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Original Article

Multiple-stage sampling
procedure for covariate-adjusted
response-adaptive designs

Eunsik Park1 and Yuan-chin Ivan Chang2

Abstract

Covariate-adjusted response-adaptive (CARA) design becomes an important statistical tool for evaluating

and comparing the performance of treatments when targeted medicine and adaptive therapy become

important medical innovations. Due to the nature of the adaptive therapies of interest and how subjects

accrue to a sampling procedure, it is of interest how to control the sample size sequentially such that the

estimates of treatment effects have satisfactory precision in addition to its asymptotic properties. In this

paper, we apply a multiple-stage sequential sampling method to CARA design in such a way that the

control of the sample size is more feasible. The theoretical properties of the proposed method, including

the estimates of regression parameters and the allocation probabilities under this randomly stopped

sampling procedure, are discussed. The numerical results based on synthesized data and a real

example are presented.

Keywords

covaraite adjustment, response-adaptive design, multiple-stage, stopping rule, confidence set

1 Introduction

The sequential method has been widely applied to many clinical trials to match how the patients
accrue in practice to a sampling procedure. The covariate-adjusted method becomes a good
additional property to the response-adaptive clinical trials, as tailor-made or targeted medicine
draws much attention in biomedical research. In addition, the response-adaptive concept allows
us to put ethical considerations into designing clinical trials. The design of clinical trials with
covariate adjustment and response adaptiveness based on previously collected information
therefore causes the trials to inherit their sequential sampling nature. Moreover, the use of
sequential sampling can accommodate a balance between the benefit of personalization for the
better treatment of participants as well as the statistical optimality in these types of clinical trials,
simultaneously. That makes sequential methods a suitable statistical tool for covariate-adjusted
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response-adaptive (CARA) designs.1–6 Although the response-adaptive design alone has been
studied by many authors,7 and the properties of the response-adaptive designs with adjustment
according to individual covariate information have been studied by some authors,8–11 there is still
a lack of discussions about sample size calculation and about stopping criterion for this type of
design, which motivates this study.

Sampling one subject at a time, as in a standard fully sequential method, introduces some
operational inconvenience in practice. Thus, multiple-stage methods, a compromise between the
theoretical beauty of fully sequential methods and practical usefulness, become good alternatives.
Application of a two-stage CARA design is, of course, theoretically justifiable. Bandyopadhyay
et al.12 worked on two-stage design for binary responses under CARA designs with the prefixed
total sample sizes. However, allocating subjects based on the information obtained only in the initial
stage may be risky, as the initial stage is relatively unstable due to many factors, such as sample size.
Hence, a three-stage CARA design is a better choice, as it considers the operational convenience in
addition to taking full advantage of a CARA design.

In this paper, from a more practical prospective, we study a three-stage method to CARA-
designed clinical trials with K treatments under a generalized linear model assumption. The
multiple-stage methods may not be new in clinical trials and sequential analysis. However, in
many clinical trials, the initial stage is usually not included in the final analysis, which may not
be affordable for many trials. In this study, the subjects in all stages are included in the final analysis
and, thus, our study is more efficient. Our goal is to estimate the treatment effects such that the
estimates satisfy a prescribed precision with the minimum sample size, and also so that subjects can
be allocated to the superior treatment while maintaining the quality and efficiency of the estimation
of treatment effects. The asymptotic properties of the proposed three-stage method are obtained
under a rather general assumption about CARA designs. We show that under the proposed method,
the allocation rule maintains the same asymptotic properties as those obtained in its non-sequential
counterpart. In our numerical study, for illustration purposes, we adopt the idea of using a utility
function to balance the ethical consideration and the efficiency of the estimate for treatment
allocation.12 We, then, allow the utility function to vary the tuning parameters depending on the
precision of the estimate at different allocation stages such that subjects are allocated to a ‘‘more
adequate’’ treatment.

The rest of this paper is organized as follows. The details and asymptotic properties of the
proposed method are presented in Section 2. Empirical results from simulation studies, for
illustration purposes, where we focus on a CARA design under logistic models, are presented in
Section 3 together with results based on a real example. Some discussion is given in Section 4.
In addition, the proof of the theorem is given in Appendix A of the supplementary material.

2 Method

In this section, we study a multiple-stage confidence set estimation under a general CARA design
after introducing some necessary notations for this design. Our method allows the sample size to
depend on the information on observations such that a prescribed estimation accuracy is fulfilled.
Specially, a three-stage method is presented and recommended.

Let Yn,k, n ¼ 1, 2, . . . , k ¼ 1, . . . ,K, denote the response of the n-th subject to the k-th treatment,
and let nn be the p dimensional vector of covariates of the n-th subject. Suppose that for each n � 1
and k 2 f1, . . . ,Kg, the responses and covariates satisfy

E½Yn,kjnn� ¼ �kðhk, nnÞ, ð2:1Þ

2 Statistical Methods in Medical Research 0(0)
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where hk 2 �k � Rp is an unknown vector of parameters and �kð�, �Þ is a known function. Assume
that �kðhk, nnÞ ¼ �kðn

0
nhkÞ for each n and k. Let � �

QK
k¼1 �k and nonsingular

V ¼ diagfV1, . . . ,VKg, where Vk denotes the covariance matrix of the estimator of hk
corresponding to equation (2.1). Then, from equation (2.1) and the definition of V, the method
of the quasi-likelihood of generalized linear models13 can be applied to estimate hk for each k.

Let Xn ¼ ðXn,1, . . . ,Xn,KÞ, where Xn,k 2 f0, 1g denotes assignment of treatment k to the n-th
subject. Thus, Xi is a vector that denotes the random treatment assignments for subject i, for
i ¼ 1, 2, . . . with components equal to 0 or 1. Note that each subject is allocated to one treatment
only, hence Xn,k ¼ 1 for only one k 2 f1, . . . ,Kg, which implies that

PK
k¼1 Xn,k ¼ 1. That is, Yn,k is

observed only if Xn,k ¼ 1. Hence, for each n, the vector Yn � ðYn,1, . . . ,Yn,KÞ has only one
component actually observed. Now, suppose Nn,k is the number of subjects assigned to treatment
k during the first n assignments, and let vector Nn � ðNn,1, . . . ,Nn,KÞ. Hence, it follows from
the definitions above that Nn ¼

Pn
i¼1 Xi. Let Xn ¼ �ðX1, . . . ,XnÞ, Yn ¼ �ðY1, . . . ,YnÞ, and

Zn ¼ �ðn1, . . . , nnÞ, ni 2 R
p denote the corresponding s-fields, and let F n ¼ �ðXn,Yn,ZnÞ. Then, a

general CARA design is defined as the conditional probabilities of assigning treatments 1, . . . ,K to
the n-th patient, conditioning on all observed information (individual responses and variables) up to
previous n – 1 assignments and the covariate information on the current subject, which is denoted as

wn ¼ E½XnjF n�1, nn� ¼ E½XnjXn�1,Yn�1,Zn� ¼ �ðĥn�1, nnÞ,

where ĥn denotes the estimator of h at the current stage. Assume that the target allocation function
pð�, �Þ ¼ �1ð�, �Þ, . . . ,�Kð�, �Þð Þ with

PK
k¼1 �k ¼ 1 and 05 �k ¼ E�½�kð�, nÞ�5 1, for k ¼ 1, . . . ,K, and

let m ¼ ð�1, . . . , �KÞ. Suppose that �k is bounded for all k and that for each fixed n, �kðh, nÞ4 0
is continuous and differentiable with respect to h such that �kð~hÞ ¼ �kð�Þ þ
ð~h��Þð@�k=@~hÞ0 þ oðjj~h��jj1þ�Þ for some f4 0. Then, it has been proved that ĥn is strongly
consistent with

ffiffiffi
n
p
ðĥn � hÞ !L Nð0,VÞ as minfNn,k, k ¼ 1, . . . ,Kg goes to infinity (Zhang et al.,10

Theorem 2.1). (The notation ‘‘!L’’ denotes the convergence in distribution.)
Now, we introduce a confidence ellipsoid and extend it to multiple-stage design under the CARA

design. Let C2
	 be the constant satisfying Pð
2ð pÞ � C2

	Þ ¼ 	, and

Rn ¼ fh 2 � : nðĥn � hÞ0V�1ðĥn � hÞ � C2
	g: ð2:2Þ

Then, from the asymptotic normality of ĥn, equation (2.2) defines a confidence ellipsoid for h such
that Pðh 2 RnÞ 	 1� 	 as minfNn,k, k ¼ 1, . . . ,Kg becomes large. However, no matter how high the
coverage probability of a confidence ellipsoid is, it becomes less useful/informative if the size of a
confidence set is too big. Therefore, we would require more in terms of the size of a confidence set in
addition to the coverage probability. Suppose that we require the maximum axis of Rn to be no
larger than 2� for some �4 0 to control its size; then, to guarantee that Rn has the prescribed
coverage probability 1� 	, we must have a sample size that satisfies the following inequality:

n�minðV
�1Þ �

C2
	

�2
, n �

C2
	�maxðVÞ

�2
, ð2:3Þ

where �minðVÞ and �maxðVÞ are minimum and maximum eigenvalues of V, respectively. It is clear
that � also means the precision of the estimate. As we can see from equation (2.3), the smaller the �,
the larger the sample size. Hence, the choice of � will depend on the under-studied problem and the
actual needs. From a practical prospective, besides the asymptotic properties of CARA designs,
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we would also want to know how large a sample size must be to guarantee a satisfactory
performance of the CARA-designed clinical trial. However, if V is unknown, equation (2.3)
cannot provide such information.

Let R� denote the confidence ellipsoid of � with the length of its maximum axis no larger than 2�
and its coverage probability no less than 1� 	. Then, following equation (2.3), if V is known, the
optimal sample size required to construct a confidence ellipsoid R� with the required coverage and
specific precision is

nopt ¼ first n � n0 such that n �
C2
	�maxðVÞ

�2
, ð2:4Þ

where n0 is the initial sample size. The variance matrix V is usually unknown due to the adaptive
feature of the CARA-designed clinical trials and the model used in a trial. Hence, determining the
sample size that can guarantee the desired properties beforehand is unlikely. Although this optimal
sample size is not available, equation (2.4) still suggests an estimate of the optimal sample size
through the estimate of V, and the sequential method is a classical approach under such a
situation. Here, in particular, a sequential three-stage sampling procedure is proposed to
construct a confidence ellipsoid R� for h with a prefixed accuracy and a given coverage
probability, simultaneously.

When a fully sequential procedure is adopted, both parameters in the allocation rule and the
formula of sample size are adjusted and re-checked whenever a new subject is included in the trial.
In theory, the fully sequential method is usually more precise and efficient in terms of sample size
than its multiple-stage alternatives. However, such a fully sequential sampling scheme also
introduces some operational difficulties in practice, as we need to re-estimate the parameters and
check the stopping criterion whenever a new subject enters the trial. Hence, using multiple-stage
methods as some practical alternatives4 is usually preferred by practitioners. The two- and three-
stage methods are the two most popular multiple-stage methods discussed in the literature.

For a two-stage method,14 we first estimate the total sample size based on the initial samples, and
then we collect an additional batch of subjects if the estimated sample size exceeds the size of the
initial samples. It is obvious that its performance highly depends on the estimate obtained from the
initial samples; otherwise, stop sampling and the estimation of the treatment effect will be based on
the initial samples only. Thus, the determination of an initial sample size is crucial: If the initial
sample size is too small, then the estimated total sample size becomes unstable; if it is too large, then
there are no second-stage samples to be used.

Generally speaking, when a multiple-stage sequential sampling procedure is employed, we usually
decide the number of stages first. Starting with an initial batch of subjects, we have an initial estimate
of the required sample size. Instead of using this initial estimated sample size directly, we then only
use its fraction as the sample size for the next batch of subjects. Once this new batch of subjects is
collected, the sample size will be re-estimated using all of the samples up to the current stage. This
type of operation will be repeated until the predetermined number of stages is reached or until a
stopping criterion is satisfied. That is, we only re-estimate or re-check the sample size inequality
when a batch of subjects is included. Note that the initial samples are also included in the final
analysis in a multiple-stage sequential method, which is different from the samples used in a pilot
study of some clinical trials.

Moreover, as described above, the allocation rule in a CARA-based clinical trial will also rely on
the information obtained from its previous samples. Hence, when the initial sample size is too small,
the allocation may be unreliable; conversely, when the initial sample size is too large, then only a

4 Statistical Methods in Medical Research 0(0)
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small number (or even zero) subjects will be included as the second-stage samples, who are the only
subjects that can benefit from the CARA design. Thus, this CARA-designed clinical trial becomes
less useful. Hence, as a compromise between the two-stage and the fully sequential method, we
propose using a three-stage method in the CARA-designed clinical trial that has both the advantages
of sequential sampling and the benefit of the CARA design. Of course, this idea can be easily
generated for procedures with more than three stages. For further details regarding general
sequential confidence set estimations, please refer to Siegmund.15

2.1 Three-stage method

Assume a randomized trial is used at the initial stage, and let n0,1, . . . , n0,K be the initial sample sizes
for treatments 1 to K, respectively. Denote the total sample size, n0,1 þ � � � þ n0,K, at the initial stage
by n0. Replacing V in equation (2.4) with its estimate based on the initial samples V̂n0 , we have the
estimated sample size to construct a confidence ellipsoid with the required coverage probability
1� 	 and precision ð�4 0Þ:

�1 � �1,� ¼
C2
	�maxðV̂n0Þ

�2

" #
: ð2:5Þ

(The notation ½a�, for a 2 R, denotes the smallest positive integer greater than a.) If a two-stage
approach is adopted, then an extra batch of �1 � n0 subjects will be included in the study if
�1 4 n0; otherwise, no new subjects will be included, and the statistical inference will be based
on the initial samples. However, if a three-stage approach is used, then we only collect a
fraction of �1 � n0 subjects at the second stage, say n1 ¼ r � ð�1 � n0Þ for some 05 r5 1, and
these subjects are then allocated to the most suitable treatment for them based on the estimate
ĥn0 , a prescribed allocation rule, and the updated information up to the current stage. The
required optimal sample size is then re-estimated based on all available information up to the
current stage; that is, the information is updated using the initial samples and the newly
included second batch of subjects together. Denote the second-stage estimate of the total
sample size with

�2 �
C2
	�maxðV̂n

0
þn

1
Þ

�2

" #
: ð2:6Þ

When �2 4 n0 þ n1, then we collect additional n2 ¼ �2 � ðn0 þ n1Þ new subjects at the third stage, and
we allocate them based on the allocation rule with the updated parameters at the second stage. No
extra subjects are included when �2 � ðn0 þ n1Þ; that is, n2 ¼ 0 in this case. The final inference is then
based on the total n

T
� ntotal ¼ n0 þ n1 þ n2 subjects recruited in the trial; the final sample size is

equal to �2 if �1 4 n0 and �2 4 n1. As in the fully sequential procedure, �2 is random and depends on
the estimate of the variance and the criteria of the confidence set of the parameters to be estimated.
Let ĥn

T
be the estimate of � with random sample size n

T
. Then, for the three-stage method described

above, we have the following theorem:

Theorem 2.1: If n0ð�Þ ¼ oð�2Þ, then

(i) ĥn
T
is a strongly consistent estimate of h as �! 0,

(ii) lim�!0 Pðh 2 R�,n
T
Þ ¼ 1� 	, and

Park and Chang 5
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(iii) lim�!0 E½nT
=nopt� ¼ 1,

where R�,n
T
denotes the confidence ellipsoid R� of sample size n

T
and precision �. Moreover, for a

given allocation function,
(iv) lim�!0ðNnT=nTÞ ¼ m, and ðN�,kj�=Nn

T
j�Þ ! �kðh, nÞ, for k ¼ 1, . . . ,K, almost surely as �! 0,

where N�,kj� is number of subjects assigned to treatment k with covariate n up to the n
T
-th subject

and Nn
T
j� is the total number of subjects with covariate n up to the n

T
-th subject.

Theorem 2.1 (i) and (ii) simply say that the estimate of h and the confidence set R�,n
T
behave as

well as their fixed sample size counterparts do as the sample size becomes large. Theorem 2.1 (iii)
means the random sample size based on the proposed three-stage method is as efficient as the
optimal sample size as �! 0, asymptotically. Theorem 2.1 (iv) states that all allocation
proportions converge to their expectations � for each treatment, asymptotically, under the
proposed three-stage sampling scheme; moreover, for subjects with covariate n (i.e. given n), the
allocation probability will also converge to that of the non-random sample size as well.

Remark 2.2: As mentioned, it is possible that the initial sample size is already too large such that the
inequality in equation (2.3) is satisfied. In this case, the confidence set for h still has a coverage
probability approximately equal to that required. However, in this case, the allocation rule is based
on the initial design only, and the designs in the second and third stages have no effect at all. Thus, there
is no benefit from the CARA design. The assumption n0ð�Þ ¼ oð�2Þ is to prevent such a situation. This
simply means that the initial sample size should not ‘‘increase too fast’’ as � becomes small, which is
required in the proof of (iii) of the above theorem.

Remark 2.3: It is known that a clinical trial based on a CARA design is naturally a sequential
procedure. Although sequential methods are very popular in clinical trials, the discussions on the
stopping criterion of the trials under CARA designs are rare. Zhang et al.10 proved some asymptotic
properties without providing any stopping criterion. However, it is also known that, from the literature
of sequential analysis,15 when the sample size is random and depends on the observed information, the
asymptotic properties are no longer guaranteed16 with the arguments of Zhang et al.10 That is the
reason why this theorem is important and necessary.

The same idea can be extended to the estimation of the contrasts of parameters, which allows us
to compare parameters/treatment effects. Suppose that H is a contrast matrix with rankðHÞ ¼ q4 0.
Let k ¼ H0hk for k ¼ 1, . . . ,K, c ¼ ðH0h1, . . . ,H0hKÞ

0 with hk 2 �k, for k ¼ 1, . . . ,K, and
ĉ ¼ ð̂1, . . . , ̂KÞ

0. In Theorem 2.1 (iii), we have proved that lim�!0 E½nT
=nopt� ¼ 1. Hence,

following the similar arguments to that of Chang and Park,17 the asymptotic normality of ĥnT
follows easily. Similarly, we have that ̂ is a strongly consistent estimate of c, andffiffiffi
n
p
ðĉ� cÞ !L Nð0,VHÞ as minðNn,k, k ¼ 1, . . . ,KÞ ! 1, where VH ¼ diagfH0V1H, . . . ,H0VKHg.

Therefore, for hk 2 �k, k ¼ 1, . . . ,K, and a given �4 0 and 	 2 ð0, 1Þ, let us define

RH
�,n ¼ c : nðĉ� cÞ0ðVHÞ

�1
ðĉ� cÞ � C2

	,qK

n o
,

where C2
	,qK denotes the constant such that Pð
2ðqÞ � C2

	,qKÞ ¼ 	. Hence the required sample size
must satisfy the following inequality:

n �
C2
	,qK�maxðV

HÞ

�2
:

6 Statistical Methods in Medical Research 0(0)
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Similarly, suppose that nH0 is the initial sample size. Parallel to equations (2.5) and (2.6), let

�H1 ¼
C2
	,qK�maxðV̂

H

nH
0
Þ

�2

2
4

3
5 and �H2 ¼

C2
	,qK�maxðV̂

H

nH
0
þnH

1
Þ

�2

2
4

3
5,

where similarly, nH1 ¼ ½�
H
1 � nH0 �

þ and nH2 ¼ ½�
H
2 � nH1 � nH0 �

þ are sample sizes of the first and second
stages, respectively.

Hence, using these two random sample sizes and letting nH
T
¼ nH0 þ nH1 þ nH2 , we have a three-

stage procedure to estimate c. Let ĉ � ĉnH
T
and RH

�,nH
T

be the estimate and confidence ellipsoid of c

under this three-stage sampling procedure. Then, the corollary below follows directly from
Theorem 2.1.

Corollary 2.4: If n0ð�Þ ¼ oð�2Þ, then

(i) ĉnH
T
is a strong consistent estimate of c as �! 0,

(ii) lim�!0 Pðc 2 RH
�,nH

T

Þ ¼ 1� 	, and
(iii) lim�!0 E½n

H
T
=nHopt� ¼ 1,

where

nHopt ¼ first n � nH0 such that n � C2
	,qK�maxðV

HÞ=�2: ð2:7Þ

In addition, for a given allocation function,
(iv) lim�!0ðNnH

T
=nH

T
Þ ¼ m, and ðN�,kj�=NnH

T
j�Þ ! �kðh, nÞ, for k ¼ 1, . . . ,K, almost surely as �! 0.

The proof of Corollary 2.4 is similar to that of Theorem 2.1, so it is omitted.

Remark 2.5: The sample size estimate based on the initial sample is usually unstable due to a lack of the
information needed to decide the satisfactory initial sample size for a CARA design. On the other hand, it
is well known that in the multiple-stage procedure, the estimates of the sample size are refined at each
stage and become more stable as a new stage is added. Thus, a three-stage is a compromise that can
provide satisfactory results under a CARA design, and that is the reason we focus on a three-stage
procedure here. Of course, the proposed results can be easily extended to other multiple-stage procedures.

3 Numerical study

Our method is built on some common assumptions of the quasi-likelihood method and mild
regularity conditions on the CARA design. To see the performance of three-stage methods in
terms of stopping time, coverage probability, and correct allocation probability (CAP), we apply
our method to a CARA design based on a logistic model with a utility function, as follows. The
numerical results based on both synthesized data and a real example are presented.

3.1 Treatment allocation rule

Atkinson and Biswas18 and Bandyopadhyay et al.12 suggest using a utility function to skew the
treatment allocation proportion so that the best treatment is allocated more often. For K treatments,

Park and Chang 7

 at NATIONAL CHENGCHI UNIV LIB on December 5, 2013smm.sagepub.comDownloaded from 

http://smm.sagepub.com/
http://smm.sagepub.com/


XML Template (2013) [23.5.2013–10:46am] [1–22]
//blrnas3/cenpro/ApplicationFiles/Journals/SAGE/3B2/SMMJ/Vol00000/130194/APPFile/SG-SMMJ130194.3d (SMM) [PREPRINTER stage]

their utility function is defined as

UðpÞ ¼ log jÎPsþ1

i¼0
ni
j � �

XK
k¼1

p
k
log

p
k

�
k
ðĥ, nÞ

 !( )
, ð3:1Þ

where În is the estimated Fisher information with cumulative samples of size n, and �kðĥ, nÞ is the
estimate of �kðĥ, nÞ, denoting the estimate of the target allocation proportion for treatment k up to
the current, s-th, stage. The first term of the right-hand side of equation (3.1) depends on the
information of the parameters to be estimated, and the second term is a relative entropy (or the
Kullback-Leibler distance) of allocation proportions (pk’s) to optimize with respect to the estimated
target allocation probabilities (�kðĥ, nÞ). We can allow �k, let us say as a function of Tn, and � to vary
in different sampling stages. For example, Tn and � can vary according to the estimation precision or
be defined as some function of the standard deviation of the estimated treatment effect at the current
stage. Thus, for the given covariate n and the estimate of h, this utility function balances the
information on h and the ethical treatment allocation by tuning parameters Tn and/or �.

For a given n and the current estimate of h, the optimal allocation rule is to find the vector of
probabilities p ¼ ð p1, . . . , p

K
Þ
0 that maximize this utility function above. That is, the design at the

ðsþ 1Þth stage is to allocate nsþ1 subjects to the treatment that maximizes the utility function given
the observed information up to the s-th stage. The first term of the utility function is a log
determinant of the information matrix, and the second term involves �kðĥ, nÞ. Thus, if � ¼ 0, the
new subject is selected to maximize the Fisher information matrix, which is referred to as the
piecewise D-optimal design, as mentioned in Bandyopadhyay et al.12. Conversely, if � goes to 1,
then the optimal value of p is to maximize the relative entropy function – the second term of
equation (3.1).19 Hence, the parameter � can be used to adjust the ethical and efficiency balance.
Here, we adopt the idea of using a utility function to balance the needs for estimation precision of
treatment effects and the ethical consideration.

3.2 Simulation study

We conduct the simulation study using a logistic model. The model and parameter setting are
described below.

3.2.1 Logistic model

Suppose Yk ¼ 1ð0Þ denotes a variable with a positive (negative) response of a subject assigned to
treatment k, for k ¼ 1, . . . ,K. Let �kðhk, nÞ ¼ E½Yk ¼ 1jn�, and hk ¼ ð	k, �



kÞ
0. Assume that

logit ð�kðhk, nÞÞ ¼ 	k þ �


kn, k ¼ 1, . . . ,K: ð3:2Þ

Assume that we are at the s-th stage with n subjects recruited. Then, the maximum quasi-likelihood
estimator ĥn,k of hk, for k ¼ 1, . . . ,K, is the one that maximizes

Lk ¼
Yn
i¼1

�
Xi,kYi,k

i,k ð1� �i,kÞ
Xi,kð1�Yi,kÞ, ð3:3Þ

where �i,k ¼ �kðhk, niÞ. It follows that the conditional Fisher information matrix, for given n, is

IkðhkjnÞ ¼ �kðhk, nÞð1� �kðhk, nÞÞn�
0:

8 Statistical Methods in Medical Research 0(0)

 at NATIONAL CHENGCHI UNIV LIB on December 5, 2013smm.sagepub.comDownloaded from 

http://smm.sagepub.com/
http://smm.sagepub.com/


XML Template (2013) [23.5.2013–10:46am] [1–22]
//blrnas3/cenpro/ApplicationFiles/Journals/SAGE/3B2/SMMJ/Vol00000/130194/APPFile/SG-SMMJ130194.3d (SMM) [PREPRINTER stage]

Let În,k ¼ n�1
Pn

i¼1 Xi,kIkðĥn,kjniÞ be the estimate of Ik for all k. If we assume � ¼ 0, then for a K
treatment problem, when the current stage is s, the new nsþ1 designs (subjects) are chosen such that
the estimated Fisher information matrix Înþnsþ1 is maximized, where Înþnsþ1 ¼ În þ Însþ1 and
Însþ1 ¼

Pnþnsþ1
j¼nþ1 Îj,

În ¼

1

n

Xn
i¼1

Xi,1�̂i,1nin
0
i 0 0

0 . .
.

0

0 0
1

n

Xn
i¼1

Xi,K�̂i,Knin
0
i

0
BBBBBBBB@

1
CCCCCCCCA
,

Îj �

p1�̂j,1njn
0
j 0 0

0 . .
.

0

0 0 pK�̂j,Knjn
0
j

0
BBBB@

1
CCCCA,

ð3:4Þ

and �̂i,k ¼ �̂i,kð1� �̂i,kÞ for i ¼ 1, . . . , n, j ¼ nþ 1, . . . , nþ nsþ1, and k ¼ 1, . . . ,K.
Through numerical studies12 provide tables with estimates of allocation proportions for several �s

and given Tn for two-stage CARA designs. For illustration purposes, we also apply the proposed
method to logistic regression models with K ¼ 2, and then we modify the utility function in equation
(3.1) by defining the estimated target allocation proportion �kðĥ, nÞ with some function JðtÞ
symmetric at zero:

�1ðĥ, nÞ ¼ J
n0ĥ1 � n0ĥ2

Tn

 !
and �2ðĥ, nÞ ¼ 1� �1ðĥ, nÞ,

where Tn and/or � may vary in different sampling stages, serving as tuning parameters to balance
efficiency and ethical consideration. Hence, �kðĥ, nÞ can vary sequentially at each stage through ĥ

and Tn. In Section 3.2, we present numerical results with some suggestions for parameters Tn and �.
The proposed three-stage procedure is then evaluated by the accuracy of the estimation of the
treatment effect and the correct treatment allocation probability (CAP).

3.2.2 Parameters setup and simulation results

Consider two treatments A and B (i.e. K ¼ 2) with one continuous covariate n, and assume that the
binary response and covariate n satisfy a logistic model, as described in equation (3.2). Assume
further that intercepts of logistic models for both treatments are equal with ð	1,	2Þ ¼ ð0:1, 0:1Þ and
regression coefficients ð�
1, �



2Þ ¼ ð�1, 1Þ. The covariate is generated from a mixed normal distribution

with means 2 and �2, and equal variance 1, and with the mixing probability 0.5. Because these two
treatment groups have opposite slopes and the covariate is distributed symmetrically around the
intersection point of the slopes, the correct allocation is to assign subjects with the covariate coming
from a normal distribution with a positive (negative) mean to the treatment group with a positive
(negative) slope.

Because the difference between treatment effects in logistic models is a function of the differences
between intercepts and regression coefficients of treatments, we apply the stopping rule for the
contrasts of parameters, c ¼ H0h, given in Section 2.1. Thus, the transpose of the contrast H is
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defined as a matrix with its first row ð1, 0, � 1, 0Þ and its second row ð0, 1, 0, � 1Þ, and the vector of
parameters � is ð	1, �



1,	2, �



2Þ
0.

Let precision � be 0.3 for all simulation studies, and several cases of initial sample sizes for each
treatment, m0, are 5, 10, or 15. Several combinations of tuning parameters Tn and � are assumed:
0.5, 1, and 2 for Tn and 0, 0.1, and 1 for �. Both fixed and varying tuning parameters, Tn and �, are
considered; that is, for comparison purposes, we consider cases in which both Tn and � are fixed
throughout the study as well as cases in which these two parameters vary as the stage changes. For
the cases with varying parameters, we let Tn and � be proportional and inversely proportional to the
standard deviation of the treatment effect for a given covariate of a new observation, respectively.
Findings from the simulation studies are as follows:

It is found that the average of the stopping time is very unstable when the initial sample size m0 is
small, such as 5. This is due to the unstable regression coefficient estimates using too small a sample
size at the initial stage. As the initial sample size gets larger, the average of the stopping time and its
variation become much smaller. The coverage probabilities of treatment differences are mostly more
than the nominal level 0.95, and, for some cases, they are close to 1. This observation implies the
possibility of over-sampling. That is, our procedure is conservative. Based on these findings, it is
recommended that the initial sample size should not be too small in order to stabilize the stopping
time in the early stage.

When �¼ 0, correct allocation probabilities are about 0.5 for both treatments. This case is
equivalent to a randomized allocation, as there is no ethical consideration in the utility function,
and our simulation setup is symmetric for two groups, so the results are as expected. As � gets
larger, the correct treatment allocation gets better with similar performance for positive �. This
confirms that � plays a role as a tuning parameter for ethical consideration and a small nonzero �
is sufficient for correct allocation in our studies. Large correct allocation probabilities for positive
�, in Table 1, illustrate that the CARA design with our three-stage sequential procedure
successfully implements the idea of CARA designs. That is, our three-stage procedure achieves
higher allocation proportions to the more suitable treatment for individual subjects than its non-
sequential counterpart does.

For positive �, correct allocation is high (low) when Tn ¼ 1, initial Tn¼ 0.5 with varying (fixed)
Tn, or initial Tn¼ 2 with fixed (varying) Tn. This implies that if Tn varies depending on treatment
effect variation, Tn becomes larger than the initial Tn. Thus, varying small Tn gives better allocation
due to the reasonably tuned size of Tn. That is, varying large Tn gives worse allocation due to a too-
liberal tuning of Tn. This emphasizes the importance of selecting a reasonably sized Tn.

Table 2 states results when the covariate effect is ignored. When the sampling is stopped, the
average numbers of subjects are around 31–51, 36–38, and 30, respectively, for m0 ¼ 5, 10, 15; i.e. the
sampling tends to stop very early with similar sizes for positive �, except when initial sample sizes are
very small. Varying � and/or Tn does not make much difference in terms of the stopping time. The
coverage probabilities of treatment differences cannot be computed because the covariate is ignored.
Instead, coverage probabilities of intercept differences are given in Table 2, which are mostly larger
than the nominal level 0.95 and vary more when initial sample size gets smaller.

Correct allocation probabilities in Table 2 are mostly close to 0.5, as the covariate is distributed
symmetrically around the intersection in which varying � and/or Tn do not make much difference.
Variations observed in cases with m0 ¼ 15 are due to small additional samples collected after the
initial stage. This indicates that the response-adaptive design that ignores a significantly interacting
covariate with treatment groups, fails to skew the allocation rule. Consequently, the response-
adaptive design could not play an ethical role regardless of how large the initial samples are
given or how big � is assumed.
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Table 1. Mean (M) and standard deviation (SD) of stopping time (�� ), coverage probability (CP), and correct

allocation probability (CAP) of sequential 95% confidence interval estimation with � ¼ 0:3, for three-stage design in

simulation studies, when the covariate interacting with treatment groups is considered in the treatment allocation

process.

Variation �� Variation ��

m0 Tn � TnV �V M SD CP CAP m0 Tn � TnV �V M SD CP CAP

5 0.5 0.0 N N 238 406 0.96 0.45 10 1.0 0.1 Y Y 79 25 0.96 0.78

5 0.5 0.0 Y N 203 425 1.00 0.49 10 1.0 1.0 N N 84 29 0.98 0.93

5 0.5 0.1 N N 268 705 0.96 0.80 10 1.0 1.0 N Y 87 34 0.99 0.91

5 0.5 0.1 N Y 214 255 0.98 0.75 10 1.0 1.0 Y N 84 31 0.96 0.87

5 0.5 0.1 Y N 188 202 0.98 0.80 10 1.0 1.0 Y Y 85 42 0.98 0.88

5 0.5 0.1 Y Y 174 166 0.99 0.64

5 0.5 1.0 N N 161 117 0.98 0.80 10 2.0 0.0 N N 91 73 0.93 0.50

5 0.5 1.0 N Y 173 152 0.95 0.76 10 2.0 0.0 Y N 86 44 0.99 0.43

5 0.5 1.0 Y N 166 117 0.95 0.85 10 2.0 0.1 N N 103 186 0.98 0.81

5 0.5 1.0 Y Y 149 85 0.98 0.83 10 2.0 0.1 N Y 84 44 0.95 0.77

10 2.0 0.1 Y N 84 32 1.00 0.68

5 1.0 0.0 N N 230 370 0.99 0.50 10 2.0 0.1 Y Y 81 26 0.99 0.68

5 1.0 0.0 Y N 230 331 0.98 0.51 10 2.0 1.0 N N 88 35 0.97 0.87

5 1.0 0.1 N N 195 265 1.00 0.79 10 2.0 1.0 N Y 82 24 0.97 0.87

5 1.0 0.1 N Y 222 364 0.99 0.71 10 2.0 1.0 Y N 84 42 0.97 0.77

5 1.0 0.1 Y N 192 225 0.99 0.69 10 2.0 1.0 Y Y 90 51 0.99 0.75

5 1.0 0.1 Y Y 266 496 0.97 0.57

5 1.0 1.0 N N 196 248 0.97 0.85 15 0.5 0.0 N N 70 25 0.98 0.42

5 1.0 1.0 N Y 165 175 0.96 0.85 15 0.5 0.0 Y N 67 26 0.98 0.47

5 1.0 1.0 Y N 313 1220 1.00 0.78 15 0.5 0.1 N N 64 17 0.99 0.75

5 1.0 1.0 Y Y 213 363 1.00 0.74 15 0.5 0.1 N Y 63 20 0.99 0.75

15 0.5 0.1 Y N 67 22 0.97 0.93

5 2.0 0.0 N N 244 457 0.97 0.47 15 0.5 0.1 Y Y 67 19 0.96 0.89

5 2.0 0.0 Y N 331 1015 0.99 0.50 15 0.5 1.0 N N 66 22 0.96 0.74

5 2.0 0.1 N N 211 375 1.00 0.70 15 0.5 1.0 N Y 66 22 0.99 0.73

5 2.0 0.1 N Y 205 276 1.00 0.62 15 0.5 1.0 Y N 68 27 0.97 0.95

5 2.0 0.1 Y N 192 204 1.00 0.57 15 0.5 1.0 Y Y 72 30 0.97 0.92

5 2.0 0.1 Y Y 242 369 0.97 0.58

5 2.0 1.0 N N 219 402 0.98 0.78 15 1.0 0.0 N N 64 18 0.97 0.44

5 2.0 1.0 N Y 157 132 1.00 0.76 15 1.0 0.0 Y N 65 18 0.98 0.44

5 2.0 1.0 Y N 241 365 1.00 0.67 15 1.0 0.1 N N 66 17 0.99 0.92

5 2.0 1.0 Y Y 206 346 1.00 0.62 15 1.0 0.1 N Y 75 43 0.98 0.89

15 1.0 0.1 Y N 64 17 0.95 0.91

10 0.5 0.0 N N 81 31 0.97 0.41 15 1.0 0.1 Y Y 63 17 1.00 0.88

10 0.5 0.0 Y N 77 25 0.98 0.49 15 1.0 1.0 N N 66 20 0.98 0.91

10 0.5 0.1 N N 81 38 0.99 0.77 15 1.0 1.0 N Y 67 21 1.00 0.91

10 0.5 0.1 N Y 82 33 0.99 0.79 15 1.0 1.0 Y N 65 19 1.00 0.93

10 0.5 0.1 Y N 87 48 0.99 0.91 15 1.0 1.0 Y Y 69 29 0.96 0.92

10 0.5 0.1 Y Y 90 51 0.99 0.87

10 0.5 1.0 N N 83 38 1.00 0.80 15 2.0 0.0 N N 64 16 0.98 0.43

10 0.5 1.0 N Y 91 63 0.97 0.78 15 2.0 0.0 Y N 57 14 0.99 0.46

(continued)
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Table 2. Mean (M) and standard deviation (SD) of stopping time (�� ), coverage probability (CP), and correct

allocation probability (CAP) of sequential 95% confidence interval estimation with � ¼ 0:3, for three-stage design in

simulation studies, when the covariate interacting with treatment groups is ignored in the treatment allocation

process.

Variation �� Variation ��

m0 Tn � TnV �V M SD CP CAP m0 Tn � TnV �V M SD CP CAP

5 0.5 0.0 N N 32 5 1.00 0.5 10 1.0 0.1 Y Y 37 3 1.00 0.47

5 0.5 0.0 Y N 32 5 1.00 0.49 10 1.0 1.0 N N 36 2 1.00 0.51

5 0.5 0.1 N N 42 17 0.96 0.49 10 1.0 1.0 N Y 36 3 0.98 0.48

5 0.5 0.1 N Y 40 9 0.98 0.5 10 1.0 1.0 Y N 36 2 1.00 0.51

5 0.5 0.1 Y N 44 20 0.96 0.5 10 1.0 1.0 Y Y 36 2 1.00 0.50

5 0.5 0.1 Y Y 36 7 1.00 0.5

5 0.5 1.0 N N 43 13 0.98 0.49 10 2.0 0.0 N N 36 2 1.00 0.50

5 0.5 1.0 N Y 44 17 0.96 0.5 10 2.0 0.0 Y N 37 2 1.00 0.49

5 0.5 1.0 Y N 51 28 0.85 0.49 10 2.0 0.1 N N 36 3 1.00 0.50

5 0.5 1.0 Y Y 39 9 1.00 0.52 10 2.0 0.1 N Y 37 3 1.00 0.49

10 2.0 0.1 Y N 37 4 1.00 0.48

5 1.0 0.0 N N 32 4 1.00 0.49 10 2.0 0.1 Y Y 37 3 1.00 0.50

5 1.0 0.0 Y N 33 5 1.00 0.47 10 2.0 1.0 N N 36 3 1.00 0.49

5 1.0 0.1 N N 37 13 0.98 0.52 10 2.0 1.0 N Y 36 2 1.00 0.50

5 1.0 0.1 N Y 39 20 1.00 0.51 10 2.0 1.0 Y N 36 3 1.00 0.50

5 1.0 0.1 Y N 37 12 0.96 0.51 10 2.0 1.0 Y Y 36 2 1.00 0.47

5 1.0 0.1 Y Y 36 12 1.00 0.52

5 1.0 1.0 N N 40 17 1.00 0.51 15 0.5 0.0 N N 30 0 1.00 .

5 1.0 1.0 N Y 42 23 0.96 0.49 15 0.5 0.0 Y N 30 0 1.00 .

5 1.0 1.0 Y N 36 6 1.00 0.49 15 0.5 0.1 N N 30 0 1.00 0.95

5 1.0 1.0 Y Y 38 16 1.00 0.51 15 0.5 0.1 N Y 30 0 1.00 0.67

15 0.5 0.1 Y N 30 0 1.00 .

5 2.0 0.0 N N 31 4 1.00 0.47 15 0.5 0.1 Y Y 30 1 1.00 0.66

5 2.0 0.0 Y N 33 5 1.00 0.52 15 0.5 1.0 N N 30 2 1.00 0.21

(continued)

Table 1. Continued

Variation �� Variation ��

m0 Tn � TnV �V M SD CP CAP m0 Tn � TnV �V M SD CP CAP

10 0.5 1.0 Y N 82 27 0.99 0.93 15 2.0 0.1 N N 70 34 0.97 0.87

10 0.5 1.0 Y Y 87 40 0.96 0.95 15 2.0 0.1 N Y 68 23 1.00 0.85

15 2.0 0.1 Y N 67 18 0.97 0.78

10 1.0 0.0 N N 81 27 0.97 0.48 15 2.0 0.1 Y Y 65 23 0.97 0.75

10 1.0 0.0 Y N 87 32 0.98 0.45 15 2.0 1.0 N N 67 22 0.98 0.90

10 1.0 0.1 N N 85 37 0.99 0.89 15 2.0 1.0 N Y 72 37 1.00 0.90

10 1.0 0.1 N Y 87 42 0.97 0.84 15 2.0 1.0 Y N 64 20 0.97 0.84

10 1.0 0.1 Y N 83 30 0.94 0.86 15 2.0 1.0 Y Y 59 13 0.97 0.82

TnV and �V indicate if Tn and � vary.
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In Table 3, simulation results for two-stage designs are provided. We found that three-stage
designs produced short and stable stopping times compared with two-stage designs as the former
produced more stable estimates than the latter while giving similar correct allocation probabilities to
the latter.

3.3 Illustrative example

Because the real data of the CARA-designed clinical trials are rarely available to the public, we
illustrate a real example by modifying the study that applied the non-response-adaptive design of
Cutsem et al.20 in the CARA design while still employing the same relationship among the covariate,
the treatment group, and the response variable as the one in Cutsem et al.20 In this study, 599
patients, with either epidermal growth factor receptor-positive colorectal cancer or unresectable
metastases, were randomly assigned to either receive FOLFIRI alone or in combination with
cetuximab, respectively. A significant interaction was reported between the treatment group and
KRAS mutation status for tumor response when analyzed using a logistic regression model. Tumor
response is defined as the proportion of patients with a confirmed complete response or partial

Table 2. Continued

Variation �� Variation ��

m0 Tn � TnV �V M SD CP CAP m0 Tn � TnV �V M SD CP CAP

5 2.0 0.1 N N 35 12 1.00 0.51 15 0.5 1.0 N Y 30 0 1.00 0.46

5 2.0 0.1 N Y 33 6 0.98 0.49 15 0.5 1.0 Y N 30 0 1.00 0.33

5 2.0 0.1 Y N 34 5 1.00 0.53 15 0.5 1.0 Y Y 30 0 1.00 0.60

5 2.0 0.1 Y Y 32 5 1.00 0.51

5 2.0 1.0 N N 33 5 1.00 0.50 15 1.0 0.0 N N 30 0 1.00 0.67

5 2.0 1.0 N Y 35 12 0.98 0.50 15 1.0 0.0 Y N 30 0 1.00 0.35

5 2.0 1.0 Y N 33 5 1.00 0.50 15 1.0 0.1 N N 30 0 1.00 0.33

5 2.0 1.0 Y Y 32 5 1.00 0.49 15 1.0 0.1 N Y 30 1 1.00 0.71

15 1.0 0.1 Y N 30 0 1.00 0.67

10 0.5 0.0 N N 36 2 1.00 0.47 15 1.0 0.1 Y Y 30 1 1.00 0.33

10 0.5 0.0 Y N 36 2 1.00 0.47 15 1.0 1.0 N N 30 0 1.00 0.58

10 0.5 0.1 N N 36 3 1.00 0.51 15 1.0 1.0 N Y 30 0 1.00 0.75

10 0.5 0.1 N Y 36 2 1.00 0.52 15 1.0 1.0 Y N 30 0 1.00 0.33

10 0.5 0.1 Y N 38 10 0.98 0.52 15 1.0 1.0 Y Y 30 0 1.00 0.63

10 0.5 0.1 Y Y 36 3 1.00 0.49 1.00

10 0.5 1.0 N N 36 2 1.00 0.49 15 2.0 0.0 N N 30 1 1.00 0.27

10 0.5 1.0 N Y 36 3 1.00 0.52 15 2.0 0.0 Y N 30 0 1.00 .

10 0.5 1.0 Y N 36 2 1.00 0.49 15 2.0 0.1 N N 30 0 1.00 0.33

10 0.5 1.0 Y Y 36 3 0.98 0.53 15 2.0 0.1 N Y 30 0 1.00 0.43

15 2.0 0.1 Y N 30 2 1.00 0.64

10 1.0 0.0 N N 36 2 1.00 0.50 15 2.0 0.1 Y Y 30 1 1.00 0.46

10 1.0 0.0 Y N 37 3 1.00 0.49 15 2.0 1.0 N N 30 1 1.00 0.32

10 1.0 0.1 N N 36 2 1.00 0.50 15 2.0 1.0 N Y 30 0 1.00 0.33

10 1.0 0.1 N Y 36 3 1.00 0.50 15 2.0 1.0 Y N 30 0 1.00 .

10 1.0 0.1 Y N 36 3 0.98 0.51 15 2.0 1.0 Y Y 30 0 1.00 0.35

TnV and �V indicate if Tn and � vary.

Park and Chang 13

 at NATIONAL CHENGCHI UNIV LIB on December 5, 2013smm.sagepub.comDownloaded from 

http://smm.sagepub.com/
http://smm.sagepub.com/


XML Template (2013) [23.5.2013–10:46am] [1–22]
//blrnas3/cenpro/ApplicationFiles/Journals/SAGE/3B2/SMMJ/Vol00000/130194/APPFile/SG-SMMJ130194.3d (SMM) [PREPRINTER stage]

Table 3. Mean (M) and standard deviation (SD) of stopping time (�� ), coverage probability (CP), and correct

allocation probability (CAP) of sequential 95% confidence interval estimation with � ¼ 0:3, for two-stage design in

simulation studies, when the covariate interacting with treatment groups is considered in the treatment allocation

process.

Variation �� Variation ��

m0 Tn � TnV �V M SD CP CAP m0 Tn � TnV �V M SD CP CAP

5 0.5 0.0 N N 741 3069 0.96 0.53 10 1.0 0.1 Y Y 148 71 1.00 0.81

5 0.5 0.0 Y N 336 235 0.96 0.46 10 1.0 1.0 N N 141 63 1.00 0.92

5 0.5 0.1 N N 350 408 1.00 0.81 10 1.0 1.0 N Y 134 52 0.97 0.92

5 0.5 0.1 N Y 354 477 1.00 0.75 10 1.0 1.0 Y N 144 90 1.00 0.89

5 0.5 0.1 Y N 522 1315 1.00 0.77 10 1.0 1.0 Y Y 136 50 0.98 0.89

5 0.5 0.1 Y Y 313 259 0.96 0.68

5 0.5 1.0 N N 452 1221 0.94 0.80 10 2.0 0.0 N N 126 42 0.98 0.45

5 0.5 1.0 N Y 408 1123 1.00 0.81 10 2.0 0.0 Y N 145 124 0.98 0.50

5 0.5 1.0 Y N 305 335 0.96 0.85 10 2.0 0.1 N N 145 70 1.00 0.84

5 0.5 1.0 Y Y 358 525 0.98 0.82 10 2.0 0.1 N Y 134 40 0.98 0.77

10 2.0 0.1 Y N 136 63 1.00 0.74

5 1.0 0.0 N N 404 598 0.98 0.50 10 2.0 0.1 Y Y 137 51 1.00 0.64

5 1.0 0.0 Y N 261 195 0.98 0.47 10 2.0 1.0 N N 168 254 1.00 0.87

5 1.0 0.1 N N 425 726 1.00 0.80 10 2.0 1.0 N Y 166 282 1.00 0.86

5 1.0 0.1 N Y 512 699 1.00 0.68 10 2.0 1.0 Y N 134 58 1.00 0.78

5 1.0 0.1 Y N 347 397 1.00 0.62 10 2.0 1.0 Y Y 137 63 0.99 0.78

5 1.0 0.1 Y Y 310 238 1.00 0.63

5 1.0 1.0 N N 345 485 0.99 0.86 15 0.5 0.0 N N 95 32 0.96 0.44

5 1.0 1.0 N Y 390 622 0.98 0.82 15 0.5 0.0 Y N 94 42 1.00 0.52

5 1.0 1.0 Y N 558 1064 1.00 0.75 15 0.5 0.1 N N 93 36 0.99 0.76

5 1.0 1.0 Y Y 415 461 1.00 0.72 15 0.5 0.1 N Y 96 34 0.99 0.77

15 0.5 0.1 Y N 87 32 0.98 0.93

5 2.0 0.0 N N 1321 5907 1.00 0.52 15 0.5 0.1 Y Y 92 41 0.98 0.92

5 2.0 0.0 Y N 522 1267 1.00 0.51 15 0.5 1.0 N N 100 50 1.00 0.76

5 2.0 0.1 N N 361 430 1.00 0.71 15 0.5 1.0 N Y 96 39 0.97 0.76

5 2.0 0.1 N Y 354 358 1.00 0.65 15 0.5 1.0 Y N 92 36 0.99 0.93

5 2.0 0.1 Y N 287 248 1.00 0.54 15 0.5 1.0 Y Y 89 36 0.98 0.94

5 2.0 0.1 Y Y 373 376 1.00 0.54

5 2.0 1.0 N N 457 777 1.00 0.79 15 1.0 0.0 N N 92 46 0.98 0.54

5 2.0 1.0 N Y 319 480 0.99 0.79 15 1.0 0.0 Y N 98 46 1.00 0.45

5 2.0 1.0 Y N 470 968 1.00 0.66 15 1.0 0.1 N N 96 39 0.99 0.91

5 2.0 1.0 Y Y 351 713 1.00 0.63 15 1.0 0.1 N Y 97 43 0.99 0.89

15 1.0 0.1 Y N 90 28 0.99 0.91

10 0.5 0.0 N N 142 48 0.98 0.54 15 1.0 0.1 Y Y 93 41 0.99 0.89

10 0.5 0.0 Y N 137 60 1.00 0.42 15 1.0 1.0 N N 87 33 1.00 0.92

10 0.5 0.1 N N 188 224 0.94 0.75 15 1.0 1.0 N Y 89 32 1.00 0.93

10 0.5 0.1 N Y 147 82 1.00 0.74 15 1.0 1.0 Y N 92 53 0.99 0.91

10 0.5 0.1 Y N 140 57 0.98 0.90 15 1.0 1.0 Y Y 99 48 0.98 0.93

10 0.5 0.1 Y Y 136 62 0.99 0.87

10 0.5 1.0 N N 149 187 1.00 0.79 15 2.0 0.0 N N 93 36 1.00 0.45

10 0.5 1.0 N Y 143 54 0.99 0.76 15 2.0 0.0 Y N 88 30 1.00 0.47
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response, defined as a response persisting for at least 28 days. This was observed in 281 patients
(46.9%) who were receiving cetuximab plus FOLFIRI as well as in 232 patients (38.7%) who
received FOLFIRI alone. The adjusted significant odds ratio for a tumor response with
cetuximab plus FOLFIRI treatment, when compared with FOLFIRI alone, was 1.40 (see Panel B
of Figure 2 in Cutsem et al.20). Tumors of 348 patients (64.4%) had wild-type KRAS, and those of
192 patients (35.6%) had mutated KRAS. Table 420 gives the number of tumor responses and the
odds ratios, along with their confidence intervals, for each KRAS mutation status.

Even though this study was performed under the random treatment allocation with possible
response delays, we simulate a situation as if it were done under the three-stage CARA design.
We assume logistic models for both groups with binary tumor responses, two treatment groups, and
one binary covariate, KRAS status. The intercepts and regression coefficients of logistic models are
chosen such that the same odds ratios as in Cutsem et al.20 are achieved (Table 4).

Because the treatment effect is defined as a function of differences of intercepts and regression
coefficients between the two treatments, we apply the stopping rule for the contrasts of parameters,
c ¼ H0h, given in Section 2.1. Thus, the transpose of the contrast H is defined as a matrix with its
first row ð1, 0, �1, 0Þ and its second row (0, 1, 0,�1), and the vector of parameters � is
ð	A, �



A,	B, �



BÞ
0.

Precision � is assumed to be 0.2, and the initial sample size for each treatment, m0, is assumed to
be 15, 20, and 25. Several combinations of tuning parameters Tn and � are assumed: 0.1, 0.3, and 0.5
for Tn and 0, 0.01, and 0.1 for �. As in the previous simulation study, both fixed and varying tuning
parameters, Tn and �, are considered. Table 5 summarizes the results when the KRAS status is
considered for the three-stage design.

Table 4. Tumor response summary to cetuximab plus FOLFIRI vs. FOLFIRI-alone treatment by KRAS status.

Cetuximab plus FOLFIRI FOLFIRI alone

Tumor response Yes No Yes No Odds ratio

KRAS population 140 137 111 152 1.38 (0.98–1.95)

Mutant KRAS 38 67 35 52 0.80 (0.44–1.45)

Wild-type KRAS 102 70 76 100 1.91 (1.24–2.93)

Table 3. Continued

Variation �� Variation ��

m0 Tn � TnV �V M SD CP CAP m0 Tn � TnV �V M SD CP CAP

10 0.5 1.0 Y N 142 77 1.00 0.95 15 2.0 0.1 N N 91 30 0.99 0.87

10 0.5 1.0 Y Y 128 47 0.97 0.94 15 2.0 0.1 N Y 89 39 0.97 0.84

15 2.0 0.1 Y N 88 32 0.98 0.79

10 1.0 0.0 N N 126 45 0.98 0.44 15 2.0 0.1 Y Y 92 32 0.98 0.77

10 1.0 0.0 Y N 140 68 1.00 0.47 15 2.0 1.0 N N 89 49 0.98 0.89

10 1.0 0.1 N N 146 100 1.00 0.88 15 2.0 1.0 N Y 93 32 1.00 0.90

10 1.0 0.1 N Y 149 81 1.00 0.88 15 2.0 1.0 Y N 93 39 1.00 0.83

10 1.0 0.1 Y N 154 79 1.00 0.82 15 2.0 1.0 Y Y 99 51 1.00 0.83

TnV and �V indicate if Tn and � vary.
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Table 5. Mean (M) and standard deviation (SD) of stopping time (�� ), coverage probability (CP), and correct

allocation probabilities (CAP) of sequential 95% confidence interval estimation with � ¼ 0:2, for three-stage design in

an illustrative example, when the covariate interacting with treatment groups is considered in the treatment allocation

process.

Variation �� Variation ��

m0 Tn � TnV �V M SD CP CAPw CAPm m0 Tn � TnV �V M SD CP CAPw CAPm

15 0.1 0.00 N N 317 49 0.88 0.76 0.81 20 0.3 0.01 Y Y 247 17 0.89 0.55 0.94

15 0.1 0.00 Y N 327 58 0.70 0.71 0.75 20 0.3 0.10 N N 245 17 0.97 0.78 0.81

15 0.1 0.01 N N 313 51 0.98 0.34 0.70 20 0.3 0.10 N Y 242 20 1.00 0.68 0.70

15 0.1 0.01 N Y 317 32 0.97 0.52 0.83 20 0.3 0.10 Y N 254 23 0.73 0.80 0.70

15 0.1 0.01 Y N 331 45 0.73 0.44 0.85 20 0.3 0.10 Y Y 248 20 0.92 0.87 0.65

15 0.1 0.01 Y Y 318 46 0.88 0.58 0.70

15 0.1 0.10 N N 319 45 0.79 0.40 0.90 20 0.5 0.00 N N 251 28 0.90 0.44 0.85

15 0.1 0.10 N Y 313 29 0.95 0.50 0.73 20 0.5 0.00 Y N 244 16 0.99 0.44 0.97

15 0.1 0.10 Y N 322 45 0.89 0.35 0.64 20 0.5 0.01 N N 251 20 0.75 0.71 0.83

15 0.1 0.10 Y Y 314 49 0.97 0.37 0.81 20 0.5 0.01 N Y 248 17 0.98 0.83 0.79

20 0.5 0.01 Y N 251 23 0.88 0.68 0.84

15 0.3 0.00 N N 321 45 0.81 0.88 0.91 20 0.5 0.01 Y Y 246 16 0.83 0.46 0.61

15 0.3 0.00 Y N 320 35 0.64 0.70 0.79 20 0.5 0.10 N N 251 26 0.96 0.85 0.52

15 0.3 0.01 N N 307 29 1.00 0.77 0.76 20 0.5 0.10 N Y 259 44 0.99 0.74 0.57

15 0.3 0.01 N Y 326 27 0.81 0.67 0.78 20 0.5 0.10 Y N 255 25 0.99 0.91 0.49

15 0.3 0.01 Y N 310 38 0.96 0.73 0.70 20 0.5 0.10 Y Y 253 34 0.98 0.82 0.44

15 0.3 0.01 Y Y 344 50 0.86 0.80 0.74

15 0.3 0.10 N N 315 31 0.96 0.47 0.51 25 0.1 0.00 N N 199 11 1.00 0.34 0.73

15 0.3 0.10 N Y 314 47 0.89 0.55 0.73 25 0.1 0.00 Y N 196 14 0.91 0.45 0.95

15 0.3 0.10 Y N 328 51 0.90 0.69 0.61 25 0.1 0.01 N N 203 14 1.00 0.18 0.73

15 0.3 0.10 Y Y 321 30 0.72 0.69 0.52 25 0.1 0.01 N Y 199 12 0.99 0.51 0.64

25 0.1 0.01 Y N 202 18 1.00 0.23 0.71

15 0.5 0.00 N N 319 40 0.91 0.81 0.77 25 0.1 0.01 Y Y 202 14 0.91 0.31 0.68

15 0.5 0.00 Y N 323 36 0.77 0.68 0.72 25 0.1 0.10 N N 202 13 0.92 0.44 0.80

15 0.5 0.01 N N 307 27 0.98 0.75 0.65 25 0.1 0.10 N Y 209 19 0.92 0.24 0.55

15 0.5 0.01 N Y 320 37 0.91 0.69 0.63 25 0.1 0.10 Y N 196 12 0.99 0.28 0.84

15 0.5 0.01 Y N 310 36 0.91 0.68 0.66 25 0.1 0.10 Y Y 202 14 0.99 0.29 0.58

15 0.5 0.01 Y Y 325 38 0.89 0.80 0.75

15 0.5 0.10 N N 322 43 0.84 0.66 0.71 25 0.3 0.00 N N 198 13 0.89 0.37 0.79

15 0.5 0.10 N Y 302 42 0.98 0.70 0.54 25 0.3 0.00 Y N 198 10 0.89 0.42 0.89

15 0.5 0.10 Y N 345 87 0.91 0.70 0.55 25 0.3 0.01 N N 208 19 1.00 0.79 0.77

15 0.5 0.10 Y Y 311 32 0.91 0.76 0.67 25 0.3 0.01 N Y 195 7 1.00 0.72 0.62

25 0.3 0.01 Y N 212 42 0.84 0.85 0.57

20 0.1 0.00 N N 260 27 0.83 0.41 0.74 25 0.3 0.01 Y Y 198 11 0.99 0.69 0.62

20 0.1 0.00 Y N 257 28 0.88 0.37 0.72 25 0.3 0.10 N N 203 17 0.98 0.81 0.51

20 0.1 0.01 N N 250 15 0.97 0.31 0.76 25 0.3 0.10 N Y 205 25 0.83 0.83 0.44

20 0.1 0.01 N Y 249 15 0.92 0.28 0.76 25 0.3 0.10 Y N 202 17 1.00 0.81 0.70

20 0.1 0.01 Y N 240 12 0.91 0.20 0.95 25 0.3 0.10 Y Y 197 13 0.98 0.79 0.67

20 0.1 0.01 Y Y 251 22 0.81 0.37 0.76

20 0.1 0.10 N N 248 20 0.83 0.26 0.74 25 0.5 0.00 N N 197 12 0.82 0.43 0.78

20 0.1 0.10 N Y 250 24 1.00 0.32 0.73 25 0.5 0.00 Y N 203 11 0.83 0.31 0.69
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The average sample sizes when the sampling is stopped are much smaller than those in the
original studies, and they become larger and less stable if the initial sample size m0 gets smaller
due to unstable regression coefficient estimates at the initial stage. This is consistent with previous
simulation studies. The coverage probabilities of treatment differences vary rather largely depending
on Tn or � values and become closer to 0.95 as the initial sample size m0 gets larger and as � gets
smaller.

For the wild-type KRAS population, as � gets larger, if Tn ¼ 0:3 and 0.5, the correct treatment
allocation gets better with similar performance for positive �. This confirms that � plays a role as a
tuning parameter for ethical consideration and that a small nonzero � is sufficient for making the
correct allocation. However, if Tn ¼ 0:1, the correct treatment allocation worsens for positive �
when Tn varies. Tn ¼ 0:1 is too small to secure an accurate treatment estimate and thus inflates
the small treatment effect in the utility function to cause an incorrect treatment allocation. For small
Tn, non-increasing sensitivities are due to giving too much weight to the ethical consideration by
increasing � before getting accurate estimates of the treatment effect. CAP also greatly decreases as �
gets larger contrary to expectations when the initial sample size is small for the same reason. This
implies that we do not need to sacrifice accuracy by increasing �. Small positive � is sufficient to
obtain the ethical emphasis.

Most correct allocation probabilities are not increased when � is increased for the mutant KRAS
population. This is also due to too much weight assigned to the ethical consideration with large �
before accurately estimating treatment effects. For positive �, treatment allocation is the best for
mutant KRAS when Tn ¼ 0:1 due to easy detection of small treatment differences. (The odds ratio is
small, 0.80, for mutant KRAS while it is large, 1.91, for wild-type KRAS.) If we have to use the
same Tn for both KRAS statuses, then Tn ¼ 0:3 or 0:5 are recommended because differences of
correct allocation are larger when Tn ¼ 0:3 or 0:5 compared with Tn ¼ 0:1 for each KRAS status. In
summary, small positive � is sufficiently large for ethical consideration, and reasonably sized Tn is
recommended for correct allocation because too small of a Tn may yield a decreasing correct
allocation from 0.5 as � is increased. Varying � does not seriously affect the correct allocation,
but varying too small of a Tn may decrease the correct allocation greatly to less than 0.5.

In Table 6, results for two-stage CARA designs are provided as well. The two-stage designs
produce averages of stopping times larger by 212, standard deviations of the stopping times
larger by 22, differences from nominal coverage smaller by 0.01, and correct allocation
probabilities larger by 0.00 than those of the three-stage designs. This occurs when we take an

Table 5. Continued

Variation �� Variation ��

m0 Tn � TnV �V M SD CP CAPw CAPm m0 Tn � TnV �V M SD CP CAPw CAPm

20 0.1 0.10 Y N 249 15 0.89 0.28 0.69 25 0.5 0.01 N N 208 16 0.75 0.86 0.80

20 0.1 0.10 Y Y 249 21 0.98 0.36 0.71 25 0.5 0.01 N Y 199 13 0.98 0.77 0.65

25 0.5 0.01 Y N 202 12 0.99 0.71 0.78

20 0.3 0.00 N N 244 17 0.81 0.51 0.87 25 0.5 0.01 Y Y 203 13 0.91 0.70 0.78

20 0.3 0.00 Y N 244 19 0.91 0.65 0.76 25 0.5 0.10 N N 207 24 0.82 0.72 0.67

20 0.3 0.01 N N 256 30 0.99 0.62 0.51 25 0.5 0.10 N Y 206 19 0.98 0.85 0.55

20 0.3 0.01 N Y 245 27 0.84 0.70 0.84 25 0.5 0.10 Y N 201 12 0.99 0.78 0.47

20 0.3 0.01 Y N 253 22 0.83 0.72 0.63 25 0.5 0.10 Y Y 197 10 1.00 0.88 0.60

TnV and �V indicate if Tn and � vary.
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Table 6. Mean (M) and standard deviation (SD) of stopping time (�� ), coverage probability (CP), and correct

allocation probabilities (CAP) of sequential 95% confidence interval estimation with � ¼ 0:2, for two-stage design in

an illustrative example, when the covariate interacting with treatment groups is considered in the treatment allocation

process.

Variation �� Variation ��

m0 Tn � TnV �V M SD CP CAPw CAPm m0 Tn � TnV �V M SD CP CAPw CAPm

15 0.1 0.00 N N 588 59 0.96 0.75 0.82 20 0.3 0.01 Y Y 450 41 0.88 0.70 0.73

15 0.1 0.00 Y N 613 100 0.87 0.73 0.74 20 0.3 0.10 N N 448 36 0.90 0.91 0.63

15 0.1 0.01 N N 628 81 0.80 0.24 0.81 20 0.3 0.10 N Y 441 27 0.98 0.81 0.67

15 0.1 0.01 N Y 602 48 0.96 0.36 0.81 20 0.3 0.10 Y N 456 35 0.99 0.87 0.56

15 0.1 0.01 Y N 610 93 0.89 0.32 0.74 20 0.3 0.10 Y Y 458 41 0.83 0.66 0.46

15 0.1 0.01 Y Y 597 86 0.83 0.47 0.68

15 0.1 0.10 N N 570 66 0.95 0.36 0.82 20 0.5 0.00 N N 455 37 0.90 0.36 0.78

15 0.1 0.10 N Y 597 61 0.88 0.63 0.81 20 0.5 0.00 Y N 447 28 0.99 0.44 0.91

15 0.1 0.10 Y N 601 76 0.89 0.51 0.85 20 0.5 0.01 N N 441 28 0.88 0.66 0.80

15 0.1 0.10 Y Y 620 81 0.74 0.12 0.85 20 0.5 0.01 N Y 474 60 0.90 0.85 0.73

20 0.5 0.01 Y N 463 48 0.98 0.75 0.67

15 0.3 0.00 N N 635 89 0.72 0.59 0.63 20 0.5 0.01 Y Y 464 43 0.91 0.78 0.86

15 0.3 0.00 Y N 573 36 0.91 0.82 0.84 20 0.5 0.10 N N 453 32 0.91 0.89 0.64

15 0.3 0.01 N N 595 65 0.89 0.66 0.69 20 0.5 0.10 N Y 443 34 0.82 0.63 0.63

15 0.3 0.01 N Y 586 62 0.97 0.73 0.78 20 0.5 0.10 Y N 443 21 0.99 0.78 0.54

15 0.3 0.01 Y N 641 114 0.73 0.75 0.63 20 0.5 0.10 Y Y 466 70 0.82 0.75 0.51

15 0.3 0.01 Y Y 573 51 0.98 0.80 0.72

15 0.3 0.10 N N 653 106 0.83 0.86 0.47 25 0.1 0.00 N N 342 24 0.97 0.25 0.93

15 0.3 0.10 N Y 614 63 0.87 0.83 0.38 25 0.1 0.00 Y N 329 13 1.00 0.40 0.94

15 0.3 0.10 Y N 628 90 0.89 0.63 0.48 25 0.1 0.01 N N 354 24 0.91 0.43 0.71

15 0.3 0.10 Y Y 612 82 0.72 0.60 0.71 25 0.1 0.01 N Y 350 25 0.91 0.43 0.87

25 0.1 0.01 Y N 362 29 0.92 0.18 0.60

15 0.5 0.00 N N 563 46 0.94 0.96 0.97 25 0.1 0.01 Y Y 350 32 1.00 0.32 0.71

15 0.5 0.00 Y N 602 85 0.80 0.83 0.83 25 0.1 0.10 N N 353 29 1.00 0.47 0.74

15 0.5 0.01 N N 595 68 0.81 0.61 0.67 25 0.1 0.10 N Y 346 27 1.00 0.16 0.62

15 0.5 0.01 N Y 629 108 0.73 0.65 0.85 25 0.1 0.10 Y N 339 19 0.91 0.30 0.78

15 0.5 0.01 Y N 586 51 0.90 0.64 0.92 25 0.1 0.10 Y Y 337 23 1.00 0.61 0.66

15 0.5 0.01 Y Y 614 65 0.83 0.75 0.74

15 0.5 0.10 N N 608 61 0.89 0.65 0.70 25 0.3 0.00 N N 351 30 0.99 0.49 0.81

15 0.5 0.10 N Y 602 84 0.91 0.73 0.44 25 0.3 0.00 Y N 345 16 0.98 0.29 0.64

15 0.5 0.10 Y N 602 100 0.92 0.78 0.48 25 0.3 0.01 N N 353 20 0.97 0.87 0.45

15 0.5 0.10 Y Y 589 64 0.97 0.83 0.51 25 0.3 0.01 N Y 338 21 0.99 0.64 0.80

25 0.3 0.01 Y N 345 22 0.99 0.79 0.65

20 0.1 0.00 N N 476 68 0.84 0.35 0.86 25 0.3 0.01 Y Y 352 52 0.92 0.57 0.72

20 0.1 0.00 Y N 457 37 0.97 0.44 0.88 25 0.3 0.10 N N 347 23 0.91 0.76 0.56

20 0.1 0.01 N N 455 36 0.90 0.33 0.86 25 0.3 0.10 N Y 352 30 0.98 0.68 0.59

20 0.1 0.01 N Y 485 84 1.00 0.34 0.68 25 0.3 0.10 Y N 344 22 0.97 0.75 0.61

20 0.1 0.01 Y N 469 73 0.89 0.33 0.77 25 0.3 0.10 Y Y 340 27 0.98 0.76 0.59

20 0.1 0.01 Y Y 458 32 0.99 0.14 0.81

20 0.1 0.10 N N 445 21 0.84 0.26 0.81 25 0.5 0.00 N N 344 31 0.97 0.39 0.94

20 0.1 0.10 N Y 445 33 1.00 0.47 0.60 25 0.5 0.00 Y N 358 26 0.99 0.53 0.83
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average of all of the combinations of parameters in Tables 5 and 6, respectively. These findings are
the same as the one from simulation studies, which, again, provides evidence for the support of
three-stage design.

Table 7 summarizes numerical results when KRAS status is ignored. When sampling is stopped,
the average sample sizes are around 54� 57, 41� 42, and 50 for the total initial sample sizes equal
to 30, 40, and 50, respectively; i.e. they tend to stop very early and are homogeneous. Varying � or
Tn does not make much difference in terms of stopping time, as before. As mentioned, the coverage
probabilities of treatment differences cannot be computed because the covariate is ignored. Instead,
coverage probabilities of the intercept differences are given and are mostly larger than the nominal
level 0.95, as there are few additional samples collected for larger m0.

The CAPs for m0 ¼ 25 are not computed because no additional samples are collected due to the
large initial samples. The CAPs for m0 ¼ 20 are unreliable, as only one or two additional samples
were collected after the initial stage. The CAPs for m0 ¼ 15 are computed with the 14� 17
additional samples and similar observations with the ones under the response-adaptive design
using fully sequential estimation.17 This is due to the asymmetric distribution of the KRAS
population on both sides of the intersection of two logistic curves for treatment effects, not
because of covariate consideration. This, again, shows that response-adaptive allocation, ignoring
the significantly interacting covariate with treatment groups, fails to assign subjects to their
corresponding better treatment groups, regardless of initial samples or ethical consideration in the
allocation process.

Remark 3.1: We use the design of Bandyopadhyay et al.12 only as an example, and our approach is not
their extension. They assume that the total sample size is fixed and independent of the treatment effects.
In addition, their asymptotic properties are built on the assumptions (CI and CII) about the ratio of the
initial sample size to the total (non-random) sample size. Moreover, they place more emphasis on the
allocation properties, and the estimate of the treatment effects in their approach becomes less important.
On the contrary, in our approach, both the second and third sample sizes are random and depend on the
estimate of parameters. As far as we know, the estimation and allocation properties under a randomly
stopped CARA-designed clinical trial are new in this area.7 Moreover, we emphasize both the estimates
of the treatment effects and allocation properties. After all, the estimate of the treatment effects should
be the main goal of a clinical trial. Our results are quite general and can be applied to generalized linear
models with other types of CARA designs, as mentioned in Zhang et al.10

Table 6. Continued

Variation �� Variation ��

m0 Tn � TnV �V M SD CP CAPw CAPm m0 Tn � TnV �V M SD CP CAPw CAPm

20 0.1 0.10 Y N 453 41 0.98 0.29 0.66 25 0.5 0.01 N N 356 30 0.74 0.69 0.53

20 0.1 0.10 Y Y 455 26 0.83 0.33 0.80 25 0.5 0.01 N Y 342 23 1.00 0.62 0.79

25 0.5 0.01 Y N 366 53 0.98 0.66 0.66

20 0.3 0.00 N N 456 44 0.90 0.39 0.83 25 0.5 0.01 Y Y 337 15 0.99 0.79 0.72

20 0.3 0.00 Y N 450 22 0.82 0.52 0.88 25 0.5 0.10 N N 351 28 0.99 0.83 0.41

20 0.3 0.01 N N 438 23 0.96 0.77 0.75 25 0.5 0.10 N Y 393 137 0.99 0.84 0.61

20 0.3 0.01 N Y 448 30 1.00 0.57 0.83 25 0.5 0.10 Y N 354 24 1.00 0.90 0.70

20 0.3 0.01 Y N 437 24 0.98 0.77 0.66 25 0.5 0.10 Y Y 346 19 1.00 0.90 0.84

TnV and �V indicate if Tn and � vary.
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Table 7. Mean (M) and standard deviation (SD) of stopping time (�� ), coverage probability (CP), and correct

allocation probabilities (CAP) of sequential 95% confidence interval estimation with � ¼ 0:2, for three-stage design in

an illustrative example, when the covariate interacting with treatment groups is ignored in the treatment allocation

process.

Variation �� Variation ��

m0 Tn � TnV �V M SD CAPw CAPm m0 Tn � TnV �V M SD CAPw CAPm

15 0.1 0.00 N N 55 3 0.50 0.50 20 0.3 0.01 Y Y 41 2 0.84 0.10

15 0.1 0.00 Y N 54 3 0.51 0.50 20 0.3 0.10 N N 41 3 0.79 0.14

15 0.1 0.01 N N 54 3 0.46 0.55 20 0.3 0.10 N Y 41 2 0.88 0.09

15 0.1 0.01 N Y 54 3 0.46 0.55 20 0.3 0.10 Y N 41 2 0.87 0.11

15 0.1 0.01 Y N 55 4 0.32 0.68 20 0.3 0.10 Y Y 42 3 0.72 0.33

15 0.1 0.01 Y Y 55 4 0.25 0.74

15 0.1 0.10 N N 55 3 0.56 0.45 20 0.5 0.00 N N 41 1 0.00 1.00

15 0.1 0.10 N Y 55 3 0.48 0.54 20 0.5 0.00 Y N 41 3 0.00 1.00

15 0.1 0.10 Y N 54 3 0.34 0.67 20 0.5 0.01 N N 41 2 0.71 0.25

15 0.1 0.10 Y Y 55 4 0.38 0.63 20 0.5 0.01 N Y 41 3 0.81 0.12

20 0.5 0.01 Y N 41 2 0.79 0.11

15 0.3 0.00 N N 55 3 0.48 0.51 20 0.5 0.01 Y Y 41 2 0.88 0.20

15 0.3 0.00 Y N 55 3 0.53 0.52 20 0.5 0.10 N N 41 4 0.79 0.16

15 0.3 0.01 N N 55 5 0.69 0.30 20 0.5 0.10 N Y 42 4 0.81 0.15

15 0.3 0.01 N Y 55 4 0.68 0.32 20 0.5 0.10 Y N 42 3 0.81 0.10

15 0.3 0.01 Y N 55 5 0.67 0.32 20 0.5 0.10 Y Y 41 2 0.86 0.16

15 0.3 0.01 Y Y 55 4 0.72 0.27

15 0.3 0.10 N N 54 5 0.58 0.43 25 0.1 0.00 N N 50 0 – –

15 0.3 0.10 N Y 55 5 0.69 0.33 25 0.1 0.00 Y N 50 0 – –

15 0.3 0.10 Y N 54 3 0.62 0.36 25 0.1 0.01 N N 50 1 0.00 1.00

15 0.3 0.10 Y Y 55 3 0.66 0.34 25 0.1 0.01 N Y 50 0 – –

25 0.1 0.01 Y N 50 0 – –

15 0.5 0.00 N N 54 3 0.48 0.51 25 0.1 0.01 Y Y 50 0 – –

15 0.5 0.00 Y N 55 4 0.49 0.51 25 0.1 0.10 N N 50 0 – –

15 0.5 0.01 N N 55 4 0.67 0.34 25 0.1 0.10 N Y 50 0 – –

15 0.5 0.01 N Y 57 17 0.66 0.32 25 0.1 0.10 Y N 50 0 – –

15 0.5 0.01 Y N 55 5 0.66 0.35 25 0.1 0.10 Y Y 50 0 – –

15 0.5 0.01 Y Y 55 4 0.58 0.42

15 0.5 0.10 N N 57 17 0.67 0.31 25 0.3 0.00 N N 50 0 – –

15 0.5 0.10 N Y 55 5 0.68 0.33 25 0.3 0.00 Y N 50 0 – –

15 0.5 0.10 Y N 55 4 0.65 0.31 25 0.3 0.01 N N 50 0 – –

15 0.5 0.10 Y Y 55 5 0.68 0.34 25 0.3 0.01 N Y 50 0 – –

25 0.3 0.01 Y N 50 0 – –

20 0.1 0.00 N N 41 3 0.00 1.00 25 0.3 0.01 Y Y 50 0 – –

20 0.1 0.00 Y N 41 2 0.00 1.00 25 0.3 0.10 N N 50 0 – –

20 0.1 0.01 N N 42 4 0.19 0.86 25 0.3 0.10 N Y 50 0 – –

20 0.1 0.01 N Y 41 3 0.28 0.81 25 0.3 0.10 Y N 50 0 – –

20 0.1 0.01 Y N 41 3 0.13 0.83 25 0.3 0.10 Y Y 50 0 – –

20 0.1 0.01 Y Y 41 2 0.09 0.89

20 0.1 0.10 N N 42 4 0.24 0.67 25 0.5 0.00 N N 50 0 – –

20 0.1 0.10 N Y 41 3 0.21 0.77 25 0.5 0.00 Y N 50 0 – –

(continued)
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4 Discussion

We have studied the application of the three-stage sequential sampling procedure to the CARA-
designed clinical trial. We show that under such a multiple-stage scheme, the estimate of the vector
of parameters is strongly consistent with the prescribed accuracy, and the properties of the
allocation rule maintains its nice properties, just like those of its non-sequential counterparts
discussed in the literature. Thus, the proposed method retains not only the nice characteristics of
CARA design but also the significance of statistical properties.

At the beginning of a study, the proposed method allocates more samples, according to the needs
of estimation, to improve the precision of the estimation of treatment effects. That is, it places more
emphasis on the information part of a utility function when the estimation of treatment effects is
unreliable. When the estimate of treatment effects becomes stable at the later stage of the study, as
the sample size becomes large, the proposed method moves the weight gradually toward the ethical
part of a utility function. Thus, based on the estimated information on treatment effects, we tend to
allocate more patients to the better treatments depending on their covariate statuses. The advantage
of this method is that we have more flexibility to sequentially alter the parameters of the utility
function as sampling goes on, unlike the two-stage design in Bandyopadhyay et al.,12 such that the
needs for estimating treatment effects and the ethical consideration can be uniformly fulfilled. In
addition, our numerical studies provide useful information on choices of parameters in the proposed
method; fixed small positive � is sufficiently large for ethical consideration, and reasonably sized m0

and Tn is recommended for correct allocation. There is no rule of thumb on how to choose these two
parameters because it depends on a problem. We would recommend performing some simulation
studies in advance based on possible parameter combinations. Numerically, we also found that when
significant interaction between treatment and covariate is ignored, the study stops early with only a
few additional samples collected. This makes it difficult to try skewed allocation to the better
treatment and results in incorrect treatment allocation regardless of covariate values.

From a practical prospect, the multi-stage methods are usually more convenient than fully
sequential methods due to operational convenience, such as the small number of evaluation
times. However, these kinds of methods may require more samples because the information of
treatment effects are updated less often. As far as we know, a theoretical guideline regarding how
many stages should be adopted for a clinical trial is still lacking in the literature. The number of
stages may be chosen depending on other practical issues, which is beyond the discussion here.

Table 7. Continued

Variation �� Variation ��

m0 Tn � TnV �V M SD CAPw CAPm m0 Tn � TnV �V M SD CAPw CAPm

20 0.1 0.10 Y N 41 3 0.04 0.79 25 0.5 0.01 N N 50 0 – –

20 0.1 0.10 Y Y 41 3 0.22 0.80 25 0.5 0.01 N Y 50 0 – –

25 0.5 0.01 Y N 50 0 – –

20 0.3 0.00 N N 41 2 0.00 1.00 25 0.5 0.01 Y Y 50 0 – –

20 0.3 0.00 Y N 42 3 0.00 1.00 25 0.5 0.10 N N 50 0 . .

20 0.3 0.01 N N 41 2 0.68 0.14 25 0.5 0.10 N Y 50 0 . .

20 0.3 0.01 N Y 41 3 0.78 0.03 25 0.5 0.10 Y N 50 0 . .

20 0.3 0.01 Y N 41 2 0.80 0.16 25 0.5 0.10 Y Y 50 0 . .

TnVand �V indicate if Tn and � vary.
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However, it is clear that the method proposed here can be extended to more than three sampling
stages. It is also easy to see that when more stages are used, the procedure gets closer to the fully
sequential one and becomes less convenient in practice. For example, we may need to re-estimate the
sample size more often.

5 Supplementary material

The proof of Theorem 2.1 relies on the methods in Woodroofe21 and Chang.22 The reader is referred
to the online supplementary material for the technical appendix of the proof of Theorem 2.1.
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