dashed lines (only at
h = 0.25, h = 0.5 and h = 0.75) correspond to the data for L = F17 = 1597. The
‘noise’ (irregular variation) present on the curves in the small t regime is due
to such low-energy excitations, which are related to the local properties of the
quasiperiodic chain and are independent of the chain lengths.

The values of σ for r = 0.25, 0.5 and 0.75 are plotted in figure 6; for all the cases considered,
σ reaches its maximum at the critical point h = 1, and the increase with h in the ordered
phase (h < 1) is much faster than the decrease in the disordered phase (h > 1). Furthermore,
we found that the exponent σ decreases with stronger inhomogeneity, that is, with smaller
value of r .

The power-law time dependence of the entanglement entropy in (15) is a new feature of
the quasiperiodic system: the increase in entropy is slower than in the homogeneous chain, but
faster than in a random chain. This behavior can be explained in terms of quasiparticles that
are emitted at time t = 0, and subsequently move classically by anomalous diffusion, which has
a power-law relationship between displacement and time, x ∼ t D, with a diffusion exponent
0 < D < 1. We note that in a homogeneous chain, pairs of quasiparticles that contribute
to the entanglement entropy move ballistically (i.e. x ∼ t) rather than moving by diffusion,
which results in the linear growth of the entanglement entropy with time [33] (figure 2). The
dynamics of the quasiparticles in our quasiperiodic lattice will be studied in more detail in
section 4.3.
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(a)

time

space

t

(b)

time

space

t

Figure 2. Schematic illustration of the light cones of quasiparticles for a
homogeneous quantum Ising chain (a) and for a chain with an aperiodic modu-
lation of the couplings (the thin/thick lines between sites represent weak/strong
couplings according to a Fibonacci sequence) (b). The quasiparticle excitations
emitted at time t = 0 move ballistically in the homogeneous lattice, while
their motion is anomalous diffusive with x ∼ t D (D < 1) in the quasiperiodic
lattice. Pairs of quasiparticles moving to the left or right from a given point are
entangled; they will contribute to the entanglement entropy between a region A
(the region with orange sites) and the rest of the chain, region B, if they arrive
simultaneously in A and B.

4.2. Local magnetization

The local magnetization, ml(t), is calculated for open chains of length L = Fn. Generally,
ml(t) has a monotonic position dependence: ml1(t) > ml2(t) for l1 < l2 < L/2. We measured
the magnetization at site l = Fn−1, which is considered as the bulk magnetization and denoted
by mb(t). We have also studied the behavior of the surface magnetization, m1(t), for which
some exact results are obtained.

We study the asymptotic behavior of the surface magnetization (given in (A.16)) for
large t after a quench. If the quench is performed to the ordered phase, h < 1, the lowest
excitation energy is ε1 = 0 (i.e. cos(ε1t) = 1); consequently, P1,2k−1(t) in (A.7) has a time-
independent part. This results in a non-oscillating contribution to the surface magnetization:
m1 = limt→∞

∫ t
0 m1(t ′) dt ′, which is given by

m1 = 81(1)

L∑
j=1

81( j)8(0)

1 ( j) (16)

and defines its stationary value. Recall that 81(1) = m1(h, t = 0), i.e. it is equal to the
equilibrium surface magnetization [89, 90], which is finite for h < 1, and zero in the disordered
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Figure 3. Double logarithm of the bulk magnetization as a function of the
logarithm of the time. During the quench the transverse field is changed from
h0 = 0 to different values of h at the aperiodicity parameter r = 0.75 (a), r =

0.5 (b) and r = 0.25 (c). The length of the chain is L = F17 = 1597 and the
magnetization is considered at site l = F16 = 987. In panel (d), ln |mb(t)| is
shown as a function of t in the window 50 < t < 100 for different values of h
at r = 0.5. The oscillations in ln |mb(t)| (i.e. in the prefactor A(t)) occur when h
is larger than a certain value h∗ (here h∗

≈ 0.85), and the oscillations disappear
for h < h∗; the dynamical phase transition described in the main text occurs at h∗.

phase. Similarly, 8
(0)

1 (1) > 0 for h0 < 1 and zero otherwise. From this it follows that the
stationary non-equilibrium surface magnetization is m1>0, if both h < 1 and h0 < 1. Otherwise
the stationary surface magnetization vanishes. If the quench starts from the fully ordered initial
state h0 = 0, then 8

(0)

1 ( j) = δ1, j and m1 = 82
1(1); thus we obtain the simple relation

m1(h) = [m1(h, t = 0)]2, (17)

which is generally valid between the stationary value of the non-equilibrium surface
magnetization and its equilibrium value. From (17) it follows that the critical exponent βne

s
for the non-equilibrium surface magnetization and the critical exponent βs for the equilibrium
surface magnetization are related as βne

s = 2βs. According to (17) and [91], for the Fibonacci
chain close to the critical point h → hc = 1, we have m1(h) ∼ 1 − h2

= (hc − h)(hc + h) ∼

hc − h; thus βne
s = 1.

We numerically calculated the time dependence of the bulk magnetization after a quench
from the fully ordered initial state, h0 = 0, to different values of h. For fixed values of the
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1

h
∗

r

Figure 4. Position of the dynamical critical point for different values of the
aperiodicity parameter in a double-logarithmic plot. The straight line has a slope
α = 0.24.

inhomogeneity r = 0.25, 0.5 and 0.75, the results for the double logarithm of |mb(t)| are shown
in figures 3(a)–(c) as functions of ln t . In each case one can observe a linear dependence, which
implies that the magnetization has asymptotically a stretched exponential time dependence

mb(t) ∼ A(t) exp (−Ctµ) , (18)

which corresponds to equation (13) for a homogeneous system, with µ = 1. Before analyzing
the decay exponent µ, we first study the behavior of the prefactor A(t). Like in a homogeneous
chain as discussed in section 3.2, there is a dynamical phase transition between a non-oscillating
phase for h < h∗(r), where the order-parameter O defined in (14) is zero, and an oscillating
phase for h > h∗(r), where O > 0. In the oscillating phase, the characteristic time scale defined
as the period time, tper(h, r), becomes divergent as h → h∗(r)+. An example of this behavior
is illustrated in figure 3, panel (d), in which ln |mb(t)| as a function of t is shown in the
window 50 < t < 100 for different values of h at r = 0.5; as seen in this figure, the curves
for h = 0.86, 1.0 and 1.25 oscillate, whereas the oscillations vanish for h = 0.81 and 0.84. We
identify the dynamical phase transition point as h∗

= 0.850(5). In this quasiperiodic model
the dynamical phase transition does not coincide with the equilibrium phase transition, since
h∗(r) < 1 for r < 1. Estimates of h∗(r) versus r are shown in figure 4; the data are well
approximated by a power law h∗(r) ∼ rα with α = 0.24(3).4

The exponent µ describing the decay of the local magnetization depends on both h and r ;
by contrast, it does not vary significantly with h0, at least for h0 < h. Our results for the critical
exponents µ = µ(h, r) are plotted in figure 6 for r = 0.75, 0.5 and 0.25 as functions of h. The
exponent µ reaches its maximum at the dynamical phase transition point h∗(r).

4 No oscillation of the magnetization is expected if all sites are ‘locally’ in the ferromagnetic phase. This condition
is satisfied for a weakly coupled site having one strong (Js) and one weak (Jw) bond and if ln h < ln Js + ln Jw,
which means that h < r2/ω−1. The numerical results in figure 4 indicate that the critical value h∗(r) coincides with
r2/ω−1.
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Figure 5. Time-dependent width of the wave packet at different values of h for
r = 0.75 (a), r = 0.5 (b) and r = 0.25 (c).

4.3. Interpretation by wave packet dynamics

As is known from previous studies on the homogeneous chain, dynamical features of the
entanglement entropy and the local magnetization can be well described by the dynamics of
quasiparticles. To understand the dynamical properties of the quasiparticles emitted after a
quantum quench in the quasiperiodic lattice, we regard the quasiparticles as wave packets and
study their dynamics using a method that has been applied to studies of transport properties of
quasicrystals [44, 92].

We construct a wave packet connecting sites k and l at time t in the form

Wl,k(t) =
1

2

∑
q

{cos(εq t)[8q(l)8q(k) + 9q(l)9q(k)] − ı sin(εq t)[8q(l)9q(k) + 8q(k)9q(l)]},

(19)

which is localized at t = 0 since Wl,k(0) = δl,k (cf equation (7)). For a Hamiltonian with
eigenfunctions φq(l) and eigenvalues εq , a wave packet can be obtained by Wl,k(t) =∑

q cos(εq t)φq(l)φq(k), which corresponds to the first term in (19). We note that (19) is just
a linear combination of the four time-dependent factors in (A.7), which describe the time
dependence of the fermion operators. The width of the wave packet starting from site k after
time t is given by

d(k, t) =

[∑
l

(k − l)2
|Wl,k(t)|

2

] 1
2

. (20)
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Figure 6. Scaling exponents calculated from the time dependence of the width
of the wave packet, from the entanglement entropy and from the magnetization
at different values of h for r = 0.75 (a), r = 0.5 (b) and r = 0.25 (c). The full
lines connecting the diffusion exponents are a guide to the eye.

The spreading of a wave packet in a perfect crystal with an absolutely continuous energy
spectrum is known to be ballistic, i.e. the width increases linearly in time. A heuristic argument
is the following [93]: the energy scale 1ε defined by the typical variation of the energy levels is
proportional to the inverse of the time that a wave packet needs to spread over the chain. In the
case of the absolutely continuous spectrum, we have 1ε ∼ L−1, which gives d ∼ L ∼ t . In the
case of a singular continuous spectrum as for our quasiperiodic lattice, there are many energy
scales 1ε ∼ L−1/α with a number of exponents α. One then expects that for large t the wave
packet in the infinite quasiperiodic lattice shows anomalous diffusion in the form d(k, t) ∼ t D(k)

with a diffusion exponent D(k), which may depend on the starting position. Here we determine
the value of D(k) numerically.

After a global quench, quasiparticles are emitted everywhere in lattices; therefore d(k, t)
should be averaged over different initial positions

d(t) = d(k, t) ∼ t D. (21)

In our numerical calculations chains of length L = F17 = 1597 with periodic boundary
conditions were considered. First we have confirmed that the wave packet constructed in our
method moves ballistically in the homogeneous chain (with r = 1), corresponding to D = 1. In
the quasiperiodic chains the motion is indeed anomalous diffusive with D < 1, which is seen
in figure 5 where the average widths of the wave packet are presented as functions of time in a
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log–log plot for various values of h and r = 0.75, 0.5 and 0.25. The diffusion exponent D for
given h and r corresponds to the slope of the linear part of the function.

The variation of D with h at a fixed r is shown in figure 6, compared with the exponent
σ for the entanglement entropy and the exponent µ for the local magnetization. Here one can
observe that the agreement between these three exponents is very good for h < h∗(r), i.e. in the
non-oscillating phase, but the exponent for the magnetization deviates in the oscillating phase
(h > h∗(r)). The discrepancy in the oscillating phase implies that the SC picture breaks down
in the oscillating phase, where the quasiparticles cannot be well described by the moving kinks
in the magnetization.

5. Discussion

In this paper, we have studied the non-equilibrium dynamics of quasiperiodic quantum Ising
chains after a global quench. In a quench process, the complete spectrum of the Hamiltonian is
relevant for the time evolution of various observables. For the quasiperiodic quantum Ising chain
the spectrum is in a very special form, which is given by a Cantor set of zero Lebesgue measure,
i.e. purely singular continuous. We have calculated numerically two quantities: the dynamical
entanglement entropy and the relaxation of the local magnetization. The entanglement entropy
is found to increase in time as a power law (see (15)), whereas the bulk magnetization decays
in a stretched exponential way (see (18)). Both behaviors can be explained in a quasiparticle
picture, in which the quasiparticles move by anomalous diffusion in the quasiperiodic lattice.
The diffusion exponent has been calculated by a wave packet approach, and good agreement
with the exponents we obtained for the entropy and for the magnetization has been found. We
note that the anomalous dynamics found in the global quench process is similar to the transport
properties of quasicrystals.

Relaxation of the bulk magnetization is found to present a non-equilibrium dynamical
phase transition. The non-oscillating phase, in which the magnetization is always positive, and
the oscillating phase, in which the sign of the magnetization varies periodically in time, are
separated by a dynamical phase transition point, at which the time scale of oscillations diverges.
This singularity point, due to collective dynamical effects, is different from the equilibrium
critical point.

A similar non-equilibrium dynamical behavior is expected to hold for other quasiperiodic
or aperiodic quantum models as long as the spectrum of the Hamiltonian is also purely singular
continuous; there is a large class of such models, for example the Thue–Morse quantum Ising
chain. If, however, the spectrum of the Hamiltonian of the model is in a different type, such as
the Harper potential which has extended or localized states, the non-equilibrium dynamics is
expected to be different from the case we consider in this paper.
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Appendix. Free-fermionic calculation of the time-dependent local magnetization

To calculate the local magnetization in (11), we need to first calculate the time dependence of the
spin operator σ x

l (t) at site l in the Heisenberg picture. We introduce at each site two Majorana
fermion operators, ǎ2l−1 and ǎ2l , defined in terms of the free fermion operators η

†
k and ηk (given

in (6)) as

ǎ2l−1 =

L∑
k=1

8k(l)(η
†
k + ηk),

ǎ2l = − ı
L∑

k=1

9k(l)(η
†
k − ηk). (A.1)

These satisfy the commutation relations

ǎ†
l = ǎl, {ǎl, ǎk} = 2δl,k. (A.2)

The spin operators are then expressed in terms of the Majorana operators as

σ x
l = ı l−1

2l−1∏
j=1

ǎ j (A.3)

and the local magnetization in (11) is then given as the expectation value of the product of
fermion operators with respect to the ground state

ml(t) = (ı)l−1

〈
9

(0)

0 |

2l−1∏
j=1

ǎ j(t)η1|9
(0)

0

〉
, (A.4)

where we have used |9
(0)

1 〉 = η1|9
(0)

0 〉. The expression in (A.4)—according to Wick’s
theorem—can be expressed as a sum of products of two-operator expectation values. This can
be written in the compact form of a Pfaffian, which in turn can be evaluated as the square root
of the determinant of an antisymmetric matrix:

ml(t) = (−ı)l−1

∣∣∣∣∣∣∣∣∣∣

〈ǎ1(t)ǎ2(t)〉 〈ǎ1(t)ǎ3(t)〉 · · · 〈ǎ1(t)ǎ2l−1(t1)〉 〈ǎ1(t)η1〉

〈ǎ2(t)ǎ3(t)〉 · · · 〈ǎ2(t)ǎ2l−1(t)〉 〈ǎ2(t)η1〉

. . .
...

〈ǎ2l−2(t)ǎ2l−1(t)〉 〈ǎ2l−2(t)η1〉

〈ǎ2l−1(t)η1〉

∣∣∣∣∣∣∣∣∣∣
= ±

[
det Ci j

]1/2
, (A.5)

where Ci j is the antisymmetric matrix Ci j = −C j i , with the elements of the Pfaffian (A.5)
above the diagonal. (Here and in the following, we use the shorthand notation: 〈· · · 〉 = 〈9

(0)

0 | ·

· · |9
(0)

0 〉.)
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Below we describe how the time evolution of the spin operator σ x
l follows from the time

dependence of the Majorana fermion operators. Inserting η
†
k(t) = eıtεkη

†
k and ηk(t) = e−ıtεkηk

into (A.1), one obtains

ǎm(t) =

2L∑
n=1

Pm,n(t)ǎn (A.6)

with

P2l−1,2k−1 =

∑
q

cos(εq t)8q(l)8q(k),

P2l−1,2k = −

∑
q

sin(εq t)8q(l)9q(k),

P2l,2k−1 =

∑
q

sin(εq t)8q(k)9q(l),

P2l,2k =

∑
q

cos(εq t)9q(l)9q(k). (A.7)

The two-operator expectation values are given by

〈ǎm(t)ǎn(t)〉 =

∑
k1,k2

Pm,k1(t)Pn,k2(t)〈ǎk1 ǎk2〉. (A.8)

The equilibrium correlations in the initial state with a transverse field h0 are

〈ǎ2m−1ǎ2n−1〉 = 〈ǎ2m ǎ2n〉 = δm,n,

〈ǎ2m−1ǎ2n〉 = −〈ǎ2m ǎ2n−1〉 = ıG(0)
n,m, (A.9)

where the static correlation matrix G(0)
m,n is given by

G(0)
m,n = −

∑
q

9(0)
q (m)8(0)

q (n), (A.10)

where 9(0)
q (m) and 8(0)

q (n) are the components of the eigenvectors in (9), calculated for the
initial Hamiltonian. Then (A.8) can be written in the form

〈ǎm(t)ǎn(t)〉 = δm,n + ı0m,n(t) (A.11)

with

02l−1,2m−1 =

∑
k1,k2

[
G(0)

k2,k1
P2l−1,2k1−1 P2m−1,2k2 − G(0)

k1,k2
P2l−1,2k1 P2m−1,2k2−1

]
,

02l−1,2m =

∑
k1,k2

[
G(0)

k2,k1
P2l−1,2k1−1 P2m,2k2 − G(0)

k1,k2
P2l−1,2k1 P2m,2k2−1

]
,

02l,2m−1 = −

∑
k1,k2

[
G(0)

k2,k1
P2l,2k2 P2m−1,2k1−1 − G(0)

k1,k2
P2l,2k2−1 P2m−1,2k1

]
,

02l,2m =

∑
k1,k2

[
G(0)

k2,k1
P2l,2k1−1 P2m,2k2 − G(0)

k1,k2
P2l,2k1 P2m,2k2−1

]
. (A.12)
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In (A.5) there are also the contractions

5m = 〈9
(0)

0 |ǎm(t)η1|9
(0)

0 〉

=

∑
n

Pm,n〈9
(0)

0 |ǎnη1|9
(0)

0 〉, (A.13)

where

〈9
(0)

0 |ǎ2l−1η1|9
(0)

0 〉 = 8
(0)

1 (l),

〈9
(0)

0 |ǎ2lη1|9
(0)

0 〉 = ı9(0)

1 (l). (A.14)

Thus, finally the square of the local magnetization is given by the determinant

m2
l (t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 01,2 01,3 · · · 01,2l−1 51

−01,2 0 02,3 · · · 02,2l−1 52

−01,3 −02,3 0 · · · 03,2l−1 53

. . .
...

−01,2l−1 · · · 0 52l−1

−51 · · · −52l−1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (A.15)

As a special case, the surface magnetization is expressed as

m1(t) = 51 =

L∑
j=1

P1,2 j−1(t)8
(0)

1 ( j) − ı
L∑

j=1

P1,2 j(t)9
(0)

1 ( j). (A.16)
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Cramer M, Flesch A, McCulloch I A, Schollwöck U and Eisert J 2008 Phys. Rev. Lett. 101 063001
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[18] Barthel T and Schollwöck U 2008 Phys. Rev. Lett. 100 100601
[19] Kollar M and Eckstein M 2008 Phys. Rev. A 78 013626
[20] Sotiriadis S, Calabrese P and Cardy J 2009 Europhys. Lett. 87 20002
[21] Roux G 2009 Phys. Rev. A 79 021608

Roux G 2010 Phys. Rev. A 81 053604
[22] Sotiriadis S, Fioretto D and Mussardo G 2012 J. Stat. Mech. P02017

Fioretto D and Mussardo G 2010 New J. Phys. 12 055015
Brandino G P, De Luca A, Konik R M and Mussardo G 2012 Phys. Rev. B 85 214435
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[73] Iglói F, Juhász R and Zimborás Z 2007 Europhys. Lett. 79 37001
[74] Jordan P and Wigner E 1928 Z. Phys. 47 631
[75] Lieb E, Schultz T and Mattis D 1961 Ann. Phys., NY 16 407

Pfeuty P 1970 Ann. Phys., Paris 57 79
[76] Pfeuty P 1979 Phys. Lett. 72A 245
[77] Onsager L 1944 Phys. Rev. 65 117
[78] Luck J M 1993 Europhys. Lett. 24 359
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