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Abstract – It is found that the mean square log-returns calculated from the high-frequency one-
day moving average of US and Taiwan stocks with the time internal τ show ballistic behavior
θτα1 with the exponent α1 ≈ 2 for small τ and show diffusion-like behavior Dτα2 with the
exponent α2 ≈ 1 for large τ . Such a crossover behavior can be well described by the mean square
displacements of particles governed by the Langevin equation of motion. Thus, θ and D can
be considered, respectively, as the temperature-like and diffusivity-like kinetic parameters of the
market, and they can be used to characterize the behavior of the market.

Copyright c© EPLA, 2013

Introduction. – Fluctuations in financial markets are
important quantities of practical as well as academic
interests. In 1900, Bachelier [1] proposed that fluctuations
in financial market follow random walks, which was before
Einstein’s random walk model for the Brownian particles
in the liquid [2]. However, later studies indicate that
fluctuations in stocks are not completely random. In
1966, King found that changes in prices of different stocks
during time intervals of a day or longer are often highly
correlated and the correlation is higher for firms in the
same industry [3]. In 1977–1979, Epps studied correlations
in log price for four major automakers in the United
States AMC (American Motors Corporation, 1954–1987),
Chrysler, Ford, and GM during intervals of 10 minutes to
three days [4]. Epps found that AMC has less correlation
with other companies and the correlations in other three
companies increase with the length of the time intervals τ
used to calculate changes in log price [4]. This has been
called “Epps effect”. Such an effect was considered to be
related to the information on the degree of transaction
synchronicity [5], the lead-lag phenomena between pairs
of stocks [6], and other important [7] but less recognized
properties of the market.

In 1995, Mantegna and Stanley [8] showed that the
scaling of the probability distribution of an economic index

(a)E-mail: mwj@nccu.edu.tw
(b)E-mail: huck@phys.sinica.edu.tw

(S&P 500) can be described by a non-Gaussian process
with dynamics that, for the central part of the distribu-
tion, correspond to that for a Lévy stable process. Scaling
behavior is observed for time intervals from 1000min to
1min. The scaling exponent is remarkably constant over
a six-year period (1984–1989). In 2011, Saakian et al.
obtained exact non-Gaussian distribution of stock returns
from the multifractal random walk model [9].

In 1999, Laloux et al. [10] calculated the correlation
matrix for 406 stocks in S&P 500 in 1991–1996 with a time
interval of one day and Plerou et al. [11,12] calculated the
correlation matrix for 1000 stocks in USA in 1994–1995
with a time interval of 30 minutes. Both groups found that
in the eigenvalue distribution of the correlation matrix,
there are some discrete distributed larger eigenvalues
above the continuous component predicted by the random
walk model for stocks. In the eigenvector corresponding
to the largest eigenvalue λM of the correlation matrix, all
stocks in the market move (deviate from the average value)
in the same direction. The mode corresponding to λM is
called the market mode.

In 2004, Ma, Hu and Amritkar [13] proposed a model
of coupled random walks for stock-stock correlations (see
also [14]); the walks are coupled via a mechanism that
the displacement (price change) of each walk (stock) is
activated by the price gradients over some underlying net-
work. They assumed that the network has two underlying
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structures: one for the correlations among the stocks of
the whole market and another for those within individual
groups, and found that such model can reproduce the
major spectra features of the US stocks.

To describe fluctuations in the yen-dollar exchange rate,
in 2005 Takayasu, Mizuno, and Takayasu [15] introduced
a new type of random walk in a moving potential.
The properties of resulting random walks from their
model are similar to those of ordinary random walks
for large time scales; however their short-time properties
are approximated by abnormal diffusion with nontrivial
exponents [15]. Such short-time behavior deviates from
the random walk model. In 2011, Shapira et al. [16]
showed that the temporal order in the time series of the
daily return of financial indices is hidden in the series of
the variance of the stock volatility.

In stock market, the price of a stock changes whenever
the quotes between the sell and the bid sides agree at a
new price and this happens irregularly both in time and
in price. This is qualitatively analogous to the motion of
a particle at longer observation time interval. Since the
trajectory of a particle in a many-particle system can be
well characterized as the Brownian motion in spite of the
fact that the motions of the particle is governed by some
deterministic equations of motion at the shorter time
scales, we enquire what kind of scenario we would obtain
for the stock prices if the time scales under consideration
covered both short and long time scales. To answer this
question, we compare the time dependence of the price
changes for stocks and displacements of particles in a
many-particle system.

The mean squares of log-return for stocks are known to
have an asymptotic tα-dependence on the time interval τ
for large τ , with the exponent α close to unity. Such a
property is shared by the diffusion behavior of particles
in their mean square displacement. For particles with
continuous trajectories, such “random walk” behaviors are
valid only over time scales allowing sufficient exchanges of
momenta. In this work, we show that such a limitation on
time scales is true also for collections of stocks. We extend
our analysis for stocks inwardly to find the properties
over the shorter time scales as the analysis of the yen-
dollar exchange rate in [15]. We find that the mean
square log-returns calculated from the high-frequency one-
day moving average of US and Taiwan stocks with the
time internal τ show ballistic behavior θτα1 with the
exponent α1 ≈ 2 for small τ and show diffusion-like
behavior Dτα2 with the exponent α2 ≈ 1 for large
τ . Such a crossover behavior can be well described by
the mean square displacements of particles governed by
the Langevin equation of motion. Thus, θ and D can
be considered, respectively, as the temperature-like and
diffusivity-like kinetic parameters of the market, and they
can be used to characterize the behavior of the market.

Diffusivity and temperature. – Figure 1(a) shows
the stock price P (t) of the INTEL Corporation as a

Fig. 1: (Color online) (a) Stock prices of Intel Corporation
(INTC), over eighteen trading days in January 1996, each day
has trading time 6.5 hours = 23400 seconds. The market data,
collected in 36-second intervals, are marked by dots, which are
connected by red lines and their the one-day moving averages
in steps of 36 seconds are plotted by the blue line. The colored
inset shows the enlarged image of the region marked by the
same (green) color. (b) Log-log plot for the mean square log-
returns (MSLR) vs. time interval τ , for a collection of 345
stocks [13], including INTC, picked from S&P500 over January
1996, calculated either based on original data (marked by dots),
or based on the moving average (blue curve) shown in (a). The
red line shows the result over short time scales, based on the
continuous (red) curve of (a); the blue curve shows the results
obtained from the blue curve in (a). In the inset, we show the
plots of the two former curves in linear scales. For comparison,
we plot dashed lines for the guidance of the square or the linear
time dependence over the short and the longer time scales,
respectively.

function of time t, over 18 trading days in January 1996;
each day has trading time 6.5 hours = 23400 seconds.
The data are collected in time intervals of 36 seconds.
We consider the analogy between particle displacements
and the log-return of stocks r(t, τ) = log(P (t + τ)) −
log(P (t)) ≈ (P (t + τ)−P (t))/P (t) for the price P (t) over
an interval τ starting at time t. The log-return carries
the changes relative to the prices so that it is a quantity
that effectively renders all stocks on an equal foot, despite
the inherited heterogeneities among the companies and
their stocks prices. The dots in fig. 1(b) show the mean
square log-return (MSLR) 〈r2〉 of a collection of 345 stocks
(the same as those studied in [13]) of the S&P 500, vs. τ
during the month of January of 1996. The average 〈·〉 is
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taken over all the events for any time interval (t, t + τ)
from the 36-second-step data, for any of the 345 stocks.
The result does share the major features with the mean
square displacement (MSD) of particles, that facilitate an
effective comprehension of these empirical data.

To reveal the analogy in time evolution between the
stock prices and the particle trajectories, we analyze the
paths of the “motion” of the stocks in the one-dimensional
price space. We adopt two different ways to manipulate
the data, either by refining the intra-day microscopic
temporal features or by eliminating those heterogeneity
via a coarse-graining procedures. For the latter, we collect
the high-frequency one-day moving averages (HF1MA)
P̄ (t) of the prices for individual stocks, by taking simple
averages over a shifting window which is one-trading-day
wide (23400 seconds, or 650 intervals). To retain the high-
frequency feature of the data, the window shifts in steps of
36 seconds. The blue line in fig. 1(b) shows the 36-second
MSLR, 〈r2〉, of January 1996, calculated from the returns
r(t, τ) = log(P̄ (t+ τ))− log(P̄ (t)) for the collection of 345
stocks.

Alternatively, to keep the discrete features of the
price changes, we use the zigzag path (the red line in
fig. 1(a)), obtained by linearly interpolating the market
data. The MSLRs (fig. 1(b)) for both the 36-second
HF1MAs (the blue line) and the linearly interpolated
zigzag paths (the red line) contain a τ2-dependence regime
in the shorter times. This is a feature reflecting the
validity of a good local linear approximation. The MSLR
for the unpolished market data (the dots in fig. 1(b))
is featured by a stretched sub-diffusion regime at the
smaller τ before the emergence of diffusion behavior at
the larger τ . The feature is retained in the MSLR for
the linearly interpolated zigzag paths (the red line), as
an intermediate regime in between the τ2-dependence
(exponent-two) regime and the τ -dependence (exponent-
one) regime. The kinetics behind the scenario can be
realized by referring to the MSD in a dense and cold molec-
ular liquid where an intermediate plateau between the
ballistic exponent-two regime and the diffusion-dominant
exponent-one regime [17] signals the localized motions of
the particles when the system is in a glass-like state [17,18].

In the exponent-two regime of MSD of a fluid system,
the velocity v determines the displacement of each particle.
The mean square velocity 〈v2〉 depends on the temperature
T , space dimension nd, and mass m of the particle as
〈v2〉 ∼ ndT/m. Thus, we have MSD ≈ 〈v2〉τ2 =
ndTτ2/m. Such an asymptotic behavior prevails for a
smaller τ over a range for which the trajectories are
smooth, facilitating the first-order approximation in τ .
With a given T , how far the particles displace over a longer
time is affected by the interactions among particles and
between particles and the environment. Over a sufficiently
large time interval τ , the accumulated momenta exchanges
randomize the short-time displacements and, statistically,
we see the random walk behavior MSD ≈ ndDτ , where
D is the diffusion parameter. Note that, the exponent of

the τ -dependence in the diffusive regime can be different
from unity, called anomalous transport or diffusion [19],
in complex systems.

Guided by the analogy between price changes and
the displacements of tracer particles, the temperature-
like parameter fitted from the exponent-two regime of
MSLR for the HF1MA underscores the net change on
coarsening the rapid discrete jumps in prices. The
tendency of change is randomized over the longer time
scales, where the exponent-one time dependence prevails
and the diffusion parameter describes the changes in prices
with the inclusion of the randomized effects.

Langevin equation. – A simple model to cover both
time regimes, for the motion of a tracer particle of mass
m in velocity v(t) = dR

dt in nd = 1 dimension, is described
by the Langevin equation of motion with white noise ξ(t),

dv

dt
= − 1

τ0
v(t) + ξ(t). (1)

The balance between the friction m
τ0

v(t) and the random
force mξ(t) imposes a condition on the amplitude of ξ(t):
〈ξ(t)ξ(t′)〉 = 2m2v(0)2

τ0
δ(t − t′). The MSD is [20]

MSD ≡ 〈(R(t+ τ)−R(t))2〉 = D[τ − τ0(1− e−τ/τ0)], (2)

where D = 2τ0v(0)2, which gives asymptotic MSD ≈
D
2τ0

τ2, for τ ≈ 0, and MSD ≈ Dτ , for τ � 1. Note that the
ratio μ between the pre-factor D of the latter asymptotic
expression to that D

2τ0
of the former one measures the

“mobility” of the tracer particle. The result μ = 2τ0 is
Einstein’s relation.

The averaging procedure adopted in HF1MA effec-
tively eliminates the stretched crossover between the two
asymptotic regimes in the MSLR (dots and blue line in
fig. 1(b)), rendering the data described by the simple
scenario provided by the Langevin equation (eq. (2)). To
facilitate such a conjecture, we use the following equation
as a master curve (see eq. (2)):

〈r∗2〉 = τ∗ − 1 + e−τ∗
(3)

to fit the scaled MSLR 〈r∗2〉 = 〈r2〉/(Dτ0) vs. τ∗ = τ/τ0

for the empirical data. The data are well fitted by 〈r2〉 ≈
θτα1 over the smaller-τ regime to obtain the pre-factor
θ = D

2τ0
. We found that the data are well fitted to give

α1 = 2.0 with an error smaller than 1%. For the larger-τ
regime, the fitting to the asymptotic form 〈r2〉 ≈ Dτα2

leads to much more scattered values in α2. To cure this
drawback, we impose α2 = 1 and find the best fit for D.

In figs. 2(a) and (b), we show the scaled curves of
〈r∗2〉 vs. τ∗, for the 48 months during the years 1996–
1999, for 345 stocks from S&P 500 analyzed in fig. 1(b)
and for a pool of stocks in the same size from Taiwan
stock market (the TSE Intra-Day of TEJ). The trading
hours for a trading day in 1996–1999 are six and half hours
(9:30AM–4:00PM) for the US market and are three hours
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Fig. 2: (Color online) (a) Scaled mean square log-return 〈r∗2〉
vs. scaled time internal τ∗, for each month in 1996–1999, for
the 345 stocks in S&P500 that have been analyzed in fig. 1(b),
and (b) those over the same periods, for a pool of 345 stocks
picked from Taiwan markets. They are compared with the
master curve (open circles) defined by eq. (3). The trading
hours during a trading day in 1996–1999 are six and half hours
for the US market and three hours for the Taiwan market.
The time sequences for the collections of both markets are in
intervals of 36 seconds. The fitting to the asymptotic form θtα

1

and Dt are carried out over the ranges 36 < τ < 7200 and
54000 < τ < 108000, for the US market (plot (a)) and over
0 < τ < 7200 and 54000 < τ < 108000 for the Taiwan market
(plot (b)). Those months with their scaled MSLRs significantly
deviating from the master curve are marked specifically.

(9:00–12:00) for the Taiwan market. The time sequences
for the collections of both markets are in intervals of 36
seconds. Treating each market as temporarily stationary
over each month, an average 〈·〉 is taken both time-wise
and stock-wise. In spite of a slight degree of bulge at the
crossover, we find that the scaled data are in general in
a reasonable agreement with eq. (3) (fig. 2(a)), and that
the fitted parameters θ and D provide useful information
about the condition of the market. The data for Taiwan
stocks (fig. 2(b)) are basically also in agreement with the
master equation, except that they are apparently more
scattered than those for US stocks, probably due to the
lesser sampling events over the shorter trading hours. In

the data for both markets, there are a few curves deviating
significantly from the master curve. These deviations
signal temporarily nonstationarity of the markets.

Market mode and ordering. – While the stretching
at the crossover between the two asymptotic regimes in the
MSLR of the raw data without averaging (dots and red line
in fig. 1(b)) can be realized as a localized short-time effect
due to the discrete nature of the price changes, we may
gain some further insight by pondering their analogy to the
properties of dense molecular fluid. In the latter system,
it is the interactions with the neighboring molecules
that keep the tracer particle from entering the long-time
diffusion regime straightforwardly. Such an effect leads to
the presence of instantaneously short-lived local structure,
which is signalled by a dull peak in the structure factor
obtained from a scattering experiment [21].

A similar idea can be applied to the case of stocks.
Consider the Karhunun-Loeve expansion of a set of nor-
malized time sequences, each of length T si(t) = ri(t)

〈r2
i 〉

1
2

(t = 1, . . . , T ) for the log-returns of stocks i = 1, . . . , N ,

si(t) =
∑

k

√
Tλkak(i)bk(t), (4)

where the normalized eigenvectors {ak} of the cross-
correlation matrix, [cij ] = [ 1

T

∑
t si(t)sj(t)], and the

composite vectors {bk, bk(t) =
∑

i ak(i)si(t)} form ortho-
normal spatial and temporal bases, respectively. It is an
expansion with the square-root of the eigenvalue λk of the
k-th mode as the amplitude of that mode. The equalities
cij =

∑
k λkak(i)ak(j), and λk =

∑
i

∑
j cijak(j)ak(i)

can be considered as a pair of transformations between
λk and cij . While the cross-correlation cij among stocks
corresponds to the spatial correlation function among par-
ticles in a many-particle system, we come to the conclusion
that the eigenvalue λk is the counterpart of the structure
factor [22]. The later is the Fourier transform of the spatial
correlation function [21], and vice versa. The market
mode as well as those with the largest few eigenvalues
deviated from the bulk of the rest eigenvalues, therefore,
are the counterparts of those of the peaks of a structure
factor, with the patterns of their eigenvectors carrying the
information of the stock-to-stock ordering. The presence
of these modes makes the system more like a system of
liquid than that of gas. In the fluid system, the presence
of short-range ordering renders the system characterized
by retarded relaxations in response to fluctuations [21],
and is responsible for the stretched crossover between the
two asymptotic regimes in MSD [17].

It is then sensible to inquire the content of the corre-
sponding ordering that had caused the slow sub-diffusion
regime at the smaller τ in fig. 1(b). In comparing the
eigenvalue spectra of the cross-correlation matrices for
the raw data and those for HF1MA, we found that such
ordering is indeed local. In fig. 3, we put together the
monthly data of the parameters θ, D and their ratio
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Fig. 3: (Color online) Data for USA S&P500 stocks (red color) and Taiwan TAIEX stocks (blue color) in 1996–1999. (Top
down) Daily market indices for S&P500 and TWSE; the largest λM (open circles) and the second largest eigenvalues and λ2

(filled circles) for the cross-correlation matrices of monthly data sets; and the parameters θ, D, defined in the main text related
to eq. (3), and their ratio μ = D

θ
, for the collection of 345 stocks in S&P500 considered in fig. 2(a) and those in the Taiwan

market considered in fig. 2(b). Each correlation matrix is calculated by collecting a time sequence in intervals of 390 minutes
(one trading day), for consecutive 25 trading days, beginning the first trading day for each month. The kinetic parameters
θ, D are calculated by fitting over ranges (in unit of seconds) (36, 7200) and (54000, 108000), respectively for US stocks and
(36, 7200) and (54000, 108000), respectively for Taiwan stocks. They have been used to obtain the scaled curves plotted in
fig. 2. The vertical dashed lines in the plots mark the time spot of October 27, 1997, when the markets collapsed during the
Asian financial crisis. The horizontal red lines in the three lower panels mark the averaged values over the data of the months,
excluding those months with deviated MSLRs in fig. 2(a), before and after, respectively, the market collapsed for US stocks
(θ = 9.7 × 10−13, D = 1.8 × 10−8, μ = 1.8 × 104 before the crisis and θ = 1.1 × 10−12, D = 2.2 × 10−8, μ = 1.9 × 104

after the crisis.) The horizontal blue lines are for Taiwan stocks, excluding those months with deviated MSLRs in fig. 2(b)
(θ = 4.6 × 10−12, D = 7.8 × 10−8, μ = 1.6 × 104 before the crisis and θ = 8.8 × 10−12, D = 1.1 × 10−7, μ = 1.4 × 104 after the
crisis.)

μ = D/θ obtained from the fitting of mean square log-
return to the eqs. (2) and (3) for the pools of the stocks in
the two markets analyzed in fig. 2. We compare them
with the parameters obtained from the analysis of the
correlation matrices among the stocks from their daily
data. These include the mean correlation coefficients c̄,
the ratios of the largest and the second largest eigenvalues
to the size N = 345, λM/N and λ2/N , of each collection
of stocks, respectively. We also include the data of daily
returns for the market indices, S&P500 and TWSE. The
variations in λM/N ’s are dominated by the changes in
c̄, via λM/N ≈ c̄ + (1 − c̄)/N as the lowest-order ap-
proximation [13,23]. The second largest eigenvalue varies
differently from the market mode does. There are several

major sections of clustered large fluctuations in the returns
of market indices, including the one for both markets
on October 27, 1997 (the vertical dashed lines in fig. 3)
when the markets collapsed due to the Asian financial
crisis; and the one between August and October of 1998
in S&P500, and that extended between September 1998
and February 1999 in TWSE. There is a correspondence
between the occurrence of such larger-fluctuation sections
and the emergent larger values in λM/N .

There seems no obvious signatures in the kinetic param-
eters θ, D or μ corresponding to the former, especially,
on the occurrence of the crisis. The results suggest that
the kinetic parameters are not fast variables in response
to market changes. They, indeed, change when they are
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viewed over a longer-time span. While their (averaged)
values (indicated by colored solid lines in fig. 3) do not
change much in crossing the crisis, the number of outliers
in fitting to the Langevin master curve, eq. (3) (fig. 2), be-
come larger after the crisis (fig. 3), indicating the on-going
adjustments of the markets. The kinetic parameters θ, D
and μ are determined by internal properties, which are dis-
tinct from the market force that drives the market mode.

In comparing the parameters for the two markets, it
is interesting that both D and θ for Taiwan stocks are
systematically larger than those for US stocks. Note, the
scales of D and θ (on the right vertical axes) for US stocks
are one decade smaller than those (on the left vertical
axes) for Taiwan stocks. The values for parameter μ, on
the other hand, are about the same for the two markets.
The results suggest that the price changes (leading to
a faster diffusion) are more effective for the stocks in
the Taiwan market than those in the US market, due to
a higher “temperature”. Interestingly, the “mobility” μ
turns out to be the same for the two markets.

Conclusion. – In extending the analogy between the
particle motion and price change from the diffusion-
dominant time regime inwardly to the sub-diffusion time
regime, we identify the latter as a regime which features
localized price changes. A number of kinetic parameters
can be obtained by fitting the mean square log-return for
the HF1MA, to the prediction of the Langevin equation.
The averaging manipulation facilitates the description of
the monthly data based on a reasonably good statistics
which would be otherwise feasible only for long period of
time [8]. The results obtained from such a coarse-graining
procedure turn out to be inspiring. The endogenous
kinetic parameters obtained in this study, for example,
are passively reacting to the exogenous market turmoils.
A generalized “hydrodynamic” scenario [21] could be es-
tablished to describe the collective behavior in fluctuations
of stock returns, so that a refined analysis based on the
interplays between spatial and temporal features among
stocks [13] would help to comprehend the origin of the
hidden correlations [16] behind the financial time series.
Indeed, the information of structured collective move-
ments for a many-particle system is often contained in
the signatures over various spatial-temporal correlations.

It would be valuable to extend the present work to
study the data of a few other markets, not only to
specify the market-dependent parameters, such as the
temperature and the diffusivity revealed in this study, but
also to identify any possible global parameter, of which the
mobility-like parameter considered in present work could
be a candidate. The analysis may help to quantify the
trends of mutual affections among different markets [24].
It is also of interest to study the connection of parameters
θ and D defined in the present paper with the similarity
measure defined in [25] and to check whether the behaviors
of θ and D have correlations with the behavior of the
similarity measure under various situations.
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