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Abstract. In this paper, we combine the monopolistic competition model of  Fujita 
(1988) with the variable density model by Tabuchi (1986), Liu (1988) and 
Grimaud (1989), and develop a monopolistic competition model of  spatial ag- 
glomeration with variable density. We compare the results of  the present paper 
with those of previous work, and show that some previous results cannot be car- 
ried over to our generalized model with variable density. 

1. Introduction 

During the last decade, significant progress has been made in developing a new 
class of  urban land use models, called general urban land use models. In these 
models, the traditional assumption of  monocentricity is abandoned, and location 
of  all agents in a city is determined simultaneously; thus, formation of  various 
types of centers is also determined endogenously (for reviews, see e.g., Fujita 
1986a, 1990; Stahl 1987). To generate internal forces of  spatial agglomeration, 
most existing such models rely on the concept of  spatial externalities (or, nonprice 
interactions). Recently, however, several people have attempted to develop an 
alternative class of general urban land use models, in which agglomeration forces 
are endogenously generated through price interactions alone (e.g., Kanemoto 
1985; Papageorgiou and Thisse 1985; Fujita 1988). In particular, Fujita (1988) 
developed a spatial version of  the Chamberlinian monopolistic competition 
model (with differentiated consumer goods), and demonstrated that pure market 
processes based on price interactions alone can generate spatial agglomeration of  
economic activities. 

The objectives of  this paper are twofold. First, we generalize Fujita's model 
(1988) by allowing the land-use density to vary over the urban space. Although 
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Fujita's assumption of constant land-use density simplifies the analysis, it is very 
restrictive in the context of urban model. Considering that Fujita's model has a 
potential for explanation of various types of spatial agglomeration due to product 
variety (as will be discussed in Sect. 6), it is imperative to generalize the model to 
the case with variable density. This generalization is achieved by following the re- 
cent studies of Tabuchi (1986), Liu (1988) and Grimaud (1989), in which con- 
structors can freely choose the profit-maximizing floor density at each location. 
Second, in the context of this generalized model, we reexamine the results of Fu- 
jita (1988). For example, one of important conclusions of Fujita (1988) is that 
(socially) optimal land use pattern will be realized at the equilibrium of the com- 
petitive land market and monopolistic consumer-goods market (without any 
government intervention). This result is noteworthy because all previous models 
(based on spatial externalities) concluded otherwise, i.e., the equilibrium land use 
pattern is not socially optimal. We show later that Fujita's result holds only when 
the land-use density is kept constant; hence this result cannot be carried over to 
our generalized model with variable density. Similarly, we compare and contrast 
other important results of the two models. 

The plan of the paper is as follows. In Sect. 2, we develop the model. In 
Sect. 3, equilibrium conditions are stated, and several additional specifications are 
introduced. In Sect. 4, equilibrium urban configurations are obtained. Section 5 
compares the equilibrium configurations with optimal configurations. Section 6 
concludes the paper. 

2. The model 

Let us represent the location space of the city, generally, by X. In this location 
space X, we consider spatial interactions among three types of activities: 
households (------ consumers), the local consumer-goods industry (c-industry), and 
floor-space constructors. The c-industry provides a continuum of differentiated 
consumption goods to households, while constructors supply the floor space to 
households and c-industry. I Given the spatial distribution of households (i.e., 
customers), each firm in the c-industry chooses its optimal location and (f. o. b.) 
price of its good. In turn, given the spatial distribution of firms (i.e., suppliers) 
in the c-industry, each household chooses its optimal location and consumption 
and consumption-trip pattern (for purchases of these goods). Constructors rent 
land from absentee landlords, and produce floor space. In turn, floor space is 
rented to households and firms. An equilibrium is reached when the demand and 
supply of each good is balanced at each location and the land and floor-space 
markets are cleared everywhere in X. We explain the behavior of each type of ac- 
tivity-unit in detail below. 

As an example of c-industry, we may imagine an industry which consists of a variety of 
restaurants. 
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2.1 HousehoM 

In the city, there exists a continuum of homogenous households of size N. All 
households are assumed to have the same utility function, which depends on the 
consumption levels of  floor space and other consumption goods. For simplicity, 
it is assumed that each household consumes a fixed amount  of  floor space Sh. 
Each household also consumes an imported (numeraire) good z0 and a con- 
tinuum of local consumer goods (c-goods) provided by the firms in the c-in- 
dustry. The utility function is assumed to be symmetric with respect to all c- 
goods. Furthermore, although each firm (in the c-industry) is assumed to provide 
a distinct c-good, all firms are assumed to have the same production function 
(which is introduced later). Let h (y) [or fCv)] represent the number (more precise- 
ly, density) of households (or firms) at each location y ~ X .  Then, since each firm 
is assumed to supply a distinct c-good, f ( y )  also represents the number of c-goods 
supplied at each y e X .  Let t(x,y) represent the transportation cost per unit of c- 
good from location x to location y, which is assumed to be borne by households, 
and to be the same for all c-goods. Then because of  identical production function 
for all firms, identical transportation cost function for all c-goods, and identical 
and symmetric utility function (with respect to the c-goods) for all households, 
in equilibrium all c-goods provided at the same location, y, must have the same 
(f. o. b.) price p(y) .  This, in turn, implies that each household at location x pur- 
chases the same amount, z(x,y),  of  a c-good from each one o f f ( y )  firms a t y e X .  
Based on this, we assume that if a household chooses a location x ~ X  and pur- 
chases z(x ,y)  of a c-good from each o f f ( y )  firms at each y e X ,  then the utility 
function of  the household is given by 

u(x) = f BIz (x ,y ) l f (y )dY+zo , (2.1) 
x 

where B is an appropriate numerical function. 
The budget constraint of  a household at location x is given by 

Zo+ ~ [P(y)+t(x ,y )]z (x ,y ) f (y )dy+R(X)Sh = Y , (2.2) 
x 

where R (x) represents the rent per unit of  floor at x, i.e., floor-rent at x, and Y 
is the income of  each household (which is exogenously given). Here, the unit price 
of  z0 is normalized to unity. Then solving (2.2) for z0 and substituting it into 
(2.1), the utility function of each household at location x is now given as 2 

u(x) = ~ { B [ z ( x , y ) ] - [ p ( y ) + t ( x , y ) ] z ( x , y ) } f ( y ) d y - R ( x ) S h + y  . (2.3) 
x 

Next, for concreteness, we assume that in the utility function (2.1), the function 
B is specified as 

B ( z ) =  f ( z / a ) ( l+  l o g f l ) - ( z / a ) l o g ( z / a )  if z < a f l  
(2.4) 

if z>_afl ,  

2 Here, it is assumed that income Yis sufficiently large so that z0 is always positive in equilibrium. 
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Fig. I. Function B(Z) given by (2.4) 

where a and fl are positive constants (refer to Fig. 1). This function, which is 
closely related to the well-known entropy function, well expresses households' 
preference for variety. 3 

Now, the objective of each household is to choose a residential location x and 
a consumption pattern of c-goods, z(x ,y)  for all y e X .  Notice, however, that 
because of  the additive property of the utility function (2.3), for each pair (x,y) 
we can determine the optimal value of z(x, y)  independently of  others. With (2.4), 
we can obtain the following relation: 

Max {B[z (x ,y ) ] -  [p (y )+ t (x ,y ) ] z (x ,y ) }  = fie -a~@)+t(~y)] 
z(~y) 

(2.5) 

where the optimal demand distribution function is given by 

z(x ,y)  = a t e  -a[pOO+t(x'y)] for each x, y e X .  (2.6) 

Substituting (2.6) into (2.3), the utility function of  a household at x becomes 

U(x) = I fl exp [-  a [p(y)+t(x ,y )]} f (y)dy-R(x)Sh  , (2.7) 
x 

where U(x)=- u(x)-Y. 
Accordingly, given price distribution p (.), firm distribution f( .)  and floor-rent 

R (.), the locational behavior of  each household is now equivalent to choosing a 
residential location x so as to maximize its utility given by (2.7). 

2.2 Firms 

As was noted before, the c-industry is assumed to consist of a continuum of firms 
of  size M. The index set of firms is denoted by M ------- {i [ 0 < i _  M]. Each firm pro- 
duces only one good and is the sole producer of  this good, so that ie  M denotes 
a specific firm producing a specific good. All firms are assumed to have the same 
production technology. Moreover, it is assumed that all firms occupy the same 

3 For further discussion of this function, see Anderson, dePalma and Thisse (1988) and Fujita and 
Smith (1990). 
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constant amount  of  floor space Sf, and have the same fixed capital cost K and 
the same marginal production cost c. Thus, the profit n (x) of  a firm at x is given 
as 

n(x)  = [ p ( x ) - c t  ~ z O ' , x ) h ( y ) d y - R ( x ) S f - K  , 
x 

(2.8) 

where p (x )  represents the (f.o.b.) price of  each c-good sold at x, and z (y ,x )  the 
amount  of  the c-good purchased from a c-firm at x by a household at y. As 
before, hCv) represents the household density at y, and R ( x )  the floor-rent at x. 
In (2.8), ~xZ(y , x )h (y )dy  represents the total amount  of the c-good sold by a 
firm at x. Substituting (2.6) into (2.8), we have 

FI(x) = a f l [ p ( x ) - c ]  I exp { -  a [p (x )+ t (y ,  x ) ] } h ( y ) d y - S f R ( x )  , 
X 

(2.9) 

where H ( x )  =-- n (x) +K. Hence, given household distribution h (.) demand distri- 
bution z(.,.) and floor space rent R(.), each firm chooses a location x, and an 
f.o.b, price p (x) so as to maximize its profit given by (2.9). 

From the first-order condition for maximization of H ( x )  with respect to p (x), 
the equilibrium price of a c-good for each firm at x can be obtained as 

p(x )  = c + ( l / a ) = P m  (2.10) 

which reflects the familiar monopolistic pricing and sets the marginal revenue, 
p m - ( 1 / a ) ,  equal to the marginal cost, c. Note that this price is independent of  
the location. 

Although the market equilibrium price of  each c-good is a constant, given by 
(2.10), in the following analysis we treat the price p as a parameter in order to 
study the equilibrium distributions of  households and firms under various price 
levels. 

Define 

z°(x; y )  = af lexp [ - a t ( x , y ) ]  , (2.11) 

which is the demand-distribution under zero price [p(y) = 0 for each y e X ] .  We 
call z°(x,.) the potential demand-distribution of  a household at x. Note that 
since t is fixed, z ° is also a fixed function. After setting p (y )  = p  in (2.6), the ac- 
tual demand-distribution of  a c-good under each price level, p, is given by 

z* (x,y) = exp ( -  a p ) z ° ( x , y )  . (2.12) 

Next, without loss of  generality we can normalize Sh and Sf (by appropriately 
changing the units of  M and N)  so that 

Sh = 1 = Sf . (2.13) 
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Then, by setting p (y )  = p  or p ( x )  = p ,  from (2.7) and (2.9) we have 

U(x) = y(p)  ~ z ° ( x , y ) f ( y ) d y - R ( x )  , (2.14) 
x 

H ( x )  = f i (p)  ~ z ° ( y , x ) h O , ) d y - R ( x )  , 
x 

where 

(2.15) 

y(p) = ( 1 / a )  exp ( - a p )  , f i (p )  = ( p - c )  exp ( - a p )  . (2.~6) 

For convenience, the following definitions and abbreviations will be used through- 
out the remainder of  this paper: 

~7(p)~ a f l y (p )  , ~ ( p ) = a f l O ( p ) .  (2.17) 

2.3 Cons t ruc tors  

The constructors rent land from the absentee landlords and supply floor space 
to households and firms. It is assumed that the land not used for floor-construc- 
t ion is used for agriculture, yielding a given constant rent R a. The market in 
floor space is assumed to be perfectly competitive. It is also assumed that the con- 
struction cost without land rent is a function of  floor density. Thus, the (nonland) 
construction cost, C ( x ) ,  per unit of  land at x is assumed to be given by 

C ( x )  = a l l ( x )  b , (2.18) 

where a and b are constants such that a > 0 and b > 1, and H ( x )  is the floor space 
density (per unit of  land) at x. Then, the profit o f  construction per unit land 
(which is used for construction) at x is given by 

z~ c = R ( x ) H ( x ) -  a l l ( x )  b - L  (x)  , (2.19) 

where L ( x )  is the land rent at x. Let g ( x )  be the proportion of  land used for con- 
struction (of floor space) at each x, where 0 < g ( x ) <  1. In equilibrium, competi- 
tion among constructors drives the profit o f  each constructor to zero. Hence, pro- 
vided that g ( x ) > 0 ,  it must hold that ~rc(X) = 0, which in turn yields that 

L ( x ) = R ( x ) H ( x ) - a H ( x )  b if g ( x ) > 0 .  (2.20) 

Furthermore, since constructors take floor rents and land rents as given, setting 
8 n c ( x ) / O H ( x )  = 0, we can obtain the following condition for choosing the pro- 
fit-maximizing density at each x: 

R (x)  = a b H ( x )  b-  1 ( = d C ( x ) / d H ( x ) )  , (2.21) 
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which represents a familiar equality of the marginal revenue and marginal cost 
of floor space supply. Upon substation of (2.21) into (2.20), we have 

L ( x )  = a ( b - 1 ) H ( x )  b if g ( x ) > 0  . (2.22) 

3. Equilibrium conditions and some additional specifications 

In this section, first we derive the conditions for the equilibrium of an urban 
spatial configuration. A land use equilibrium describes a state of the urban 
system that shows no propensity to change. That is, an equilibrium is reached 
when all households (in the city) achieve the same maximum utility, all firms the 
same maximum profit, all constructors the same maximum profit (which equals 
zero by assumption), and land and floor-space markets are cleared everywhere. 

To state this equilibrium conditions precisely, recall that in equilibrium, all 
households (firms) must achieve the same utility level (profit level). Hence, given 
the equilibrium utility level U* (or profit level H*) (which are yet unknown) we 
define the bid-floor-rent function o f  households, ~/(x), and the bid-floor-rent 
function o f  f irms, q~(x), respectively as follows: 

w(x)-- ~(x;f(.),p, u*) 

= y(p) ~ Z ° ( x , y ) f ( y ) d y  - U* 
X 

, (3.1) 

~ ( x ) - -  ~(x;h (.),p,H*) 

= 6(19) ~ z°OP, x l h ( Y l d y - H  * . 
x 

(3.2) 

Here, the price level is fixed at a given level p _  c. By definition, g/(x) [or ~ (x)] 
represents the maximum rent which can be paid by a household (or firm) per unit 
of  floor space at x while attaining the utility level U* (for profit level H*). 
Similarly, considering (2.22) and noticing that the equilibrium profit of  construc- 
tors is always zero, for each x, we define the bid land rent function o f  construc- 
tors, F(x),  as follows: 

F(x)  = a ( b -  1 ) n ( x )  b . (3.3) 

Now, we say that a spatial {h (x ) , f ( x ) ,  H(x) ,  g(x),  R (x), L (x), U*, /7*; x e X }  rep- 
resents a land use equilibrium under a price p if and only if the following set of 
conditions are satisfied: at each x e X ,  

(a) Floor space market equilibrium conditions: 

R (x) = Max {~u (x), ~b (x), 0} , (3.4) 

R ( x )  = ~(x) if h ( x ) > 0  , (3.5) 
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R(x) = ~b(x) if f ( x ) > O  , (3.6) 

R(x)  = ab[H(x)lb-l g(x) , (3.7) 

h ( x ) + f ( x ) = H ( x ) g ( x )  if R ( x ) _ O ,  (3.8) 

(b) Land market equilibrium conditions: 

L(x) = Max {F(x),Ra} , (3.9) 

0_g(x)_< 1 , (3.1o) 

L ( x ) = F ( x )  if  g ( x ) > 0 ,  (3.11) 

L ( x ) = R  a if  g ( x ) < l ,  (3.12) 

(c) Total activity-unit number constraints: 

h (x)dx -- N ,  
x 

(3.13) 

f ( x )dx  = M ,  (3.14) 
x 

(d) Nonnegativity constraints: 

h ( x ) ~ O ,  f(x)>_O, R(x)>-O, L(x)>_O, H(x)>_O. (3.15) 

Conditions (3.4) to (3.6) state that each unit of  floor space must be occupied by 
either a household or a firm which bids a higher (positive) floor rent at that loca- 
tion. Conditions (3.5) and (3.6) state that households or firms may locate at x only 
if they have succeeded in bidding for the floor space at that location. Equation 
(3.7) represents the equilibrium floor rent as equal to the marginal cost of  pro- 
viding floor space. Equation (3.8) represents the equality of  demand and supply 
of  floor space at each x. Conditions (3.9), (3.11) and (3.12) together imply that 
each unit of  land must be used by either a constructor or a farmer who bids a 
higher rent. Condition (3.10) states an obvious physical constraint. Conditions 
(3.11) says that constructors may use the land at x only if they are the highest bid- 
der at that location. Condition (3.12) says that if some land at x is not used for 
floor space construction, then the land rent there equals the agriculture rent. Con- 
ditions (3.13) and (3.14) ensure that all households and firms must locate 
somewhere in the city. It can be readily seen that if all conditions above are 
satisfied, then all households (firms) achieve the same maximum utility level U* 
(profit level H*),  all constructors earn zero profit, and land and floorspace 
markets are cleared everywhere. 

Next, in order to obtain explicit solutions to the form of  equilibrium con- 
figurations, we introduce several simplifying assumptions. First, we assume that 
the location space of  the city is one-dimensional, i.e., X = N ----- ( -  o~, co), and the 
land density at each x e  N equals unity. That  is, the city locates on a long narrow 
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strip o f  land having width 1. Second, observe f rom (3.1) and (3.2) that  the charac- 
ters o f  the equilibrium configurat ions are governed by the nature o f  the potential  
demand-dis t r ibut ion  function,  z 0 (x, y ). In  particular, given z 0 (x, y )  by (2.11 ), if  
we specify the t ranspor t  cost funct ion t (x ,y)  in various forms, we can obtain dif- 
ferent funct ion forms o f  the t e r m  e - a t ( x ' y ) .  For simplicity, in this paper  we con- 
sider the case with a linear trip distr ibution given by 

e -at(x'y)= l - z l x - y ]  , (3.16) 

where t is a positive constant.  4 F rom (2.12), this implies that  the demand distri- 
but ion funct ion z (x , y )  is also linearly decreasing with respect to the distance be- 
tween x and y. Third, we consider only symmetr ic  equilibrium urban  configura-  
tions, where d ( - d )  represents the right (left) u rban  fringe distance f rom the 
center o f  the city, 0. Then, in order to assure tha t  the right side o f  Eq. (3.16) is 
positive for all x, y e [ - d ,  d], the following condi t ion must  hold 

2 d <  i / v  . (3.17) 

Given this condit ion,  it is not  difficult to  show that  no  amoun t  o f  agriculture land 
remains in an equil ibrium city, i.e., 

g(x)  = 1 for x E ( - d , d )  . (3.18) 

Fourth,  in order to obtain the explicit analytical solutions, in the const ruct ion cost 
funct ion (2.18) we specify that  5 

b = 2 . (3.19) 

For the convenience o f  the subsequent analysis, we also introduce the following 
terminologies: 

(i) Residential Area:  R A  = {x: h (x) > 0, f ( x )  = t3} . 

(ii) F i rm District: FD = ~x: h (x) = 0, f ( x )  > 13] . 

(iii) Mixed District: M D  = {x: h ( x ) > 0 ,  f ( x ) > 0 }  . 

4. Equilibrium urban configurations 

Under  the set o f  assumptions above, we can show that  for each given parameters 
(M,N,p,c ,a ,a ,  fl, r, Ra) such that  M > 0 ,  N > 0 ,  p > c ,  a > 0 ,  a > 0 ,  8 > 0 ,  r > 0  and 

4 This implies that t(x,y) = - ( l / a )  log (1 - r l x - y l )  , which is concave in Ix-yl. We can conduct 
similar analyses under other specifications of the trip distribution function. Fujita (1986b) suggests 
that there is no qualitative difference in the results whether the assume a linear trip distribution or 
a convex trip distribution, i.e., e - a r j x - y l  . 

5 A similar specification was under by Tabuchi (1986), Liu (1988) and Grimaud (1989). When b 
is a number other than 2, it is very difficult to obtain the solution in explicit form. 
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(a) 
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(b) 

R(x) 
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mlx) ~[x) 

-d  - 0 e d 

Fig. 2. Equilibrium configuration for mixed pattern I 

Ra>0,  there always exists a unique land use equilibrium. 6 Each land use 
equilibrium takes either the form of  the mixed  pat tern I or mixed pattern II. To 
show this, first we examine each pattern separately, and then combine the results. 

4.1 M i x e d  pat tern I 

We first examine the mixed pattern I. In this case, as is depicted in Fig. 2a, there 
is a MD in the central area of  the city, and two RAs situate at the periphery. For 
this pattern, the equilibrium conditions of  the floor space market and land 
market can be restated as follows (refer to Fig. 2b): 

R ( x )  = q~(x)= ~,(x) for - e < _ x < e  , (4.1) 

R ( x )  = q/(x)> ¢ ( x )  for - d < x <  - e ,  e < x < d  , (4.2) 

L ( x )  = F ( x ) ~ a H ( x )  2 for - d < x < d  , (4.3) 

L ( -  d)  = L (d) = Ra , (4.4) 

6 The equilibrium is unique subject to the 'symmetric' assumption. 
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where e represents the fringe distance of  the MD such that 

O<e<_d . (4.5) 

In the MD, substituting (2.11) and (3.15) into (3.1) and (3.2), we have 

e 

~y(x) = ~(p) ~ ( 1 - r l x - y t ) f ( y ) d y  - U~ , (4.6) 
- - e  

e 

~b(x)=f i (p)  - r l x - y t ) h ( y ) d y +  ~ [ 1 - r ( x - y ) ] h ( y ) d y  
- d  

+ ~ [1 - r ( .v-x)]  h (y)dy - g ~  . (4.7) 
e 

First, we examine the equilibrium spatial configuration in the MD. From the first 
and second derivatives of  (4.6) and (4.7) with respect to x, the bid floor rents in 
the MD can be seen to be strictly concave and to have their maximum point at 
x = 0. Setting ~(x) = q~(x) [by (4.1)], and taking the second derivatives of  this 
equation by using (4.6) and (4.7), we can obtain that 

y (p ) f ( x )  = $(p)h(x )  for x e  [ - e , e ]  , (4.8) 

which in turn implies that 

y (p ) f (x )  = ~(p)h(x )  for xE  I -e ,  el • (4.9) 

Therefore, from (3.8), (3.18), (4.9) and definitions of y(p) and 6(p),  we can obtain 
that 

f ( x )  = { a ( p - c ) / [ l + a ( p - c ) l l g ( x )  for x e  [-e,  el . (4.10) 

Using (3.13), (3.14) and integrating both sides of  (4.9), we have 

M/N<_fi(p)/y(p)-----(p-c)a i.e., p>_c + (1/a ) (M/N)  . (4.11) 

From (3.8), (3.18) and (4.9) it follows that 

o r  

H(x)  = [h (x )~(p) l / y (p )+h(x )  

H(x )  = [f(x)  y (p)l / f i (p)  +f(x)  

for x ~  [ - e , e ]  , (4.12) 

for x s I -e ,  e] . (4.13) 

Substituting (4.13) into (3.7) and using (3.19), it follows that R (x) = 2 a [ 1 + (y (p) /  
~(p))]f(x)] .  Therefore, from (4.1) and (4.6) we have 
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Y(P) i (1- vlx-yl)f(y)dy- U* = 2a{[1 + ( y ( p ) / O ( p ) ) l f ( x ) }  . (4.t4) 
- - e  

Differentiating (4.14) twice with respect to x, and solving the resulting differential 
equation for f ( x )  by using the boundary condition R (e) = V (where Vis the land 
rent at e, which will be obtained later), the firm density function f (x )  in the MD 
can be obtained as 

f ( x )  = [[~(p)(a V) 1/2 cos ( D x ) ] / [ a ( y ( p ) +  fi(p)) cos (De)] 

for x ~  [ - e , e ]  , (4.15a) 

where 

D = {a[1 + (y(p)/~(p))] ~(p)r}~/2/{a[1 +(y(p) / f i (p) )]}  . (4.15b) 

Substituting (4.15 a) into (4.9), the household density function h (x) in the MD can 
be obtained as 

h ( x ) =  [ y ( p ) ( a V ) l / 2 ) c o s ( D x ) ] / [ a ( y ( p ) ) c o s ( D e ) ]  for x~[-e,e] . (4.16) 

Finally, from (3.8), (3.18), (4.15) and (4.16) the floor space density function H ( x )  
in the MD can be obtained as 

H ( x )  = [(a V) 1/2 cos (Dx)] / [a  cos (De)] for x ~ I -e ,  e] . (4.17) 

Next, we examine the equilibrium spatial configuration in the RAs. Because of 
the symmetry assumption, it is sufficient to examine the right half of the city. In 
the right side RA, the floor rent function is given by 

e 

~ ( x )  = ~(p)  ~ [ 1 - z ( x - y ) ] f ( y ) d y - U ~  for x ~ ( e , d )  . (4.18) 
- - e  

Since the entire floor space is used by households in the RAs, it is clear that 
H ( x )  = h (x ) .  Therefore using (2.21), (3.5) and (4.18), we can obtain 

h ( x )  = [ ~ ( p ) ( t - r x ) M - U ~ ] / 2 a  for x ~ ( e , d )  . (4.19) 

From (4.3), using the boundary condition (3.12), we have 

U~ = y ( p ) ( l -  r d ) M  - 2 (aRa)  1/2 . (4.20) 

Therefore, substituting (4.20) into (4.19) we finally get that 

h ( x )  = H ( x )  = [ ~ ( p ) r M ( d - x ) + 2 ( a R a ) ~ / 2 ] / 2 a  for x ~ (e, d) . (4.21) 

Having obtained the density functions of households and firms, by manipulating 
the total activity unit constraints (3.13) and (3.14), and using (4.13) and (4.14), 
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we can get the boundary distances d and e, and the land rent V ~ L  (e) at location 
e, as follows: 

e = ( l / D )  tan -1 {[DaM(y(p)+ O(p))l/[2O(p)(a V)l/2]} , (4.22) 

V =  ( 1 / 2 ) ~ ( p ) z M [ N - ( y ( p ) / f i ( p ) ) M I +  2R~ , (4.23) 

d = e+  [2(a V) l /2 - (aRa) l /2] /y(p)  r M  . (4.24) 

Putting household density functions h (x) [which we get from (4.16) and (4.19)] 
into (4.7), the equilibrium values of  H~ can be obtained as follows: 

/ / ~  = 0 (p){N- [(zeO(p))M/y(p)]  - [y(p) rMd+2(aRa) i / 2 l / 2a (d  2-e2)} 

- 2 (a V) 1/2 . (4.25) 

Finally, (2.21), (3.9), (4.17) and (4.21) the floor rent function R(x )  can be obtain- 
ed as 

~[2(a  V)I/2/COS (De)] cos (Dx)  

R (x) = (. Y (P) r M ( d - x )  + 2 (aRa) 1/2 
for x ~  [ - e ,  e] 

(4.26) 
for x ~ (e, d) . 

Therefore, we can conclude that given (N, M,p, c, a, a,fl, r, Ra) there exists a land 
use equilibrium o f  mixed pattern I i f  and only i f  condition (4.11) is satisfied. The 
floor space density function H(x )  is depicted in Fig. 2a. The floor space density 
is strictly concave everywhere in the MD, and it is linearly decreasing in Ix] on 
the RA. The floor rent configuration associated with this land use pattern is 
depicted in Fig. 2b. The firms' bid floor rent curve ~ (x )  is strictly concave 
everywhere, and decreasing in lxl.  On the MD, the housholds'  bid floor rent 
curve gt(x) is the same as that of  firms; on RAs, it is linearly decreasing in Ixi. 

4.2 Mixed pattern H 

If we interchange the location of  households and firms in Fig. 2, we can obtain 
the mixed pattern II. The equilibrium conditions for these pattern are exactly the 
same as those for the mixed pattern I, except condition (4.2). In this case, condi- 
tion (4.2) must be replaced by 

R ( x )  = ~(x)>_gz(x) for - d < _ x < - e  , e<x<_d . (4.27) 

Then, the argument can be made similarly to the previous case, and we can obtain 
the equilibrium configuration for pattern II. Since the solution results corre- 
sponding to pattern II can be readily inferred from those of pattern I, for brevity 
we omit them except for noting that condition (4.11) now changes as follows: 

M/N>_O(p ) /~(p ) ~ ( p - c  )a i.e., p<_ [c + ( l / a  )] (M/N)  . (4.28) 
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That is, given (M, N,p, c, a, a,t~, r, Ra), there exists a land use equilibrium of mix- 
ed pattern II, if and only if condition (4.28) is satisfied. 

From (4.11) and (4.28), we can see that given any set of  parameters, 
(M,N,p,e,a,a,t3,z,Ra), such that M > 0 ,  N > 0 ,  p>_c, a > 0 ,  f l>0,  r > 0  and 
Ra>O, there exists a unique land use equilibrium of either pattern I or pattern 
II. Conditions (4.11) and (4.28) indicate that given a set of  (p, c, a), pattern I (or 
II) tends to be realized when the number of  households, N, is relatively large (or 
small) compared with the number of  firms, M. They also indicate that given a set 
of  (M,N, e, a), pattern I (or II) occurs when p is relatively high (or low). Next, 
from (4.10) we can see that the relative density, f (x)/H(x),  of firms in the MD 
(for the case of pattern I) continuously increases as p increases. This reflects the 
fact that as p increases, in the floor space market, firms become relatively more 
competitive than households (i.e., the ratio f i(p)/y(p)  becomes greater); and 
hence firms can occupy a greater proportion of floor space in the MD in which 
floor rents are high because of locational advantages. In particular, under the 
monopolistic pricing, p =pm=-C+(1/a), we have from (4.10) that f (x ) /H(x)= 
1/2. That is, in the monopolistic market equilibrium, firms and households 
equally share the floor space in the MD. 

Finally, relations (4.22) and (4.24) reveal that both the MD fringe distance, e, 
and urban fringe distance, d, increase when the construction cost parameter, a, 
increases. This is because as a increases, firms and households disperse in order 
to save construction costs. 

5. Optimal urban configuration 

In the previous section, we have obtained equilibrium urban configurations. In 
this section we examine the optimal urban configuration. 

As an optimization problem, we consider the problem of  achieving the given 
target utility level for all households with the minimum total cost. Let h (.) be a 
density distribution of  households, f(.) that of  firms; and let z(x, .) be the demand 
distribution function of each household at x ~ X, and Zo(X) the consumption of 
the imported (numeraire) good by each household at x. Then, the total Cost C 
associated with the plan, Ih(x), f(x), H(x), g(x), z(x,.), z0(x); x~X}  can be 
calculated as 

C=~t~xZ(X'y){c+t(x'Y)]f(y)dy}h(x)dxl+~z°(x)h(x)dx+KMx x 

+a ~ [H(x)]Zg(x)dx+ ~ Rag(x)dx . (5.1) 
x X 

The first two terms on the right-hand side represent the costs of consumption by 
households, the third term the fixed cost for the firms, and the last two terms the 
cost for construction. The constraints are: 
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utility constraint: ~ B[z(x,y)]f(y)dY+Zo(X) = t2 for x ~ X  , (5.2) 
x 

floor space constraint: h ( x ) + f ( x ) =  H(x)g(x )  for x ~ X , (5.3) 

land constraint: 0_< g (x) _< 1 for x ~ X , (5.4) 

population constraints: ~ h(x)dx  = N , f f ( x ) d x  = M , 
x x 

(5.5) 

and the nonnegativity constraints on all choice-variables. 
To obtain the optimality conditions, it is convenient to rewrite the problem in 

terms of  surplus, ket Y be the income of  each household, which is exogenously 
given and fixed as before. Then, the minimization of C is equivalent to the max- 
imization of  surplus defined as 

S = N Y -  C . (5.6) 

If  we solve (5.2) for Zo(X) and substitute it into (5.1), and use population con- 
straints, then we can obtain that 

S = ~ [ ~ x [ B ( z ( x ' Y ) ) - ( c + t ( x ' Y ) ) Z ( X ' Y ) ] f ( y ) d y l h ( x ) d x - O N - K M x  

- ~ R a g ( x ) d x - a  ~ [H(x)]2g(x)dx (5.7) 
x x 

where (J=~t-Y. 
Hence, our problem now is to choose a plan [h(x), f (x) ,  H(x) ,  g(x), z(x, .); 

x ~ X }  so as to maximize (5.7) subject to (5.3) to (5.5) (with additional non- 
negativity constraints). 

The term inside the braces of  the objective function can be maximized with 
respect to each z(x,y),  independently of all other variables. And under the benefit 
function (2.4), using definitions (2.11) and (2.15), for each x, y ~ X we have that 

M a x B [ z ( x , y ) ] -  [c+t(x,y)]z(x,y)  = flexp {-  a [t(x,y)+cll 

- y ( c ) z ° ( x , y ) ,  (5.8) 

where z°(x ,y)  is given by (2.11), and the optimal z(x,y)  is given by 

~(x,y) = af lexp {-  a [t(x,y)+c]l=--a y(c)z°(x ,y)  . (5.9) 

Comparing (2.12) and (5.9), we can see that the optimal consumption pattern, 
z(x,y),  coincides with the equilibrium demand distribution under p = c .  
Substituting (5.8) into (5.7), we have 

S = y(c) ~ ~ h (x ) z ° ( x , y ) f ( y )dydx  - ~ R a g ( x ) d x - a  ~ [H(x)]2g(x)dx 
X X  X X 

- O N -  K M  . ( 5 . 1 0 )  
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Next, we shall choose density distribution h (.), f( .) ,  H(.)  and g(x) so as to max- 
imize (5.10) subject to (5.2)-(5.5). 

Let {/~(x),/~(x),/-it(x), ~(x); x ~ X }  be a solution to this maximization prob- 
lem. To state the optimality conditions, let us introduce the following (shadow) 
bid rent functions associated with this allocation: 

~ (x)  ~ y ( c )  I z°(x, y ) f ( y ) d y -  0 , (5.11) 
x 

4,(x)=~,(c) j z ° ( y , x ) h ( y ) d y -  l~ , (5.12) 
x 

f ' (x)  ~ a H ( x )  2 , (5.13) 

where O a n d / I  represent the (shadow) utility level and profit level. [Notice that 
unlike (3.2), we have ~(c) in (5.12) instead of  fi(c).] Then, applying optimal con- 
trol theory, we can show that if the allocation, {/l(x), f ( x ) , / t ( x ) ,  ~(x); x eX}, is 
optimal, then there exists a set of  multipliers, JR(x), £ (x ) ,  ~/~r;  x ~ X } ,  under 
which the same set of  conditions with (3.4) to (3.15) is satisfied. 7 Here, of  
course, each function without ' ^ ' must be replaced with the corresponding func- 
tion with ' ^ '. 8 Hence, we can see that the only difference between the two set 
of  conditions is the definition of  bid rent functions. Namely, i f  we replace y(p) 
with y(c) in (3.1), then we have (5.11). Similarly, i f  we replace fi(p) with y(c) in 
(3.2), we have (5.12). 

Hence, utilizing the previous results for equilibrium configurations, we can 
readily obtain optimal configurations. (To avoid repetition, hereafter we omit 
details of  calculations.) As before, optimal configurations can be classified into 
two patterns, I and II. First, we examine the optimal land use pattern of  type I. 
For this pattern, in the manner similar to the equilibrium solution, the optimal 
density function of  firm f ( x )  in the MD can be obtained as 

f ( x ) =  [(alT')l/Zcos(15x)]/[2acos(1)d)] x ~ [ - f , ~ ]  • (5.14) 

The optimal density function of  household / f (x)  in the MD can be obtained as 

h ( x )  = [(a ~r)t/2 COS (19x)l/[2a COS (/)d)] X ~ [-- ~, ~1 . (5.15) 

The optimal density function of  floor space/-t(x) in the MD can be obtained as 
follows: 

~(X)  = [(a ¢31/2 cos (:Dx)]/a cos (/3~), 

where 

1) = [(2ar~(c)]~12/(2a) , 

X ~ [--~, ~] (5.16) 

(5.17) 

7 This can be shown in a manner similar to Appendix 4 of Fujita (1986b). 
s For example, condition (3.4) must now be replaced by the condition, ~q (x) = Max [~ (x), ~ (x), 0}. 
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I?= ( 1 / 2 ) p ( c ) r M ( N - M ) +  2 R  a , (5.t8) 

= (l/LS) tan -I [ (219aM)/ (a  ~ l / z ]  . (5.19) 

On the RA's, the optimal density function of floor space/-l(x) equals that of 
household density, /~(x), and we have 

ISI(x) = ~ (x )  = [ ~ ( c ) r M ( d - x ) + 2 ( a R a ) * / 2 ] / ( 2 a )  x ~  [~,d] , (5.20) 

where the city boundary, d, is given by 

d = d+ [2 (a !2) 1/2- (aRa)~/2]/[~7(c) z M ]  . (5.21) 

Finally the (shadow) floor rent is given by 

f 2 a ( 2  t7)~/2 cos (LSx)/cos ( / ~ )  /~(x) 
(. ~ (c) r M ( d - x )  + 2 (aRa) 1/2 

xe[-o,o] 
(5 .22)  

x ~ [0, d l  . 

From (5.14) and (5.15), we can see that, at optimal, the f i r m s  and  households  
equally share the f l o o r  space in the MD. Therefore, the following relation must 
hold in order to have pattern I: 

N > _ M  . (5.23) 

In Fujita (1988), it was shown that the optimal land use pattern coincides with 
the market equilibrium pattern under the monopolistic price of c-goods. To exam- 
ine whether the same result holds in our model (with variable density), let us com- 
pare the optimal solution and the equilibrium solution under the monopolistic 
price P m ~ C + ( i / a ) .  For this, by setting p = P m = C + ( 1 / a )  in (2.16) we have 

Y(Pm) = 6(Pm)  = ( t / a )  {exp [-(1 + a e)]} . (5.24) 

Hence, setting P ~ P m  in (4.15) to (4.17) and in (4.21) to (4.24) we have 
equilibrium distributions of households and firms under price Pm (for clarity, 
here all variables of this urban configuration will be marked superscript *). Set- 
ting p = P m ~ C + ( 1 / c t )  in (4.15b) and (4.23), we have 

D *  = {[2az~(pm)l /z}/(2a)  , (5.25) 

V* = ( 1 / 2 ) ~ ( p m ) r M ( N - M ) 2 R  a . (5.26) 

Note that ~(C)>~,'(pm) and ~(C)>~(/)m). Hence, in comparison of (5.17) and 
(5.t8) with (5.25) and (5.26), we h a v e / 5 > D *  and !7"> V* which imply that 

~<e*,  d < d *  and (aT-~)<(d*-e*)  . (5.27) 
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Therefore, for type I, we can conclude that the equilibrium urban configura- 
tion under the monopolistic price is more dispersed than the optimal configura- 
tion. 

We can obtain the same conclusion for type II by provided that M>_N, We 
can also readily see that the optimal land use pattern never coincides with the 
equilibrium land use pattern under any value of  p. 

6. Conclusion 

In this paper, we have developed a monopolistic competition model of  spatial ag- 
glomeration with variable density, and compared the equilibrium urban con- 
figurations with optimal configurations. As in Fujita (1988), both equilibrium 
configurations and optimal configurations take two types of mixed land use pat- 
terns depending on parameters. However, unlike Fujita (1988), we found that 
when the land-use density is a variable, the optimal land use pattern do not coin- 
cide with the equilibrium land use pattern under the monopolistic equilibrium 
price Pro" This difference can be explained as follows. When the land-use density 
is kept constant (as in Fujita 1988), the equality of Y(Pm) and 6(pro) as expressed 
by (5.24) is necessary and sufficient for an equilibrium land-use pattern to be an 
optimal pattern. However, when the land-use density is a variable (as in the pre- 
sent paper), this equality is necessary but not sufficient for an equilibrium pattern 
to be optimal. That is, under the monopolistic price Pm (which is higher than the 
socially optimal price,/) = c), the bid rent levels of households and firms (in the 
floor space market) are lower than those under the optimal price/3 = c. This in 
turn makes the equilibrium floor density at the central area to be lower than the 
optimal floor density there. Therefore, we can conclude that the variable density 
model is not only more realistic but also provides qualitatively different results 
from the fixed density model. 

To conclude this paper, we may note four possible extensions of our model. 
First, although we have considered spatial interactions between households and 
firms (that provide local consumer goods), we can develop similar models for 
studying spatial interactions among different types of  industries. For example, if 
we replace the consumers with an export-good industry, and the consumer-service 
industry with a producer-service, then we can develop a model of spatial ag- 
glomeration due to product variety in producer services. As the export industry, 
we may consider the headquarters of multiregional and multinational firms (e.g., 
New York), high-technology firms (e.g., Silicon Valley), or (low-technology) 
manufacturing firm (e.g., old Pittsburgh). Therefore, with appropriate specifica- 
tion of  industries, our model can explain a variety of spatial agglomeration 
phenomena. For an initial study in this direction, see Fujita (1990). Second, we 
have assumed that each household (and each firm) consumes a fixed amount of  
floor space. It is, however, more desirable to generalize it so that households and 
firms can choose optimal amounts of their floor space. Third, although (2.1) rep- 
resents an additive utility function, it is desirable to replace it with a more general 
utility function (or production function) such as a CES function. Finally, in this 
paper we did not consider the role of  households in providing labor to firms. 
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A more complete model of cities should conside both the consumption aspect and 
the labor-supply aspect of households. 
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