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Abstract Verifying string manipulating programs is a crucial problem in computer security.
String operations are used extensively within web applications to manipulate user input, and
their erroneous use is the most common cause of security vulnerabilities in web applica-
tions. We present an automata-based approach for symbolic analysis of string manipulating
programs. We use deterministic finite automata (DFAs) to represent possible values of string
variables. Using forward reachability analysis we compute an over-approximation of all pos-
sible values that string variables can take at each program point. Intersecting these with a
given attack pattern yields the potential attack strings if the program is vulnerable. Based on
the presented techniques, we have implemented STRANGER, an automata-based string anal-
ysis tool for detecting string-related security vulnerabilities in PHP applications. We eval-
uated STRANGER on several open-source Web applications including one with 350,000+
lines of code. STRANGER is able to detect known/unknown vulnerabilities, and, after insert-
ing proper sanitization routines, prove the absence of vulnerabilities with respect to given
attack patterns.
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1 Introduction

Web applications provide critical services over the Internet and frequently handle sensitive
data. Unfortunately, Web application development is error prone and results in applications
that are vulnerable to attacks by malicious users. The global accessibility of Web applica-
tions makes this an extremely serious problem.

According to the Open Web Application Security Project (OWASP)’s top ten list that
identifies the most serious web application vulnerabilities, the top three vulnerabilities in
2007 [24] were: (1) Cross Site Scripting (XSS), (2) Injection Flaws (such as SQL Injection)
and (3) Malicious File Execution (MFE). Even after it has been widely reported that web
applications suffer from these vulnerabilities, the top two of the vulnerabilities were still
listed in the top three of the OWASP’s top ten list in 2010 [25] and 2013 [26]. That is to say,
in the past decade, even with the increased awareness about their importance due to OWAPS
reports, these vulnerabilities continued to be widely spread in modern web applications,
causing great damage.

A XSS vulnerability results from the application inserting part of the user’s input in the
next HTML page that it renders. Once the attacker convinces a victim to click on a URL that
contains malicious HTML/JavaScript code, the user’s browser will then display HTML and
execute JavaScript that can result in stealing of browser cookies and other sensitive data.
An SQL Injection vulnerability, on the other hand, results from the application’s use of user
input in constructing database statements. The attacker can invoke the application with a
malicious input that is part of an SQL command that the application executes. This permits
the attacker to damage or get unauthorized access to data stored in a database. Finally, MFE
vulnerabilities occur if developers directly use or concatenate potentially hostile input with
file or stream functions, or improperly trust input files.

One important observation is, all these vulnerabilities are caused by improper string ma-
nipulation. Programs that propagate and use malicious user inputs without sanitization or
with improper sanitization are vulnerable to these well-known attacks. In this paper, we fo-
cus on vulnerabilities related to string manipulation, and we propose a string analysis tech-
nique that identifies if a web application is vulnerable to the types of attacks we discussed
above.

Attacks that exploit the vulnerabilities related to string manipulation can be characterized
as attack patterns, i.e., regular expressions that specify potential attack strings for sensitive
operations (called sinks). Given an application and an attack pattern, our vulnerability analy-
sis identifies if there are any input values that a user can provide to the application that could
lead to an attack string to be passed to a sensitive operation. We use automata-based string
analysis techniques for vulnerability analysis. Our tool takes an attack pattern specified as
a regular expression and a PHP program as input and identifies if there is any vulnerability
with respect to the given attack pattern.

Our string analysis framework uses deterministic finite automaton (DFA) to represent
values that string expressions can take. At each program point, each string variable is as-
sociated with a DFA. To determine if a program has any vulnerabilities, we use a symbolic
forward reachability analysis that computes an over-approximation of all possible values
that string variables can take at each program point. Intersecting the results of the forward
analysis with the attack pattern gives us the potential attack strings if the program is vulner-
able.

The string analysis technique we present is a symbolic forward reachability computation
that uses DFAs as a symbolic representation. Furthermore, we use the symbolic DFA repre-
sentation provided by the MONA DFA library [5], in which transition relations of the DFAs
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are represented as Multi-terminal Binary Decision Diagrams (MBDDs). We iteratively com-
pute an over approximation of the least fixpoint that corresponds to the reachable values of
the string expressions. In each iteration, given the current state DFAs for all the variables,
we compute the next state DFAs.

We investigate algorithms of next state computation for string operations such as con-
catenation and language-based replacement on DFAs. Particularly, the language-based re-
placement operation is defined as REPLACE(M1,M2,M3) where M1, M2, and M3 are DFAs
that accept the set of original strings, the set of match strings, and the set of replacement
strings, respectively. We detail the DFA constructions (without using ε transitions) for three
common cases on M3: (1) M3 accepts an empty string, (2) M3 accepts single characters,
and (3) M3 accepts words with more than one single character. For general cases of M3, the
construction can be done using ε transitions.

Our language-based replacement operation is essential for modeling PHP replacement
commands, such as, preg_replace() and str_replace(), and many PHP sanitiza-
tion routines, such as, htmlspecialchars(), that are commonly used to perform input
validation. These functions provide mechanisms for scanning a string for matches to a given
pattern, expressed as a regular expression, and replacing the matched text with a replacement
string. As an example of modeling these functions, consider the following statement:

$username = ereg_replace("<script *>", "", $_GET["username"]);

The expression $_GET["username"] returns the string entered by the user, and the
ereg_replace call replaces all matches of the search pattern <script *> with the
empty string, and the result is assigned to the variable $username. This statement can
be modeled by our language-based replacement operation, REPLACE(M1,M2,M3), where
M1 accepts arbitrary strings (modeling the user input), M2 accepts the set of strings that start
with <script followed by zero or more spaces and terminated by the character >, and M3

accepts the empty string.
To the best of our knowledge we are the first to extend the MONA automata package

to analyze these complex string operations with loops on real programs. Tateishi, Pistoia,
and Tripp [32] apply MONA to analyze strings and their index of programs without loops.
In addition to computation of the language-based replacement operation, another difficulty
is implementing the string operations required for our analysis without using the standard
constructions based on the ε-transitions. The MBDD-based automata representation used by
MONA does not allow ε-transitions. We model nondeterminism by extending the alphabet
with extra bits and then project them away using the on-the-fly subset construction algorithm
provided by MONA. We apply the projection one bit at a time, and after projecting each bit
away, we use the MBDD-based automata minimization to reduce the size of the resulting
automaton.

Since DFAs can represent infinite sets of strings, the fixpoint computations are not guar-
anteed to converge. To alleviate this problem, we use the automata widening technique pro-
posed by Bartzis and Bultan [4] to compute an over-approximation of the least fixpoint.
Briefly, we merge those states belonging to the same equivalence class identified by certain
conditions. This widening operator was originally proposed for automata representation of
arithmetic constraints but the intuition behind it is applicable to any symbolic fixpoint com-
putation that uses automata.

We implemented our approach in a tool called STRANGER (STRing AutomatoN GEn-
eratoR) that analyzes PHP programs. STRANGER takes a PHP program as input and auto-
matically analyzes it and outputs the possible XSS, SQL Injection, or MFE vulnerabilities
in the program. For each input that leads to a vulnerability, it also outputs an automaton
(in the dot format) that characterizes all possible string values for this sink which may ex-
ploit the vulnerability. STRANGER uses the front-end of Pixy, a vulnerability analysis tool
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for PHP that is based on taint analysis [19]. STRANGER also uses the automata package of
MONA [10] to store the automata constructed during string analysis symbolically. We used
STRANGER to analyze public web applications downloaded from [31] including one with
350,000+ lines of code. Our results demonstrate that our tool not only detects vulnerabili-
ties in vulnerable Web applications, but also proves the correctness of sanitization routines
in secure Web applications.

Contribution In this paper we extend the regular model checking techniques to verification
of string manipulation operations in PHP programs. Our key contributions include:

1. an automatic automata-based approach for detecting or proving the absence of vulnera-
bilities in string manipulating programs,

2. a new algorithm to language-based replacement that can be used to model commonly
used sanitization routines in Web applications,

3. a new forward reachability analysis with automata widening to accelerate/guarantee ter-
mination of fixpoint computation on strings,

4. a new tool that implements our string analysis techniques, combined with a PHP front
end and string manipulation library built on MONA,

5. an experimental study on XSS vulnerability checking against public and large-size Web
applications.

Rest of the paper is organized as follows. In Sect. 2, we give an overview of our ap-
proach on some simple examples. In Sect. 3, we present our automata-based string analysis.
In Sect. 4, we describe our tool STRANGER. In Sect. 5, we present the experiments we con-
ducted using STRANGER and discuss the results. In Sect. 6, we discuss the related work, and
we conclude the paper in Sect. 7.

2 An overview

Replacement In this section we give an overview of our analysis using some simple PHP
scripts. The first script shown in Fig. 1 is a simplified version of a vulnerability that exists in
a web application called MyEasyMarket [2]. The script starts with assigning the user input
provided in the $_GET array to the $www variable in line 2. Then, in line 3, it assigns a string
constant to the $l_otherinfo variable. Next, in line 4, the user input is sanitized using the
preg_replace command. This replace command gets three arguments: the match pattern,
the replace string and the target string. It finds all the substrings of the target string that match
the match pattern and replaces them with the replace string. In the replace command shown
in line 4, the match pattern is the regular expression [^A-Za-z0-9 .-@://], the replace
string is the empty string (which corresponds to deleting all the substrings that match the
match pattern), and the target string is the value of the variable $www. After the sanitization
step, the PHP program outputs the concatenation of the variable $l_otherinfo, the string
constant ": ", and the variable $www.

1 <?php
2 $www = $_GET["www"];
3 $l_otherinfo = "URL";
4 $www = preg_replace( "/[^A-Za-z0-9 .-@://]/", "", $www );
5 echo $l_otherinfo . ": " . $www ;
6 ?>

Fig. 1 A small example with replacement
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The echo statement in line 5 is a sink statement since it can cause a Cross Site Scripting
(XSS) vulnerability. For example, a malicious user may provide an input that contains the
string constant <script and cause execution of a command leading to a XSS attack. The
goal of the replace statement in line 4 is to remove any special characters from the input to
prevent such attacks.

Using string replace operations to sanitize user input is common practice in web applica-
tions. However, this type of sanitization is error prone due to complex syntax and semantics
of regular expressions. In fact, the replace operation in line 4 in Fig. 1 contains an error
that leads to a XSS vulnerability. The error is in the match pattern of the replace operation:
[^A-Za-z0-9 .-@://]. The goal of the programmer was to eliminate all the characters
that should not appear in a URL. The programmer implements this by deleting all the char-
acters that do not match the characters in the regular expression [A-Za-z0-9 .-@://],
i.e., eliminate everything other than alpha-numeric characters, and the ASCII symbols ., -,
@, :, and /. However, the regular expression is not correct. First, there is a harmless error.
The subexpression // can be replaced with / since repeating the symbol / twice is un-
necessary. More serious error is the following: The expression .-@ is the union of all the
ASCII symbols that are between the symbol . and the symbol @ in the ASCII ordering. The
programmer intended to specify the union of the symbols ., -, and @ but forgot that symbol
- has a special meaning in regular expressions when it is enclosed with symbols [ and ].
The correct expression should have been .\-@. This error leads to a vulnerability because
the symbol < (which can be used to start a script to launch a XSS attack) falls between the
symbol . and the symbol @ in the ASCII ordering. So, the sanitization operation fails to
delete the < symbol from the input, leading to a XSS vulnerability.

Now, we explain how our approach automatically detects this vulnerability. First, the
attack pattern for the XSS attacks can be specified as Σ∗ <script Σ∗, i.e., any string
that contains the substring <script matches the attack pattern. If, during the program
execution, a string that matches the attack pattern reaches a sink statement, then we say
that the program is vulnerable. For our small example, we simplify the attack pattern as
Σ∗ < Σ∗. Our analysis first generates the data dependency graph for the input PHP program
and then conducts the forward reachability analysis on it. Figure 2 shows the dependency
graph and the forward analysis result for the PHP script in Fig. 1 (the program segment that
corresponds to a node and the corresponding line number are shown inside the node). Nodes
1 and 2 correspond to the assignment statement in line 2, nodes 3 and 4 correspond to the
assignment statement in line 3, nodes 5, 6, 7 and 8 correspond to the replace statement in
line 4, and nodes 9, 10, 11, and 12 correspond to the concatenation operations and the echo
statement in line 5. A circle node indicates a string operation. Specifically, we focus on two
string operations: concatenation and replacement. A concatenation node, i.e., labeled with
str_concat, has two input values: prefix and suffix taken from its predecessors (from left to
right). A replacement node, e.g., labeled with preg_replace, str_replace, or ereg_replace, has
three input values: match, replacement, and target strings taken from its predecessors (from
left to tight). Under each node we show the result of the forward reachability analysis as a
regular expression.

During forward analysis we characterize all the user input as Σ∗, i.e., the user can pro-
vide any string as input. Then, using our automata-based forward reachability analysis, we
compute all the possible values that each string expression in the program can take. For ex-
ample, during forward analysis, node 2, that corresponds to the value of the string variable
$www after the execution of the assignment statement in line 2, is correctly identified as Σ∗.
More interestingly, in node 8, the value of the string variable $www after the execution of
the replace statement in line 4, is correctly identified as [A-Za-z0-9 .-@:/]* since any
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Fig. 2 Results of forward analysis

character that does not match the characters in the regular expression [A-Za-z0-9 .-
@://] has been deleted.

Node 12 is the sink node. The result of the forward analysis identifies the value of the
sink node as URL:[A-Za-z0-9 .-@:/]*. Next, we take the intersection of the result
of the forward analysis with the attack pattern to identify if the program contains a vul-
nerability. If the intersection is empty then the program is not vulnerable with respect to
the given attack pattern. Since our analysis is sound, this means that there is no user in-
put that can generate a string that matches the attack pattern at the sink node. However,
in our example, the intersection of the attack pattern and the result of the forward analy-
sis for the sink node is not empty and is characterized by the following regular expression:
URL:[A-Za-z0-9 .-;=-@:/]*<[A-Za-z0-9 .-@:/]*.

Loop statement The second script shown in Fig. 3 presents a simplified routine that itera-
tively appends a query result to a variable (later used to yield dynamic web pages). Within
the loop (line 3 to line 6), while the result of the query has more rows, the value of the
first element, i.e., $reg[0], is sanitized in line 4 and later appended to $www in line 5. The
value is sanitized in line 4 by applying the replacement statement (mentioned in the previous
example) to replace the characters that are not in the regular expression [A-Za-z0-9 .\-
@:/] with an empty string.

The loop yields a cycle in the dependency graph of this example. We add reachable
states iteratively until a fix point has been reached. We also apply automata widening tech-
niques (discussed in Sect. 3.6) to accelerate the computation. Upon termination, the result
of the forward analysis identifies the value of the sink node (the echo statement in line 7)
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1 <?php
2 $www = "<tr ";
3 while($reg = mysql_fetch_row($query)){
4 $tmp = preg_replace( "/[^A-Za-z0-9 .\-@:/]/", "", $reg[0] );
5 $www = $www.$tmp;
6 }
7 echo $www;
8 ?>

Fig. 3 A small example with loop

as <tr [A-Za-z0-9 .\-@:/]*. The intersection of the previous attack pattern and this
result is empty, i.e., given any values from the database, the echo statement in line 7 will not
take any input that matches the attack pattern. We conclude the segment is not vulnerable
with respect to the attack pattern. For cases that there exist cycles in a dependency graph that
may include complex string operations, e.g., replacement statements, our approach offers a
rather precise analysis based on the fixpoint computation on automata, iteratively computing
and adding the post images of (complex) string operations on reachable states.

Finally, the work by Christensen et al. [12] can handle loops but not replacement state-
ments, and, hence, cannot be directly applied to analyze applications with sanitization state-
ments. Minamide et al. [23, 27] propose using external transducers to model string replace-
ment and matching statements. Their approach can precisely model string replacements sim-
ilar to ours; however, for cases where replacement statements are within a loop (the exam-
ple shown in Fig. 3), their approach may lose precision due to a pre-determined number
of external transducers used with grammars. In fact, most previous work [2, 32] overlooks
replacement statements within a loop and adopts a coarse approximation, e.g., returning A∗
where A is the set of possible characters, to estimate potential reachable strings. We provide
a rather precise analysis with respect to handling of replace statements.

3 Automata-based string analysis

In this section, we first give basic definitions of automata and string operations. We then for-
mally describe data dependency graph and our vulnerability analysis. We detail the automata
construction for the post-image computation on concatenation and replacement operations,
and at the end discuss how to incorporate automata widening techniques to reach a least
fixpoint in the forward reachability analysis.

3.1 Preliminaries

Deterministic finite automata A DFA M is a tuple 〈Q,q0,Σ, δ,F 〉 where Q is a finite
set of states, q0 is the initial state, Σ is the alphabet, and F ⊆ Q is the set of accepting
states. δ : Q × Σ → Q is the transition relation. δ∗ : Q × Σ∗ → Q extends δ to a word
w. I.e., qn = δ∗(q0,w0w1 . . .wn−1) if there exists a sequence q0, . . . , qn, such that ∀0 ≤ i <

n, δ(qi,wi) = qi+1. A word w is accepted by M if δ∗(q0,w) ∈ F .
A state q of M is a sink state if ∀α ∈ Σ,δ(q,α) = q and q 
∈ F . In the following sec-

tions, we assume that for all unspecified pairs (q,α), δ(q,α) goes to a sink state. In the
constructions below, we also ignore the transitions that lead to a sink state.

Let Bk = {b1b2 . . . bk | bi ∈ {0,1},1 ≤ i ≤ k} denote the set of strings using k binary bits.
The alphabet Σ ⊆ Bk is encoded using k binary bits. For α ∈ Σ ⊆ Bk , we also use α0 (or
α1) ∈ Bk+1 to denote α appended with 0 (or 1).
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Fig. 4 An example of symbolic automata encoding with MBDDs

Symbolic automata representation Our string analysis is an automata-based analysis. The
set of string values is approximated as a regular language and represented as an automaton
that accepts the language. It is hence essential to be able to encode automata and perform ba-
sic automata manipulations effectively. In addition, to analyze real-world web applications,
it is also needed to deal with a large set of alphabet, e.g., ASCII or UNI code encodings. With
this regard, symbolic encoding of automata poses an attractive solution to offer the ability
to handle a large set of alphabet and a compact representation of automata. To achieve this
goal, we leverage the MONA DFA library [10] for automata construction and manipulation.
In MONA, a DFA is symbolically represented as a multi-terminal binary decision diagram
(MBDD), where the transition relation of a DFA is encoded as a binary decision diagram
(bdd) with multiple terminal nodes. Figure 4 shows an example of symbolic automata en-
coding using 7 bits (alphabet). The number of states is 3 and the number of bdd nodes is 15.
In the symbolic encoding with MBDDs, a direct path from q to q ′ without any bdd node,
e.g., state 2 to state 2 in Fig. 4, indicates that δ(q, x) = q ′ for all x ∈ Σ . An ε-transition can
not be specified with MBDDs.

In addition to a compact representation on transitions of DFAs, the MONA DFA library
provides efficient implementations of standard automata operations. These operations in-
clude product, project and determinize, and minimize [22]. The product operation takes the
Cartesian product of the states of the two input automata. We use the product operation to
implement the intersection and union operations. The project and determinize operation,
denoted as PROJECT(M, i), where 1 ≤ i ≤ k, converts a DFA M recognizing a language
L over the alphabet Bk , to a DFA M ′ recognizing a language L′ over the alphabet Bk−1,
where L′ is the language that results from applying the tuple projection on the ith bit to each
symbol of the alphabet. The process consists of removing the ith track of the MBDD and
determinizing the resulting MBDD via on-the-fly subset construction.

To deal with non-determinism, we extend the alphabet by adding extra bits, and then
apply projection on the added bit(s) to map the resulting DFA to the original alphabet. Com-
pared to Non-deterministic Finite Automata (NFA), using DFA suffers the inability of speci-
fying ε-transitions and non-determinism, but provides efficient basic automata manipulation
such as complement and inclusion checking; both are frequently used in our string analysis.
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String operations We focus on two common string operations: concatenation and replace-
ment in this work. Both are widely used to manipulate strings in web applications. The con-
catenation of two strings w1 and w2 is defined as the string w1w2. The concatenation of two
languages L1 and L2 is defined as the string set {w1w2 | w1 ∈ L1,w2 ∈ L2}. We say a DFA
M is the concatenation-DFA of M1 and M2 if and only if M accepts the concatenation of
L(M1) and L(M2), i.e., L(M) = {w1w2 | w1 ∈ L(M1),w2 ∈ L(M2)}.

We define the replacement on languages as follows. Given M1, M2, and M3 that ac-
cept the original strings, the match strings, and the replacement strings, respectively, the
replacement language of the DFA tuple (M1, M2, M3) is defined as the set {w | k >

0,w1x1w2 . . .wkxkwk+1 ∈ L(M1),w = w1c1w2 . . .wkckwk+1,∀1 ≤ i ≤ k, xi ∈ L(M2), ci ∈
L(M3),∀1 ≤ i ≤ k + 1,wi 
∈ {w′

1x
′w′

2 | x ′ ∈ L(M2),w
′
1,w

′
2 ∈ Σ∗}}. We say a DFA M is

the replaced-DFA of a DFA tuple (M1,M2,M3) if and only if M accepts the replacement
language of the DFA tuple (M1, M2, M3). That is, M accepts the set of strings that can be
yielded from a string s accepted by M1 whose substrings that are accepted by M2 are all
replaced with any string r accepted by M3.

In PHP programs, replacement operations such as ereg_replace can use different
replacement semantics such as longest match or first match. Our replacement operation
provides an over approximation of such more restricted replace semantics. For example,
consider L(M1) = {baab}, L(M2) = a+ (M2 accepts the language {a, aa, aaa, . . .}) and
L(M3) = {c}. According to the longest match semantics, M only accepts bcb, in which the
longest match aa is replaced by c. In the first match semantics, M only accepts bccb, in
which two matches a and a are replaced with c. Both of these are included in the result
obtained by our replacement operation. This over approximation works well for our bench-
marks, and does not raise false alarms. Indeed, we have observed that most statements we
encountered yield the same result in the first and longest match semantics, e.g.,

ereg_replace("<script *>","",$_GET["username"]);

which are precisely modeled by our language-based replacement operation. On the other
hand, Sakuma et al. [27] proposed precise matching against different matching strategies
using transducers. The presented replacement can be extended to different matching strate-
gies with their approach.

3.2 Data dependency graph

A data dependency graph specifies the data flow in the program. We adopt the data flow anal-
ysis proposed in [19] to generate dependency graphs of PHP programs. It has been shown
the data flow analysis by combining flow-sensitive analysis, inter procedural analysis, alias
analysis and literal analysis, is able to effectively discover sensitive functions (sinks) that
may take an input value that depends on the values of user input(s), as well as to construct
the corresponding dependency graph to specify how the values of user inputs flow into a
sink with string operations. As we have shown in the previous example (Fig. 3), with proper
string operations, these sinks may not raise vulnerabilities. In the following analysis, we
assume that a vulnerability only comes from these sinks.

We formally define a dependency graph G = 〈N,E, I 〉 as a directed graph, where N is
a finite set of nodes and E ⊆ N × N is a finite set of directed edges. An edge (ni, nj ) ∈ E

identifies that the value of nj depends on the value of ni . A labeling function l : N →
{input, constant, sink, variable, internal, concat, replace, un-modeled}
is defined to specify the type of a node. When l(n) is input, n is an input node that identifies
the data from untrusted parties, e.g., an input from web forms (node 1 in Fig. 2). When
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l(n) is constant, n is a constant node that is associated with a constant value (nodes 3,
6 and 9) or a constant regular expression (node 5). When l(n) is concat, n is a concat
node that has two predecessors labeled as the prefix node (n.p) and the suffix node (n.s)
(nodes 10 and 11). The node indicates a concatenation operation where n.p keeps the prefix
values and n.s. keeps the suffix values (nodes 4 and 9 for node 10). When l(n) is replace,
n is a replace node that has three predecessors labeled as the target node (n.t ), the match
node (n.m), and the replacement node (n.r). The node indicates a replacement function in
the program which can be modeled by our language-based replacement operation (node 7).
Specifically, n.t keeps the values of the target strings, n.m keeps the values of the match
strings, and n.r keeps the values of replacement strings, respectively (nodes 2, 5 and 6 for
node 7). When l(n) is sink, n is a sink node that identifies a sensitive function in the
program, which may take an input value that depends on the values of user inputs (node 12).
A sink node has no successors. When l(n) is internal, n is an internal node. These nodes
are used for transitions of the data flow, e.g., a temp variable in the program (nodes 2 and 8).
When l(n) is un-modeled, n is a node that denotes an un-modeled built-in function in
the original PHP program. We adopt a sound manner and assume the return values of these
functions are arbitrary strings. For n ∈ N , Succ(n) = {n′ | (n,n′) ∈ E} is the set of successors
of n. Pred(n) = {n′ | (n′, n) ∈ E} is the set of predecessors of n. If l(n) is concat, then
Pred(n) = {n.p,n.s}. If l(n) is replace, then Pred(n) = {n.t, n.m,n.r}. If l(n) is input
or constant, then Pred(n) = ∅. If l(n) is sink, then Succ(n) = ∅. For a dependency graph
G, we define Root(G) = {n | Pred(n) = ∅} and Leaf (G) = {n | Succ(n) = ∅}.

Since a dependency graph specifies a sensitive function which may take an input value
that depends on the value of user input(s), the following hypothesis holds:

Hypothesis 1 For a dependency graph G = (N,E), there exists at least one node n ∈ N

such that l(n) is sink and for each such n, there exists at least one node n′ ∈ N such that
l(n′) is input and n is reachable from n′ in G.

3.3 Vulnerability analysis

Our vulnerability analysis is shown in Algorithm 1. The analysis takes two inputs: a depen-
dency graph (denoted as G) and an attack pattern (denoted as Mattack). Mattack is a DFA
that accepts a given set of attack strings (specified as a regular expression). We say G is
vulnerable if there exists at least one sink node that can take value accepted by Mattack .

To associate each node with an automaton, we create an automata vector POST with
size |N |. Initially, all these automata accept nothing, i.e., their languages are empty. Vul is
the set of nodes that are identified as vulnerable program points. Initially Vul is an empty
set. The main computation is done by the process FWDANALYSIS called in line 3. Upon its
termination, POST[n] is the DFA accepting all possible values that node n can take. In line 4,
for each node n where l(n) is sink, we generate a DFA Mreach_attack by intersecting the
attack pattern Mattack and the automaton that accepts all possible values of node n (recorded
in POST[n]). Mreach_attack accepts the set of reachable attack strings at node n that can be
used to exploit the vulnerability. As checked in line 6, if Mreach_attack accepts a non-empty
language, then n is identified as a vulnerable program point. We add n to Vul in line 7.

In line 10 to 15, if there exists at least one node in Vul, we report G is vulnerable, as well
as report the vulnerability for each n ∈ Vul. Otherwise, we report G is not vulnerable with
respect to the attack pattern.
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Algorithm 1 VULANALYSIS(G,Mattack)
1: Init(POST);
2: set Vul := ∅;
3: FWDANALYSIS(G,POST);
4: for each n, where l(n) is sink do
5: Mreach_attack : = POST[n] ∩ Mattack ;
6: if L(Mreach_attack) 
= ∅ then
7: Vul := Vul ∪ {n};
8: end if
9: end for

10: if Vul 
= ∅ then
11: Report each vulnerability and its path;
12: return “Vulnerable”;
13: else
14: return “Secure w.r.t. Mattack”;

15: end if

3.4 Forward analysis

The forward reachability analysis is based on a standard working queue algorithm as shown
in Algorithm 2. We iteratively update the automata vector POST until a least fixpoint is
reached. In line 6, CONSTRUCT(n) returns a DFA that: (1) accepts arbitrary strings if l(n) is
input or un-modeled, (2) accepts the constant value if l(n) is constant, or (3) accepts
an empty string if l(n) is variable. (We assume (uninitialized) string variables are empty
string by default.) In line 8 and line 10, we incorporate two automata-based string manipulat-
ing functions: CONCAT(M1,M2) and REPLACE(M1,M2,M3) that return the concatenation-
DFA of M1 and M2, and the replaced-DFA of (M1, M2, M3), respectively. We discuss how to
implement these functions in Sect. 3.5. In line 14, we incorporate the automata widening op-
erator ∇ (discussed in Sect. 3.6) to accelerate the fixpoint computation. Note that when there
are cycles (cyclic dependency relations) in G, a least fixpoint (line 15) may never be reached
given strings in infinite domain. Hence the computation does not terminate. We incorporate
two kinds of widening operators to compute a least fixed point that over approximates all
reachable states, but guarantees the termination.

Upon termination, POST[n] stores the DFA whose language includes all possible values
that n can take. This information is then passed to check whether the program is vulnerable.

3.5 Post-image computation

3.5.1 CONCAT(M1,M2)

We present the construction of the concatenation-DFA of M1 and M2. Given M1 =
〈Q1, q10,Σ, δ1,F1〉 and M2 = 〈Q2, q20,Σ, δ2,F2〉, the concatenation-DFA M can be con-
structed as follows. Without loss of generality, we assume that Q1 ∩ Q2 is empty. We first
construct an intermediate DFA M ′ = 〈Q′, q10,Σ

′, δ′,F ′〉, where

– Q′ = Q1 ∪ Q2

– Σ ′ = {α0 | α ∈ Σ} ∪ {α1 | α ∈ Σ}
– ∀q, q ′ ∈ Q1, δ

′(q,α0) = q ′, if δ1(q,α) = q ′
– ∀q, q ′ ∈ Q2, δ

′(q,α0) = q ′, if δ2(q,α) = q ′
– ∀q ∈ Q1, δ

′(q,α1) = q ′, if q ∈ F1 and ∃q ′ ∈ Q2, δ2(q20, α) = q ′
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Algorithm 2 FWDANALYSIS(G,POST)
1: queue WQ;
2: WQ.enqueue(Root(G));
3: while WQ not empty do
4: n := WQ.dequeue();
5: if l(n) is input, constant, variable, or un-modeled then
6: tmp := CONSTRUCT(n);
7: else if l(n) is concat then
8: tmp : = CONCAT(POST[n.p], POST[n.s]);
9: else if l(n) is replace then

10: tmp : = REPLACE(POST[n.t], POST[n.m], POST[n.r]);
11: else
12: tmp : =

⋃
n′∈Pred(n) POST[n′];

13: end if
14: tmp := (tmp ∪ POST[n])∇POST[n];
15: if tmp 
⊆ POST[n] then
16: POST[n] := tmp;
17: WQ.enqueue(Succ(n));
18: end if
19: end while

– F ′ = F1 ∪ F2, if q20 ∈ F2; F2, otherwise.

Then, M = PROJECT(M ′, k + 1). Again, since both M1 and M2 are DFA, the subset
construction happens only when there exists q ∈ F1 such that ∃α,q ′, q ′′, α ∈ Σ,q ′ ∈ Q1,

q ′′ ∈ Q2, δ1(q,α) = q ′, δ2(q20, α) = q ′′.

3.5.2 REPLACE(M1,M2,M3)

We present the construction of the replaced-DFA of (M1,M2,M3). Without loss of general-
ity, we assume that M1,M2,M3 have the same alphabet Σ , and �1, �2 
∈ Σ are two auxiliary
symbols. We define M ′

1, M ′
2 and M as follows, and claim that M accepts the same language

as the replaced-DFA of the tuple (M1,M2,M3).

– M ′
1, s.t. L(M ′

1) = {w′ | k > 0,w = w1x1w2 . . .wkxkwk+1 ∈ L(M1),w
′ = w1�1x1�2w2 . . .

wk�1xk�2wk+1}.
– M ′

2, s.t. L(M ′
2) = {w′ | k > 0,w′ = w1�1x1�2w2 . . .wk�1xk�2wk+1,∀1 ≤ i ≤ k,

xi ∈ L(M2),∀1 ≤ i ≤ k + 1,wi ∈ L(Mh)}, where L(Mh) is the set of strings which do
not contain any substring in L(M2). The language L(Mh) is defined as the complement
set of {w1xw2 | x ∈ L(M2),w1,w2 ∈ Σ∗}.

– M , s.t. L(M) = {w | k > 0,w1�1x1�2w2 . . .wk�1xk�2wk+1 ∈ L(M ′
1) ∩ L(M ′

2),w =
w1c1w2 . . .wkckwk+1,∀1 ≤ i ≤ k, ci ∈ L(M3)}.
Given M1 = 〈Q1, q10,Σ, δ1,F1〉, M2 = 〈Q2, q20,Σ, δ2,F2〉, and M3 = 〈Q3, q30,Σ,

δ3,F3〉, the process to construct a replaced-DFA M can be decoupled into the following
steps:

1. Construct M ′
1 from M1;

2. Construct M ′
2 from M2;

3. Generate M ′ as the intersection of M ′
1 and M ′

2;
4. Construct M ′′ from M ′ where the strings that appear between �1 and �2 are replaced by

words in L(M3); and
5. Generate M from M ′′ by projection.
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Fig. 5 Construct M ′
1 and M ′

2

The intuition is that we insert marks into automata, identify matching sub-strings by
intersection of automata, and then construct the final automaton by replacing these matching
sub-strings with replacement. We formally describe the construction of each step as below.
As a running example, we use L(M1) = {baab}, L(M2) = a+ (M2 accepts the language
{a, aa, aaa, . . .}) and L(M3) = {c} or L(M3) = {ε} to illustrate the construction step by
step. Let |M| denote the number of states of M . An upper bound for each intermediate
automaton before projection and minimization is also described.

Step 1: M ′
1 = 〈Q′

1, q10,Σ
′, δ′

1,F1〉 is constructed from M1, where

– Q′
1 = Q1 ∪ Q1′ , Q1′ is the duplicate of Q1. For all q ∈ Q1, there is a one to one mapping

q ′ ∈ Q1′ .
– Σ ′ = Σ ∪ {�1, �2}
– δ′

1(q1, α) = q2 and δ′
1(q1′ , α) = q2′ , if δ1(q1, α) = q2

– ∀q1 ∈ Q1, δ
′
1(q1, �1) = q1′ and δ′

1(q1′ , �2) = q1

An example for constructing M ′
1 from M1, where L(M1) = {baab}, is given in Fig. 5(a).

|M ′
1| is bounded by 2|M1|.

Step 2: To construct M ′
2, we first construct Mh which accepts the complement set of

{w1xw2 | w1,w2 ∈ Σ∗, x ∈ L(M2)}. For instance, as shown in Fig. 5(b), for L(M2) = a+,
Mh is the DFA that accepts (Σ \ {a})∗. Let M∗ be the DFA accepting Σ∗. Mh can be con-
structed by taking the complement of (CONCAT(CONCAT(M∗,M2),M∗)). We obtain the
DFA in Fig. 5(b) by applying this construction with minimization.

Assume Mh = 〈Qh,qh0,Σ, δh,Fh〉, and M2 = 〈Q2, q20,Σ, δ2,F2〉. M ′
2 = 〈Q′

2, qh0,Σ
′,

δ′
2,Fh〉 can then be constructed as:

– Q′
2 = Qh ∪ Q2

– Σ ′ = Σ ∪ {�1, �2}
– ∀q, q ′ ∈ Qh, δ

′
2(q,α) = q ′, if δh(q,α) = q ′

– ∀q, q ′ ∈ Q2, δ
′
2(q,α) = q ′, if δ2(q,α) = q ′

– ∀q ∈ Qh, δ
′
2(q, �1) = q20 if q ∈ Fh

– ∀q ∈ Q2, δ
′
2(q, �2) = qh0 if q ∈ F2

The corresponding M ′
2 for our example is shown in Fig. 5(b). |M ′

2| is bounded by |Mh|+
|M2|.
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Fig. 6 Construct M ′ as the
intersection of M ′

1 and M ′
2

Step 3: M ′ = 〈Q′, q ′
0,Σ

′, δ′,F ′〉 is generated as the intersection of M ′
1 and M ′

2 based on
production. The example M ′ is shown in Fig. 6. |M ′| is bounded by |M ′

1| × |M ′
2|.

Step 4: Before we construct M ′′ from M ′, we first introduce a function reach : Q → 2Q,
which maps a state to all its �-reachable states in M . We say q ′ is �-reachable from q if
there exists w, q ′ = δ∗(q, �1w�2). For instance, in Fig. 6, one can find that reach(i) = {j, k}
and reach(j) = {k}. Intuitively, one can think that each pair (q, q ′), where q ′ ∈ reach(q),
identifies a word in L(M2).

M ′′ is constructed from M ′ by, for each q and q ′ ∈ reach(q), insert paths between q

and q ′ to recognize L(M3). Let M3 = 〈Q3, q30,Σ, δ3,F3〉. This step can be done by adding
an ε-transition from q to q30, and for each q ′′ ∈ F3, adding an ε-transition from q ′′ to q ′.
However, it is needed to prevent using ε-transitions with MBDDs, which can be done by
nondeterminism, similar to previous techniques in the construction of ε-free NFA from reg-
ular expressions, e.g., [7]. To deal with nondeterminism with MBDDs, we add extra bits
to the alphabet as we did in the construction of concatenation. Extra bits are added to the
alphabet to make transitions deterministic and later be projected away to yield the DFA with
the original alphabet.

For example, when there exist q ′, q ′′ ∈ reach(q) and q ′ 
= q ′′, the insertion will cause
nondeterminism. Assume n is the maximum size of reach(q) for all q ∈ Q′. We need at
most �log(n + 1)� bits to be added to the alphabet so that the construction can be under the
fashion of DFA.

Though our replacement operation is defined in a general case in terms of M3, we have
observed that (actually, for all cases in our experiment) the replacement statements in PHP
programs, such as str_replace, preg_replace, and ereg_replace, have L(M3) in
the following three cases:

1. M3 only accepts single characters, i.e., L(M3) ⊆ Σ ,
2. M3 only accepts words with more than one character, i.e., L(M3) ⊆ Σ+ \ Σ , and
3. M3 only accepts the empty string, i.e., L(M3) = {ε}.

We detail the direct DFA construction of M ′′ for each case as below. One main part
of the construction is introducing sufficient bits to encode nondeterminism. Let P = {q |
q ∈ Q′, |reach(q)| > 0} be the set of initial states to insert M3. Let m = �log(n + 1)�, where
n is the maximum size of reach(q) for all q ∈ P . Let mq be an m-bit string. For α ∈ Bk ,
αmq ∈ Bk+m is a string in which mq is appended to α. Let m0 be an m-bit string of 0s. We
assume ∀q,mq 
= m0, and for any q ∈ P , mq ′ 
= mq ′′ if q ′, q ′′ ∈ reach(q).

Case 1: L(M3) ⊆ Σ M ′′ = 〈Q′, q ′
0,Σ

′′, δ′′,F ′〉 is constructed as:

– Σ ′′ ⊆ Bk+m

– ∀q ∈ Q′, δ′′(q,αm0) = q ′, if δ′(q,α) = q ′

– ∀q ∈ P,∀q ′ ∈ reach(p),∀α ∈ L(M3), δ
′′(q,αmq ′) = q ′.
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Fig. 7 Construct M ′′ from M ′

In Fig. 6, P = {i, j}, reach(i) = {j, k} and reach(j) = {k}. Let L(M3) = {c}. M ′′ of the
example is shown in Fig. 7(a). Each symbol is appended with one extra bit, e.g., δ(i, c0) = j

and δ(i, c1) = k. |M ′′| is bounded by |M ′|.
Case 2: L(M3) ⊆ Σ+ \ Σ For each p ∈ P , we construct a copy of M3 as Mp =
〈Qp,qp0,Σ, δp,Fp〉. M ′′ is constructed by inserting Mp between p and reach(p).

M ′′ = 〈Q′′, q ′
0,Σ

′′, δ′′,F ′〉, where

– Q′′ = Q′ ∪ ⋃
p∈P Qp

– Σ ′′ ⊆ Bk+m

– ∀q ∈ Q′, δ′′(q,αm0) = q ′, if δ′(q,α) = q ′
– ∀p ∈ P,∀q ∈ Qp, δ′′(q,αm0) = q ′, if δp(q,α) = q ′.
– ∀p ∈ P, δ′′(p,αmq) = q , if δp(qp0, α) = q .
– ∀p ∈ P,∀q ∈ reach(p), δ′′(q ′, αm0) = q , if δp(q ′, α) = q ′′ and q ′′ ∈ Fp .

In this case, |M ′′| is bounded by |M ′| + |M ′| × |M ′| × |M3|.
Case 3: L(M3) = {ε} We consider this case as deletion. Let M+

2 accept the Kleene plus
closure of L(M2). We have the following property.

Property 1 M = REPLACE(M1,M2,M3), and M ′ = REPLACE(M1,M
+
2 ,M3), L(M) =

L(M ′) if L(M3) = {ε}.

The correctness comes from the fact that, by construction, if there exists w ∈ L(M+
2 ),

then there exists k > 0, w = w1w2 . . .wk , where ∀1 ≤ i ≤ k,wi ∈ L(M2). Since w or any wi

will be deleted after the replacement, using M+
2 instead of M2 yields the same result.

Note that the �-reachable states of M ′ using M+
2 is actually the set of reachable closure of

the �-reachable states of M ′ using M2. This facilitates our construction by taking all deleted
pairs into account in one step. In the following construction, we use M+

2 instead of M2 as
the match automaton.

M ′′ can then be constructed as 〈Q′, q ′
0,Σ

′′, δ′′,F ′′〉, where

– Σ ′′ ⊆ Bk+m

– ∀q ∈ Q′, δ′′(q,αm0) = q ′, if δ′(q,α) = q ′
– ∀p ∈ P,∀q ∈ reach(p), δ′′(p,αmq ′) = q ′, if δ′(q,α) = q ′.
– F ′′ = {p | p ∈ P,∃q ∈ reach(p) and q ∈ F ′} ∪ F ′.

When L(M3) = {ε}, the result of M ′′ is shown in Fig. 7(b). Note that if M2 = {a}, we
would get the same result. |M ′′| is bounded by |M ′|.
Step 5: For the three cases, the final replaced-DFA M can then be constructed by iteratively
projecting away the extra bits (over Σ ) in M ′′. The subset construction is only applied when
needed.

The replaced-DFA of (M1,M2,M3), where L(M1) = {baab}, L(M2) = a+, and
L(M3) = {c}, is M that accepts {bcb, bccb}.
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Exponential blow-up Lemma 1 shows that a potential exponential blow-up of the number
of states of the final DFA is inevitable in a replacement operation.

Lemma 1 For every n ≥ 1, there exists a DFA M with O(n) states accepting a language
L ⊆ {0,1}∗#{0,1}∗ such that any DFA accepting the language L′ obtained from L by re-
placing # with 1 requires O(2n) states.

Proof Let n ≥ 1. Let L = {x#y | x, y ∈ {0,1}∗, |y| = n − 1}. Clearly, L can be accepted by
a DFA M with O(n) states. Now L′ = {x1y | x, y ∈ {0,1}∗, |y| = n − 1}. Below we show
that any DFA accepting L′ requires O(2n) states. Assume a DFA A accepting L′. Let w be
any binary string of length n, i.e., |w| = n. Let s(w) denote the state that A enters after
processing w. The proof is based on the fact that for any w and w′ s.t. |w| = |w′| = n and
w 
= w′, s(w) 
= s(w′). Since there are 2n distinct strings of length n, there are 2n distinct
s(w)′s. Hence, A has at least 2n states. �

3.6 Widening automata

Finally, we describe the widening operator we use, which was originally proposed for arith-
metic automata by Bartzis and Bultan [4].

Given two finite automata M = 〈Q,q0,Σ, δ,F 〉 and M ′ = 〈Q′, q ′
0,Σ, δ′,F ′〉, we first

define the binary relation ≡∇ on Q ∪ Q′ as follows. Given q ∈ Q and q ′ ∈ Q′, we say that
q ≡∇ q ′ and q ′ ≡∇ q if and only if

∀w ∈ Σ∗. δ∗(q,w) ∈ F ⇔ δ′∗(q ′,w
) ∈ F ′ or (1)

q, q ′ 
= sink ∧ ∃w ∈ Σ∗.δ∗(q0,w) = q ∧ δ′∗(q ′
0,w

) = q ′ (2)

where δ∗(q,w) is defined as the state that M reaches after consuming w starting from
state q . In other words, condition 1 states that q ≡∇ q ′ if ∀w ∈ Σ∗, w is accepted by M

from q then w is accepted by M ′ from q ′, and vice versa. Condition 2 states that q ≡∇ q ′ if
∃w ∈ σ , M reaches state q and M ′ reaches state q ′ after consuming w from its initial state.
For q1, q2 ∈ Q and q1 
= q2 we say that q1 ≡∇ q2 if and only if

∃q ′ ∈ Q′. q1 ≡∇ q ′ ∧ q2 ≡∇ q ′ ∨ ∃q 
= q1, q2 ∈ Q. q1 ≡∇ q ∧ q2 ≡∇ q (3)

Similarly we can define q ′
1 ≡∇ q ′

2 for q ′
1 ∈ Q′ and q ′

2 ∈ Q′.
It can be seen that ≡∇ is an equivalence relation. Let C be the set of equivalence classes

of ≡∇ . We define M∇M ′ = 〈Q′′, q ′′
0 ,Σ, δ′′,F ′′〉 by:

Q′′ = C

q ′′
0 = c s.t. q0 ∈ c ∧ q ′

0 ∈ c

δ′′(ci, σ ) = cj s.t.
(∀q ∈ ci ∩ Q. δ(q,σ ) ∈ cj ∨ δ(q, σ ) = sink

)

∧ (∀q ′ ∈ ci ∩ Q′.δ′(q ′, σ
) ∈ cj ∨ δ′(q ′, σ

) = sink
)

F ′′ = {
c | ∃q ∈ F ∪ F ′. q ∈ c

}

In other words, the set of states of M∇M ′ is the set C of equivalence classes of ≡∇ . Tran-
sitions are defined from the transitions of M and M ′. The initial state is the class con-
taining the initial states q0 and q ′

0. The set of final states is the set of classes that contain
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Fig. 8 Widening automata

some of the final states in F and F ′. It can be shown that, given two automata M and M ′,
L(M) ∪ L(M ′) ⊆ L(M∇M ′) [4].

In Fig. 8, we give an example for the widening operation. L(M) = {ε, ab} and L(M ′) =
{ε, ab, abab}. The set of equivalence classes is C = {q ′′

0 , q ′′
1 }, where q ′′

0 = {q0, q
′
0, q2, q

′
2, q

′
4}

and q ′′
1 = {q1, q

′
1, q

′
3}. L(M∇M ′) = (ab)∗.

As shown in Algorithms 2, we use this widening operator iteratively to compute an over-
approximation of the least fixpoint that corresponds to the reachable values of string ex-
pressions. To simplify the discussion, let us assume a program with a single string vari-
able represented with one automaton M . Let Mi represent the automaton computed at
the ith iteration and let I denote the set of initial values of the string variable. The fix-
point computation will compute a sequence M0, M1, . . . ,Mi, . . . , where L(M0) = I and
L(Mi) = L(Mi−1) ∪ L(post(Mi−1)) where the post-image for different statements is com-
puted as described in Sect. 3.5.

Definition 1 L(M) is a fixpoint if L(M)= L(M)∪L(post(M)). L(M∞) is the least fixpoint
if L(M∞) is a fixpoint and for all other fixpoint L(M), L(M∞) ⊆ L(M).

We reach the least fixpoint L(M∞) = L(Mi) at the ith iteration when L(Mi) = L(Mi−1).
Since we are dealing with an infinite state system, the fixpoint computation may not con-
verge.

Given the widening operator, we actually compute a sequence M ′
0, M ′

1, . . . ,M
′
i , . . . , that

over-approximates the fixpoint computation where M ′
i is defined as: L(M ′

0) = L(M0), and
for i > 0, L(M ′

i ) = L(M ′
i−1∇Mi), where L(Mi) = L(M ′

i−1) ∪ L(post(M ′
i−1)). Let M ′∞ de-

note the limit of this approximate sequence where there exists a j , L(M ′∞) = L(M ′
j ) =

L(M ′
j−1). Then we have the following result from [4]:

Definition 2 M1 = 〈Q1, q10,Σ, δ1,F1〉 is simulated by M2 = 〈Q2, q20,Σ, δ2,F2〉 if and
only if there exists a total function f : Q1 \ {sink} → Q2 such that δ1(q, σ ) = sink or
f (δ1(q, σ )) = δ2(f (q), σ ) for all q ∈ Q1 \ {sink} and σ ∈ Σ . Furthermore, f (q10) = q20

and for all q ∈ F1, f (q) ∈ F2.

Definition 3 M = 〈Q,q0,Σ, δ,F 〉 is state-disjoint if and only if for all q 
= q ′ ∈ Q, L(q) 
=
L(q ′), where L(k) = {w | δ(k,w) ∈ F }, for k ∈ Q.

Theorem 1 If (1) M∞ exists, (2) M∞ is a state-disjoint automaton, and (3) M0 is simulated
by M∞, then if M ′∞ exists (i.e., if the approximate sequence converges) then L(M ′∞) =
L(M∞).

Recall the simple example where we start from an empty string and simply concate-
nate a substring ab at each iteration. The exact sequence M0, M1, . . . ,Mi, . . . will never
converge to the least fixpoint, where L(M0) = {ε} and L(Mi) = {(ab)k | 0 ≤ k ≤ i}. How-
ever, M∞ exists and L(M∞) = (ab)∗. In addition, M∞ is a state-disjoint automaton, and
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Fig. 9 The approximate
sequence of a convergence
example

Fig. 10 The approximate
sequence of a non-regular
example

M0 is simulated by M∞. Based on Theorem 1, these conditions imply that once the com-
putation of the approximate sequence reaches the fixpoint, the fixpoint is equal to M∞
and the analysis is precise. Computation of the approximate sequence is shown in Fig. 9.
L(M ′

i ) = L(M ′
i−1∇Mi), where L(Mi) = L(M ′

i−1) ∪ L(post(M ′
i−1)) and post (M) returns

an automaton that accepts {wab | w ∈ L(M)}. In this case, we reach the fixpoint at the 2nd
iteration and M ′∞ = M∞ = M ′

2.
A more general case that we commonly encounter in real programs is that we start from a

set of initial strings (accepted by Minit ), and concatenate an arbitrary but fixed set of strings
(accepted by Mtail) at each iteration. Based on Theorem 1 one can conclude that if the DFA
M that accepts L(Minit )L(Mtail)

∗ is state-disjoint, then our analysis via widening will reach
the precise least fixpoint when it terminates.

The automata widening operator defined in [4] has two variations and only the coarser
version guarantees convergence. The coarser widening operator ∇c is defined the same as ∇
except that we discard the condition q, q ′ 
= sink in Eq. (2). In our implementation we start
with the more precise version (∇) and after a constant number of steps switch to the coarser
version (∇c) to guarantee convergence.

In general, the least fixpoint L(M∞) may not exist, or even if it exists, the language may
not be regular. For instance, if we change the previous example to that post(M) returns an
automaton that accepts {awb | w ∈ L(M)} instead, we will have L(Mi) = {akbk | 0 ≤ k ≤ i}.
Though the least fixpoint L(M∞) = {anbn | 0 ≤ n} exists, it is not a regular language. Let
L(M0) = L(M ′

0) = {ε}. For the above example, M ′
1 = M ′

0∇(M ′
0 ∪ post(M ′

0)) and M ′
2 =

M ′
1∇(M ′

1 ∪ post(M ′
1)) are shown in Fig. 10 (a) and (b), respectively. The sequence does

not converge. On the other hand, if we apply the coarser widening operator at the second
iteration, we get M ′′

2 = M ′
1∇c(M

′
1 ∪ post (M ′

1)) shown in Fig. 10 (c), and reach the fixpoint
at the next iteration. The result is an over approximation of the least fixpoint L(M∞).

4 STRANGER: a string analysis tool for PHP programs

We have implemented the automata-based string analysis techniques described above in
a tool for analyzing PHP programs. STRANGER (STRing AutomatoN GEneRator) uses
Pixy [19] as a front end and MONA [10] automata package for automata manipulation.
STRANGER takes a PHP program and an attack pattern (characterizing XSS, SQL Injection,
or Malicious File Execution (MFE) vulnerabilities) as input and outputs the possible vul-
nerabilities with respect to the attack pattern. The architecture of STRANGER is shown in
Fig. 11. The tool consists of the following parts.
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Fig. 11 The Architecture of STRANGER

4.1 PHP parser and taint analyzer

The first step in our analysis is to parse the PHP program and construct the control flow
graph (CFG). This is done by Pixy. PHP programs do not have a single entry point as in
some other languages such as C and Java, so we process each script by itself along with all
files included by that script. The CFG is passed to the taint analyzer in which alias and data
dependency analyses are performed to generate data dependency graphs. Data dependency
graphs specify how the inputs flow to sensitive functions (sinks) with respect to the string
operations. The number of nodes in a dependency graph is linear with respect to the num-
ber of string operations. Loop structures cause cyclic dependency relations. Taint analysis
determines if any user input (considered to be tainted-data) flows into a sink. If no tainted
data flows into a sink, then taint analysis declares that sink to be secure; otherwise, the de-
pendency graph for that sink is characterized as tainted and passed to the string analyzer for
more analysis.

4.2 String analyzer

The string analyzer implements our vulnerability analysis in Sect. 3.3 on the tainted de-
pendency graphs found by taint analysis. The dependency graphs are further pre-processed
to optimize the reachability analyses. First, a new acyclic dependency graph is built where
all the nodes in a cycle (identifying cyclic dependency relations) are replaced by a single
strongly connected component (SCC) node. The vulnerability analysis is conducted on the
acyclic graph so that the nodes that are not in a cycle are processed only once. In the forward
analysis, we propagate the post images to nodes in the topological order, initializing input
nodes to DFAs accepting arbitrary strings. Upon termination, we intersect the language of
the DFA of the sink node with the attack pattern. If the intersection is empty, we conclude
that the sink is not vulnerable with respect to the attack pattern. Otherwise, we report each
vulnerability with the path from the input node to the sink node. When we hit an SCC node,
we switch to the working queue fixpoint computation (similar to Algorithm 2) on nodes
that are part of the SCC represented by the SCC node. During the fixpoint computation we
apply automata widening in Sect. 3.6 (a fine widening operator) on reachable states to ac-
celerate the convergence of the fixpoint computation. We added the ability to choose when
to apply the widening operator. This option enables computation of the precise fixpoint in
cases where the fixpoint computations converges after a certain number of iterations without
widening. We also incorporate a coarse widening operator [4] that guarantees the conver-
gence to avoid potential infinite iterations of the fixpoint computation.
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4.3 String manipulation library

String manipulation library (SML) handles all core string and automata operations such as
replacement, concatenation, prefix, suffix, intersection, union, and widening discussed in
previous sections. During the vulnerability analysis, all string and automata manipulation
operations that are needed to decorate a node in a dependency graph are sent to SML along
with the string and/or automata parameters. SML, then, executes the operation and returns
the result as an automaton. We defined a Java class called StrangerAutomaton as the type of
the parameters and results. The class follows a well defined interface so that other automata
packages can be plugged in and used with the string analyzer instead of SML. SML is
also decoupled from the vulnerability analysis component so that it can be used with other
string analysis tools. StrangerAutomaton encapsulates libstranger.so shared library that has
the actual string manipulation code implemented in C (around 10K LOC) to get a faster
computation and a tight control on memory. We used JNA (Java Native Access) to bridge the
two languages. Another feature of STRANGER is an option to produce a C trace of all string
and automaton operations performed during a run to allow us to debug the code directly in
gdb. Finally, the generated C trace can also be directly compiled with libstranger.so to yield
the executable. This allows the extension of our string analysis to other languages (such as
JavaScript and .NET) by generating the corresponding C traces (using libstranger.so) while
parsing/analyzing the programs.

5 Experiments

5.1 Checking vulnerable benchmarks

We first experimented with STRANGER on a number of benchmarks manually extracted
from known vulnerable web applications: (1) MyEasyMarket-4.1 (a shopping cart pro-
gram), (2) PBLguestbook-1.32 (a guestbook application), (3) BloggIT-1.0 (a blog engine),
and (4) proManager-0.72 (a project management system). The Pixy front-end automatically
generates the dependency graphs for these program segments and identifies that all of them
may be vulnerable based on the taint analysis. In Table 1, we provide the data about the
generated dependency graphs: #nodes and #edges indicate the number of nodes and edges
in the dependency graph, #sinks indicates the number of sensitive sinks, #inputs indicates
the number of input nodes. Since each program is identified to be vulnerable by taint
analysis, there is at least one sensitive sink node and one input node in each dependency
graph. We use #literals to denote the sum of the lengths of the constant strings that appear
in the dependency graph. Note that these dependency graphs are built only for sensitive
sinks where unrelated parts of the code have been removed manually. Hence, their sizes are
much smaller than the original programs. In the next section we report our experiments on
applying Stranger directly to web applications without any manual simplification.

In our experiments, we used an Intel machine with 3.0 GHz processor and 4 GB of
memory running Ubuntu Linux 8.04. We use 8 bits to encode each ASCII character. The
performance of our string analysis is shown in Table 2. The total execution time includes
the pre-processing time by the front-end (including parsing, dependency analysis and taint
analysis) and the forward analysis. Table 3 shows the frequency and execution time of each
of the string manipulating functions. Our computation does not suffer exponential blow-up.
This shows some promise using symbolic DFA representation (provided by the MONA DFA
library), in which transition relations of the DFAs are represented as Multi-terminal Binary
Decision Diagrams (MBDDs).
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Table 1 Sizes of dependency
graphs #nodes #edges #sinks #inputs #literals

1 21 20 1 1 51

2 41 44 1 2 99

3 32 31 1 1 142

4 119 117 3 3 450

Table 2 Total performance
Execution time (seconds) Memory usage (Kb)

Total Forward analysis

1 0.096 0.093 2700

2 0.132 0.124 5728

3 0.251 0.248 18890

4 0.557 0.462 116097

Table 3 String function
performance CONCAT REPLACE

# operations Time (sec) # operations Time (sec)

1 6 0.015 1 0.004

2 19 0.082 1 0.004

3 22 0.038 4 0.112

4 14 0.014 12 0.058

Table 4 Automata that accept
reachable attack strings Reachable attack (Sink)

#states #bdd nodes

1 24 225

2 66 593

3 29 267

4 131 1221

136 1234

147 1333

Finally, Table 4 shows the data about the DFAs that STRANGER generated with the num-
ber of states (#states) and the number of BDD nodes (#bdds). Reachable Attack is the DFA
that accepts all possible attack strings at the sink node. For benchmark (4), there are three
sinks with one input each, so we generate three Reachable Attack DFAs. As shown in Ta-
ble 4, all the automata can be encoded with around one thousand BDD nodes, showing the
efficiency of the MBDD encoding.

5.2 Detecting XSS vulnerabilities in Web applications

In this section, we show the effectiveness of our approach on real-world Web applications.
We have run STRANGER to detect XSS vulnerabilities in several open source PHP Web
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Table 5 The sizes of analyzed
applications Application # of php files Total loc # of sinks

1 Webchess 0.9.0 23 3375 421

2 EVE 1.0 8 906 114

3 Faqforge 1.3.2 10 534 375

4 Schoolmate 63 8287 898

5 Sendcard 3.4.1 72 11262 228

6 Necleus 3.64 71 37440 2764

7 Servoo 27 9288 6

8 Moodle 1.6 1353 374767 17310

applications [31] including Moodle, a popular course management system that consists of
1300+ files and 350,000+ lines-of-code in total. Other applications we analyzed are: We-
bchess 0.9.0 is a server for playing chess over the Internet; EVE 1.0 is a tracker for players’
activities for an online game; Faqforge 1.3.2 is a document management tool; Schoolmate
is a class management system for elementary, middle and high schools; Sendcard is an ad-
vanced e-card program; Necleus is a content management system for developing weblogs.
The size of these applications are showed in Table 5. Note that in these experiments we
directly applied STRANGER to analyze these applications without any manual modification.

As we mentioned earlier a sink is a sensitive function that can potentially be exploited
if the application is vulnerable. For the XSS vulnerabilities the sensitive functions include
printf and echo. We also showed the number of sinks in each application in Table 5.

We use the attack pattern Σ∗ <scriptΣ∗ for detecting XSS vulnerabilities and report
a vulnerability for a sink that can take an attack string (matching the attack pattern) as its
input. We perform string analysis on top of tainted dependency graphs that the taint analysis
generates for sinks that may use values depending on user inputs. The results of our analysis
for these applications are summarized in Table 6.

We find vulnerabilities in all applications as shown in Table 6. For several applications
such as Webchess, EVE, Faqforge, Schoolmate, and Necleus, the taint analysis and the string
analysis report the same number of vulnerabilities. After checking the code of these appli-
cations manually, we find that they do not use sanitization functions. Since we assume that
the values from a user input could be an arbitrary strings, a sink that uses values from user
input(s) (reported as a vulnerability by the taint analysis) will be able to take an attack string
as its input (reported as a vulnerability by the string analysis). On the other hand, when
there are sanitization functions (e.g., replacement statements) in the applications, the string
analysis is able to identify sinks that could not take any attack string as its input even if they
are tainted sinks. For example, in Moodle, there are around 500 tainted sinks that are not
vulnerable (taking an attack string as its input).

We summarize the performance in Table 6. The total time including pre-processing (pars-
ing, dependency and taint analyses) time and string analysis time on all PHP files in these
applications seem affordable and ranges from 8 seconds to 6800+ seconds.

Note that pre-processing times for some applications, such as Webchess, Faqforge, Send-
card, Necleus, and Moodle, are greater than the string analysis time because in these appli-
cations many of the sinks are determined to be secure by taint analysis, and, hence, they are
not analyzed using string analysis. Despite having the least number of vulnerabilities, EVE
1.0 took a long time to be analyzed. The vulnerabilities in EVE 1.0 have many concatena-
tion operations with long string constants and result in large automata (356 states and 3245
BDD nodes on average) in sink nodes to encode reachable attack strings. The last column
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Table 6 Vulnerability analysis results

# of vulnerabilities Execution time (sec) Memory (KB)
average

# of SCC nodes/
# of iterationsString Taint Total Forward

1 27 27 38.26 1.88 5842 0/0

2 8 8 12.00 7.35 57424 0/0

3 20 20 7.65 0.22 6124 0/0

4 153 153 1707.05 1654.49 107333 5/10

5 12 13 103.84 26.08 4523 3/12

6 28 28 419.43 289.67 14455 1/2

7 1 6 26.99 0.03 1393 0/0

8 1976 2468 6829.67 1788.32 12609 175/476

in Table 6 shows the number of SCC nodes and the number of iterations to reach a fixpoint.
Each SCC node presents a set of nodes that form a cyclic dependency relation in the depen-
dency graph. It can be seen that this relation is not frequently appeared in real applications.
During the fixpoint computation, we set the fine widening operator to be applied for the first
5 iterations and then followed by the coarse widening operator to be applied. There are 500
times that the widening operator has been invoked in total during the fixpoint computation
on 184 SCC nodes. The result shows that the computation on the SCC nodes can reach the
fixpoint with around 3 iterations on average under the settings.

To check whether the reported vulnerabilities (by the string analysis) are false alarms,
we select some applications (Webchess, EVE, Faqforge, and Schoolmate), and try to re-
move the reported vulnerabilities by adding sanitization statements. We manually inserted
replacement statements to sanitize the values of each input that may exploit the identified
vulnerabilities in these applications. For example, the following code sanitized the values
assigned to $name in file Member.php in EVE 1.0.

$_POST["name"] = preg_replace(’/</’, "&lt;", $_POST["name"]);
$name = $_POST["name"];

Table 7 summarizes the result of our analysis on the properly sanitized applications. Note
that since taint analysis overlooks the contents of string variables, the inserted statements do
not affect the result of the taint analysis. On the other hand, string analysis shows the ef-
fectiveness of our sanitization routines. For Webchess, EVE and Faqforge, it reports that all
sinks will not take any value that matches that attack pattern and concludes the security of
the protected applications with respect to the attack pattern. It also shows that all vulnera-
bilities identified by taint analysis in these applications are false alarms. Since there is no
vulnerability reported by forward string analysis, STRANGER concludes the correctness of
the applications with the inserted sanitization routines w.r.t. the attack pattern. The total time
including parsing, taint analysis and forward string analysis on all entries of PHP files in the
applications improves to less than 40 seconds. The time for forward analysis also shows that
STRANGER can perform the presented replace operations efficiently.

On the other hand, for Schoolmate, string analysis reports 52 vulnerabilities even after
56 replacement statements have been inserted. We manually inspected each reported vulner-
ability and found that these could be false alarms due to database queries and unmodeled
built-in functions of which we assume arbitrary return values (to keep our approach sound).
The false alarms can be removed if we model all the functions that are used or sanitize their
returned values.
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Table 7 Vulnerability analysis results after inserting replacement statements

# of vulnerabilities # of inserted
statements

Execution time (sec)

String analysis Taint analysis Total Forward

1 0 27 33 39.15 2.96

2 0 8 23 9.35 5.43

3 0 20 20 7.79 0.28

4 52 153 56 713.27 660.91

6 Related work

Due to its importance in security, string analysis has been widely studied. Christensen,
Møller and Schwartzbach [12] pioneer the very first string analysis (implemented in a tool
called JSA) to statically determine the values of string expressions in Java programs. They
convert the flow graph into a context free grammar where each string variable corresponds
to a nonterminal, and each string operation corresponds to a production rule. Then, they con-
vert this grammar to a regular language by computing an over-approximation. Kirkegaard et
al. apply JSA to statically analyze the XML transformations in Java programs [21] by using
DTD schemas as types and modeling the effect of XML transformation operations. Gould et
al. [15] use this grammar-based string analysis technique to check for errors in dynamically
generated SQL query strings in Java-based web applications [12]. Christodorescu et al. [13]
present an implementation of the grammar-based string analysis technique for executable
programs for the x86 architecture. There are some other tools for string analysis [11, 14, 30,
39]. Shannon et al. [30] propose forward bounded symbolic execution to perform string anal-
ysis on Java programs. Similar to our approach, automata are used to trace path constraints
and encode the values of string variables. They support trim and substring operations. Xie
and Aiken [39] support string assignment and validation operations. Fu et al. [14] and Choi
et al. [11] support string-based replacement (as opposed to language-based replacement).
None of the tools mentioned above addresses language-based replacement operations which
causes the approximations computed by these tools to be too coarse for analyzing some
sanitization routines.

Minamide [23] proposes a grammar-based string analysis that supports language-based
replacement operations by escaping replace operations to finite-state transducers. Instead of
approximating the grammar to a regular language, Minamide performs string operations on
context-free grammars and is able to validate HTML pages generated by web applications.
Wassermann et al. [36, 37] combine taint propagation with Minamide’s string analysis [23]
to detect SQL injections and XSS vulnerabilities in PHP Web applications.

Balzarotti et al. [2] combine both dynamic and static techniques to verify PHP programs.
They support language-based replacement by incorporating FSA [33], but they only support
bounded computation for loops and approximate variables updated in a loop as arbitrary
strings once the computation does not converge within a fixed bound. We incorporate the
widening operator in [4] to tackle this problem and obtain a tighter approximation that en-
ables us to verify a larger set of programs.

Choi et al. [11] also investigate a widening method to analyze strings. The widening
operator is defined on strings and the widening of a set of strings is achieved by applying
the widening operator pairwise to each string pair. The widening operator we use is defined
on automata, and was originally proposed for arithmetic constraints [4]. The intuition be-
hind this widening operator is applicable to any symbolic fixpoint computation that uses
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automata. In [4] it is proved that for a restricted class of systems the widening operator
computes the precise fixpoint and we extend this result to our analysis. Moreover, in our
experiments, the over-approximation computed by this widening operator works well for
proving the properties we were interested in.

Wassermann et al. [38] use string analysis in test input generation for Web applications.
Their approach is based on concolic execution [29], where results of a concrete execution
are used to collect constraints on program execution. These constraints are then used to
generate new test cases. They use an automata based image computation similar to ours to
propagate constraints. However, they do not discuss replacement operations which are cru-
cial for string manipulation, and their approach targets test generation rather than generating
a sound approximation of all possible inputs that can exploit a vulnerability. For example,
their approach does not provide a sound approximation in the presence of loops.

HAMPI [20] is a bounded string constraint solver. It outputs a string that satisfies all the
constraints, or reports that the constraints are unsatisfiable. Note that this type of bounded
analysis cannot be used for sound string analysis whereas the string analysis techniques
we present in this paper are sound. A string constraint solver called KUDZU [28] is built
on top of the HAMPI. It uses the same approach of bounding the lengths of the execution
paths (by bounding loops) and using a bounded string solver. In comparison, our approach
handles unbounded paths (using widening) and handles unbounded strings (using automata).
Bjoner et al. [6] present a path feasibility analysis based on solving bounded path conditions
for string manipulating programs. Instead of solving string constraints directly, they solve
their length constraints using an SMT solver. If the length constraints are unsatisfiable, it
implies that the string constraints are unsatisfiable. If the length constraints are satisfiable,
they use the satisfying assignment to bound the length of string variables and solve the string
constraints over bounded string variables. Tateishi, Pistoia and Trip [32] adopt monadic
second order logics to model relations of strings and their indices, achieving index sensitive
string analysis. Compared to our analysis, their approach cannot deal with loops, and unlike
the use of monadic second order logics provided by MONA [10], we simply use its DFA
package and benefit from its MBDD encodings and efficient computations.

Hooimeijer and Weimer [17, 18] present an automata-based decision procedure for solv-
ing equations over regular language variables. Since they use a single track automata encod-
ing, the techniques in this paper can only provide an approximation for solving equations
over string variables, as discussed in [44]. One potential solution is using multitrack au-
tomata to model relations among string variables [44]. Hooimeijer et al. propose a new
symbolic automata representation [16] and use finite state transducers [35] to analyze be-
haviors of sanitization routines. Their tool BEK is able to identify whether a target string
is a valid output of a sanitization routine. Unlike this transducer-based approach, we de-
velop an efficient automata construction for the string replace operation on top of MBDDs.
The construction prevents the potential explosion in the size of the automata due to multiple
conjunctions of transducers. Veanes and Bjorner [34] combine SMT with symbolic automata
and show its effectiveness to encode and manipulate strings having large alphabets such as
Unicode. The presented approach is also capable of encoding large alphabets by increasing
BDD variables in MBDDs. In fact, Yu et al. [43] show that by adjusting BDD variables for
various encodings one can adjust the precision and performance of string analysis.

The use of automata as a symbolic representation for verification has been investigated in
other contexts (e.g., [3, 4, 8, 9]). We extend the regular model checking techniques to verifi-
cation of string manipulation operations. Preliminary results from this work were presented
in [40, 42]. We refine the analysis algorithms and detail the automata constructions in this
paper along with new experimental results showing the effectiveness of the presented ap-
proach on large-scale web applications. While we focus on detecting vulnerabilities in this
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work, techniques for generating effective patches via automata-based string analysis [41]
can also be incorporated with the presented approach.

7 Conclusion

We presented symbolic string analysis techniques for analyzing string manipulating pro-
grams with the goal of identifying string related vulnerabilities. Our approach is based on
an automata-based symbolic forward reachability analysis. We implemented our approach
in a tool called Stranger for automated analysis of PHP programs. Our tool successfully
finds known/unknown vulnerabilities in existing web applications, and proves the absence
of vulnerabilities with respect to the given attack patterns when the inputs are properly san-
itized. In addition to vulnerability detection, it is essential to patch identified vulnerabilities
effectively.

One extension of the presented work is patch synthesis [41]. Using automata, we are
able to characterize malicious inputs and furthermore, generate effective patches to block
(or modify) malicious inputs to prevent potential security exploits. Another extension is
security checking on both client and server sides to prevent breaches due to inconsistent
behaviors between them [1].

Finally, we take advantage of symbolic encoding on DFAs to perform effective automata
constructions and emptiness checking. However, it is known that using DFAs may suffer
state explosion during determinization. One of our future work is to implement the presented
string analysis using non-deterministic finite automata (NFA).
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