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a b s t r a c t

The c-characteristic function has been shown to have properties similar to those of the
Fourier transformation. We now give a new property of the c-characteristic function
of the spherically symmetric distribution. With this property, we can easily determine
whether a distribution is spherically symmetric. The exact probability density function of
the random mean of a spherically symmetric Ferguson–Dirichlet process with parameter
measure over an n-dimensional spherical surface and that over an n-dimensional ball
are given. We further give the exact probability density function of the random mean of
a Ferguson–Dirichlet process with parameter measure over an n-dimensional ellipsoidal
surface and that over an n-dimensional ellipsoidal solid.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The Ferguson–Dirichlet process was first introduced and studied by Ferguson [5]. Since then, the random functional
of the Ferguson–Dirichlet process has drawn the attention of many researchers. Suppose we are interested in the density
estimation. Many density estimators proposed in the literature are of the form ofmixtures of densities. Consider the random
mixture of the densities over an n-dimensional ball, which has the form

f (x) =


Ω

g(x, y) dU(y), (1)

where g is a kernel density function and U is a Ferguson–Dirichlet process on the n-dimensional ballΩ . Under the quadratic
type loss function, the Bayesian density estimator is then given by the expectation of the random density in (1). See [13] for
detailed discussions. The random density (1) is one application for the random functional of the Ferguson–Dirichlet process,
which shall be studied in this paper. In general, some other applications of the random functional are for quality control
problems (see [3]), polymer chemistry problems, mathematical finance problems (see [4]), and others. More motivations
and studies of the random functional of the Ferguson–Dirichlet process can be seen in [15] and references therein, among
others.
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Directional data arise naturally in physical world. For example, the time of the day can be expressed in two dimensions,
and wind direction can be expressed in three dimensions. Moreover, samples from several different fields, e.g., machine
learning, bioinformatics, and data mining, are likely to contain high-dimensional (often with hundreds or thousands of
dimensions) data that are also inherently directional in nature. Often such data are L2 normalized so that it lies on the
surface of a unit hypersphere. See [1] and references therein for detailed discussions and applications on high-dimensional
spherical data.

In this paper, we shall first study the random functionals of the Ferguson–Dirichlet process over an n-dimensional ball
and over its surface. We shall then extend them to those over an ellipsoidal solid in n-space and over its surface.

The organization of this paper is as follows. In Section 2, we give a new property of the c-characteristic function,
which can solve many problems that are difficult to manage using the traditional characteristic function (see [9–11]), for a
spherically symmetric distribution. This property can be used to easily determine whether a random vector (variable) has a
spherically symmetric distribution. In addition, the c-characteristic function of the associated marginal distribution can be
easily obtained from the c-characteristic function of the original joint distribution that is spherically symmetric.

In Section 3, we first give the c-characteristic function expression for any bounded functional of a Ferguson–Dirichlet
process with parameter measure over Euclidean space. With this expression, we first show that the mean of the random
function vector of a Ferguson–Dirichlet process over Euclidean space is the same as the mean of the function vector of the
random variable corresponding to the Ferguson–Dirichlet process mean. We then show that the covariance of the random
function vector of a Ferguson–Dirichlet process over Euclidean space is proportional to the covariance of the function vector
of the random variable corresponding to the Ferguson–Dirichlet process mean. We further show that the random mean
of the Ferguson–Dirichlet process with the usual Lebesgue parameter measure over an n-dimensional spherical surface
and that over an n-dimensional ball both have spherically symmetric distributions. We then provide the exact probability
density functions of these random means. These results generalize those given by Jiang [10], Jiang et al. [11], and Jiang
and Kuo [12] over two or three dimensional distributions. Lastly, we further extend the results to the random mean of a
spherically symmetric Ferguson–Dirichlet process with parameter measure over an n-dimensional ellipsoidal solid and that
over an n-dimensional ellipsoidal surface. Finally, we give conclusions in Section 4.

2. Spherical properties of the c-characteristic function

First, we state the definition of the c-characteristic function.

Definition 2.1 (Jiang et al. [11]). If u = (u1, . . . , uL)
′ is a random vector on a subset of A = [−a1, a1] × · · · × [−aL, aL], its

c-characteristic function is defined as

g(t; u, c) = E
u
[(1 − it · u)−c

], |t| < |a|−1,

where c > 0, a = (a1, . . . , aL)′, t = (t1, . . . , tL)′, |t| =

L
i=1 t

2
i , and t · u =

L
j=1 tjuj, the inner product of t and u.

Some important properties, e.g., uniqueness and convergence theorems, of the c-characteristic function can be seen
in [11]. In the following, we give definitions of a spherically symmetric distribution and an ellipsoidally symmetric
distribution.

Definition 2.2. A random vector u is said to be spherically symmetric with center a if T (u−a) has the same distribution for
every orthogonal matrix T . In particular, we say that u has a spherically symmetric distribution if it is spherically symmetric
with center 0. A random vector v is said to be ellipsoidally symmetric with center b if there exists an invertible matrix P
such that v = P(u − a) + b where u has a spherically symmetric distribution with center a.

When the c-characteristic function g(t; u, c) is known, the following theorem provides an easy method for determining
whether u has a spherically symmetric distribution.

Theorem 2.1. Suppose that u is an L-dimensional random vector. Then u has a spherically symmetric distribution if and only if
the associated c-characteristic function g(t; u, c) is a function of |t| and c, only.

Proof. According to Definition 2.2, when u has a spherically symmetric distribution, its probability density function f (u) is
a function of |u| = r only, and we can write f (u) as p(r). The volume element is du = rL−1 dr dS where S is the surface of
the unit sphere in L-dimensions. Also, u · t = r|t| cos θ , where θ is the angle between u and t . Hence, the c-characteristic
function of u can be expressed as

g(t; u, c) =


rL−1p(r)


(1 − ir|t| cos θ)−c dS dr.

The integration of the inner integral is with respect to S, whose value is independent of the direction of t . Hence, the
integrand of the outer integral is a function of r|t| and c , only. Therefore, g(t; u, c) is a function of |t| and c , only.
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Conversely, let T be any L × L orthogonal matrix. Then, by Theorem 4.1 of Jiang et al. [11], we have g(t; Tu, c) =

g(T ′t; u, c) where T ′ is the transpose of T . Since g(t; u, c) is a function of |t| and c , we have that g(T ′t; u, c) is a function of
|T ′t| = |t| and c. That is, Tu anduhave the same c-characteristic function. By Lemma2.2 of Jiang et al. [11], Tu anduhave the
same distribution for any orthogonal matrix T . Therefore, u has a spherically symmetric distribution by Definition 2.2. �

Wewill call v (k-dimensional vector) amargin ofu (L-dimensional vector) and thedistribution of v amarginal distribution
of the distribution of u if k ≤ L and v is a linear projection of u, that is, v = Du, for somematrixD of size k×L, whereDD′

= Ik
(the identitymatrix of dimension k). The following corollary shows that a spherically symmetric distribution and itsmarginal
distributions have the same c-characteristic function expression and so the c-characteristic function in a lower dimension
can easily be derived from that in a higher dimension.

Corollary 2.1. Let u be a random vector having a spherically symmetric distribution and let v be any margin of u. Suppose that
g(t; u, c) = g∗(|t|; c) for some function g∗. Then g(s; v, c) = g∗(|s|; c).

Proof. There exists a k × Lmatrix D such that v = Du and DD′
= Ik. By Theorem 4.1 of Jiang et al. [11], we have

g(s; v, c) = g(s;Du, c) = g(D′s; u, c) = g∗(|D′s|; c) = g∗(|s|; c). �

With Theorem 2.1 and Corollary 2.1, we see that any marginal distribution of a spherically symmetric distribution is also
spherically symmetric.

3. Random functionals of a Ferguson–Dirichlet process with parameter measure over an n-dimensional ball and its
surface

Let µ be a finite non-null measure on (Ω, B), where B is the σ -field of Borel subsets of Euclidean space Ω; and let U
be a stochastic process indexed by elements of B. We say U is a Ferguson–Dirichlet process with parameter µ, denoted
by U ∼ D(µ) on Ω , if for every finite measurable partition {B1, . . . , Bm} of Ω (i.e., the Bi’s are measurable, disjoint, andm

i=1 Bi = Ω), the random vector (U(B1), . . . ,U(Bm)) has a Dirichlet distribution (see [16, Section 7.7]) with parameter
vector (µ(B1), . . . , µ(Bm)), where

m
i=1 U(Bi) = 1.

Let X be a N-dimensional random vector defined as

X =


Ω

ℓ(y) dU(y) =


Ω

ℓ1(y) dU(y), . . . ,


Ω

ℓN(y) dU(y)
′

, (2)

where U ∼ D(µ) on Ω, µ(Ω) = c, y = (y1, . . . , yL)′, ℓ(y) = (ℓ1(y), . . . , ℓN(y))′, and the ℓn(y)’s are (bounded)
measurable real-valued functions defined on Ω . The following lemma, which is proven in Appendix A, gives the c-
characteristic function expression for X .

Lemma 3.1. The c-characteristic function of X , as in Eq. (2), can be expressed by

g(t;X, c) = exp

−


Ω

ln (1 − it · ℓ(y)) dµ(y)


,

where t = (t1, . . . , tN)′.

The following corollary can easily be obtained by applying the above Lemma 3.1 and Theorem 2.5 of Jiang et al. [11].

Corollary 3.1. Let X = (X1, . . . , XN)′ and ℓ(y) = (ℓ1(y), . . . , ℓN(y))′, which are defined in Eq. (2). Then, for 1 ≤ n ≤ N,

E(Xn) =
1
c


Ω

ℓn(y) dµ(y),

and, for 1 ≤ n,m ≤ N,

Cov(Xn, Xm) =
1

c + 1


1
c


Ω

ℓn(y)ℓm(y) dµ(y) −


1
c


Ω

ℓn(y) dµ(y)
 

1
c


Ω

ℓm(y) dµ(y)


.

The following corollary is obtained immediately from Corollary 3.1.

Corollary 3.2. Let Y be a random vector associated with the probability measure µ/c. Then the mean vector and the
variance–covariance matrix of X , Eq. (2), can be expressed as E(X) = E(ℓ(Y )) and Cov(X) = Cov(ℓ(Y ))/(c + 1), respectively.

In this article, we want to study the distributions of the random functionals,

Sn,r,c =


Sn,r

y dUn,r,c(y), Un,r,c ∼ D(µn,r,c), (3)
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and

Bn,r,c =


Bn,r

y dVn,r,c(y), Vn,r,c ∼ D(νn,r,c) (4)

where n is any positive integer, Sn,r = {y ∈ Rn
: |y| = r} is the spherical surface of the n-dimensional ball Bn,r = {y ∈

Rn
: |y| ≤ r}, r > 0, µn,r,c is the usual Lebesguemeasure (i.e., usual rotation-invariant measure) on Sn,r with total measure

c , and νn,r,c is the usual Lebesgue measure on Bn,r with total measure c. Specifically, dµn,r,c(y) = cΓ ( n
2 )/(2r

n−1πn/2)dy
and dνn,r,c(y) = cnΓ ( n

2 )/(2r
nπn/2)dy. In particular, it can be shown thatSn,r,c = rSn,1,c andBn,r,c = rBn,1,c by Lemma 3.3,

which will be given later.
Just as the parameter measures µn,r,c and νn,r,c are spherically symmetric, the Ferguson–Dirichlet processes Un,r,c ∼

D(µn,r,c) and Vn,r,c ∼ D(νn,r,c) will be said to be spherically symmetric.
First, we give the c-characteristic function expressions forSn,r,c andBn,r,c .

Theorem 3.1. The c-characteristic function of Sn,r,c in Eq. (3) and that of Bn,r,c in Eq. (4) can be expressed as

g(t;Sn,r,c, c) = exp


∞
k=1

c
 1
2 , k


2k

 n
2 , k

 [−r2(t21 + · · · + t2n )]
k


,

and

g(t;Bn,r,c, c) = exp


∞
k=1

c
 1
2 , k


2k

 n
2 + 1, k

 [−r2(t21 + · · · + t2n )]
k


,

respectively, where (a, k) denotes the Appell’s notation that is defined as (a, k) = a(a + 1) · · · (a + k − 1).

The proof of Theorem3.1 is given in Appendix B. Theorem3.1 shows that the c-characteristic function ofSn,r,c is a function
of |t| and c , only. In accordancewith Theorem 2.1,Sn,r,c has a spherically symmetric distribution. Moreover, by Corollary 2.1,
the c-characteristic function of any one-dimensional margin ofSn,r,c , saySn,r,c , is expressed as

g(t;Sn,r,c, c) = exp


∞
k=1

c
 1
2 , k


2k

 n
2 , k

 (−r2t2)k


. (5)

Similarly,Bn,r,c also has a spherical symmetric distribution and its one-dimensional marginBn,r,c is

g(t;Bn,r,c, c) = exp


∞
k=1

c
 1
2 , k


2k

 n
2 + 1, k

 (−r2t2)k


. (6)

By comparing Eqs. (5) and (6), it can be seen that the c-characteristic function ofSn,r,c andBn,r,c are related to each other in
the sense ofSn+2,r,c =Bn,r,c .

Our aim now is to find the probability density functions ofSn,r,c andBn,r,c . Lord [14] demonstrated that a spherically
symmetric distribution can be determined by its marginal distribution. Therefore, if the probability density function of the
marginal randomvariableSn,r,c (orBn,r,c) is known, thenwe can obtain the probability density function of the randomvectorSn,r,c (orBn,r,c). Before giving the probability density functions ofSn,r,c andBn,r,c , we first show that an interesting random
mean of a Ferguson–Dirichlet process has the same c-characteristic function ofSn,r,c in the following lemma.

Lemma 3.2. Let n be any positive integer and c > 0. Suppose that Rn,r,c =
 r
−r y dWn,r,c(y) where Wn,r,c ∼ D(αn,r,c) and let

αn,r,c (having total measure c) be the measure on {−r, r} with α1,r,c({−r}) = α1,r,c({r}) = c/2 if n = 1, and be the measure
on the open interval (−r, r) with density

dαn,r,c(y) =
c(r2 − y2)(n−3)/2

B
 1
2 ,

n−1
2


rn−2

dy

if n > 1 where B(α, β) denotes the complete beta function. Then the c-characteristic function of Rn,r,c can be expressed as

g(t;Rn,r,c, c) = exp


∞
k=1

c
 1
2 , k


2k

 n
2 , k

 (−r2t2)k


.

In particular, g(t;R1,r,c, c) = (1 + r2t2)−c/2.
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Proof. By Lemma 3.1, the c-characteristic function ofR1,r,c is

g(t;R1,r,c, c) = exp

−

c
2
ln(1 − it(−r)) −

c
2
ln(1 − itr)


= (1 + r2t2)−c/2.

By Lemma 3.1 again, the c-characteristic function ofRn,r,c, n > 1, is

g(t;Rn,r,c, c) = exp


−

 r

−r
ln(1 − ity)

c(r2 − y2)(n−3)/2

B
 1
2 ,

n−1
2


rn−2

dy



= exp


c

B
 1
2 ,

n−1
2


rn−2

∞
k=1

iktk

k

 r

−r
yk(r2 − y2)(n−3)/2 dy



= exp


∞
k=1

c
 1
2 , k


2k

 n
2 , k

 (−r2t2)k


.

The last identity can be obtained by Eq. 8.380.1 of Gradshteyn and Ryzhik [6, p. 898]. �

By Eq. (5) and Lemma 3.2, the c-characteristic functions of Sn,r,c and Rn,r,c are the same. Similarly, by Eq. (6) and
Lemma3.2,Bn,r,c andRn+2,r,c have the same c-characteristic function. The following theoremcan then be obtained by Lemma
2.2 of Jiang et al. [11].

Theorem 3.2. Sn,r,c andBn,r,c have the same distribution asRn,r,c andRn+2,r,c , respectively.

Applying Proposition 9 of Regazzini et al. [15], we can derive the probability density function of Rn,r,c , denoted by
f (x; n, r, c). We consider the case of c = 1 in the following example.

Example 1. Let f (x; n, r, 1) be the probability density function ofRn,r,1. By Proposition 9(iii) of Regazzini et al. [15], we have

(i) f (x; 1, r, 1) =
1

π
√

r2−x2
, that is, R1,r,1 is distributed as −ru1 + ru2 where (u1, u2) has a Dirichlet distribution with

parameter vector (1/2, 1/2), andR2
1,r,1/r

2 is distributed as the beta distribution Beta(1/2, 1/2);

(ii) f (x; 2, r, 1) =
2
√

r2−x2

r2π
, that is,R2

2,r,1/r
2 is distributed as Beta(1/2, 3/2);

(iii) f (x; 3, r, 1) =
e
π
(r + x)−(r+x)/(2r)(r − x)−(r−x)/(2r) cos πx

2r ;

(iv) f (x; 4, r, 1) =
2
rπ e1/2−x2/r2 sin


x
√

r2−x2

r2
+ 2 arcsin


r+x
2r


.

More generally, we have

(v) when n is an odd integer greater than 3,

f (x; n, r, 1) =
1
rπ

exp


−1

B
 1
2 ,

n−1
2

 (n−3)/2
k=0

 n−3
2

k


(−1)k

(2k + 1)

×

 
1 +

x2k+1

r2k+1


ln


1 +

x
r


+


1 −

x2k+1

r2k+1


ln


1 −

x
r


− 2

k
m=0

x2k−2m

(2m + 1)r2k−2m

 
sin

 x

−r
π dαn,r,1(y)


;

(vi) when n is an even integer greater than 4,

f (x; n, r, 1) =
2
rπ

exp


23−nπ

B
 1
2 ,

n−1
2

 (n−4)/2
k=0


n − 2

k


cos


(n − 2 − 2k) arcsin x

r


n − 2 − 2k


sin

 x

−r
π dαn,r,1(y)


.

All above probability density functions have the same support (−r, r). �

Using Eq. (30) of Lord [14] and the probability density function f (x; n, r, c) ofRn,r,c , we have the following theorem.

Theorem 3.3. Let hS(x; n, r, c) and hB(x; n, r, c) be the probability density functions of Sn,r,c and Bn,r,c , respectively, where
x = (x1, . . . , xn) and n ≥ 2.
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(i) When n is odd,

hS(x; n, r, c) =


−1
2π t

d
dt

m

f (t; n, r, c), |x| < r,

and

hB(x; n, r, c) =


−1
2π t

d
dt

m

f (t; n + 2, r, c), |x| < r,

with t =


x21 + · · · + x2n and m = (n − 1)/2;

(ii) when n is even,

hS(x; n, r, c) =


−1
2πs

d
ds

m 
−1
π

 r

s

f ′(t; n, r, c)
√
t2 − s2

dt


, |x| < r,

and

hB(x; n, r, c) =


−1
2πs

d
ds

m 
−1
π

 r

s

f ′(t; n + 2, r, c)
√
t2 − s2

dt


, |x| < r,

with s =


x21 + · · · + x2n and m = (n − 2)/2,

where
−1
2π t

d
dt

m

f (t; n, r, c) =
−1
2π t

d
dt


−1
2π t

d
dt

m−1

f (t; n, r, c)



for m ≥ 1, and


−1
2π t

d
dt

0
≡ 1.

Example 2 (Example 1 Continue). The probability density functions ofSn,r,1 andBn,r,1, for n = 1, n = 2 and n = 3, are as
follows.

(i) hS(x1; 1, r, 1) =
1

π
√

r2−x21
, − r < x1 < r;

(ii) hS(x1, x2; 2, r, 1) =
1

r2π
, x21 + x22 < r2, soS2,r,1 has a uniform distribution on the disk of radius r;

(iii) hS(x1, x2, x3; 3, r, 1) =
e

4rπ2s
(r + s)−(r+s)/(2r)(r − s)−(r−s)/(2r)


cos πs

2r ln r+s
r−s + π sin πs

2r


, where s =


x21 + x22 + x23 and

x21 + x22 + x23 < r2;
(iv) hB(x1; 1, r, 1) =

e
π
(r + x1)−(r+x1)/(2r)(r − x1)−(r−x1)/(2r) cos πx1

2r , for −r < x1 < r;

(v) hB(x1, x2; 2, r, 1) =
4

r2π2

 r√
x21+x22

e1/2−t2/r2
√

t2−x21−x22
sin


t
√

r2−t2

r2
+ 2 arcsin


r+t
2r − arcsin

√
r2−t2

r


dt, x21 + x22 < r2;

(vi) hB(x1, x2, x3; 3, r, 1) =
−3e4/3−t2/(2r2)

8tr3π2 (r + t)−(2r−t)(r+t)2/(4r3)(r − t)−(r−t)2(2r+t)/(4r3)

π(r2 − t2) cos π(2r−t)(r+t)2

4r3
+

−2rt + (r2 − t2) ln r−t
r+t


sin π(2r−t)(r+t)2

4r3

, where t =


x21 + x22 + x23 and x21 + x22 + x23 < r2. �

Notice that when r = 1, the probability density functions from Example 2(ii) and from Example 2(iii) are consistent with
those given by Jiang [10] and by Jiang and Kuo [12], respectively.

Finally, we extend Theorem 3.3 to an n-dimensional ellipsoidal surface and to an n-dimensional ellipsoidal solid. Before
giving the theorem, we need the following lemmawhich may be proved by applying Eq. (1.1) of Hjort and Ongaro [8] twice.

Lemma 3.3. Let U1 ∼ D(µ) on Ω1 and U2 ∼ D(µ ◦ h−1
◦ g) on Ω2 where Ω2 = (g−1

◦ h)(Ω1) and h and g are measurable
functions defined on Ω1 and Ω2, respectively. Suppose that ζ1 =


Ω1

h(y) dU1(y) and ζ2 =


Ω2
g(y) dU2(y). Then ζ1 = ζ2.

Let SEn = {Px + b | x ∈ Sn,1} be the surface of the n-dimensional ellipsoidal solid with center b, BE
n = {Px + b | x ∈ Bn,1},

where P is an invertible matrix and n ≥ 2. Suppose that UE
n,c ∼ D(µE

n,c) on SEn and V E
n,c ∼ D(νE

n,c) on BE
n , where µE

n,c and νE
n,c

are the regular Lebesgue measures having total measure c on SEn and BE
n , respectively.

Theorem 3.4. Let hSEn,c (x) and hBEn,c (x) denote the probability density functions of SE
n,c =


SEn

y dUE
n,c(y) and BE

n,c =

BEn

y dV E
n,c(y), respectively. Then,

hSEn,c (x) = | det(P)|−1hS(P−1(x − b); n, 1, c), x ∈ SEn ,
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and

hBEn,c (x) = | det(P)|−1hB(P−1(x − b); n, 1, c), x ∈ BE
n,

where hS and hB are given in Theorem 3.3.

Proof. By Lemma 3.3, we have

SE
n,c =


SEn

y dUE
n,c(y) = P


Sn,1

y dUn,1,c(y) + b = PSn,1,c + b.

Similarly,BE
n,c = PBn,1,c + b. �

The following corollary is a special case of Theorem 3.4 when P is an invertible diagonal matrix and b is the zero vector.

Corollary 3.3. Let P = diag(a1, . . . , an) and b = 0, where each aj ≠ 0 and n ≥ 2. Then,

hSEn,c (x1, . . . , xn) =
hS(x1/a1, . . . , xn/an; n, 1, c)

n
j=1

|aj|
,

x21
a21

+ · · · +
x2n
a2n

< 1,

and

hBEn,c (x1, . . . , xn) =
hB(x1/a1, . . . , xn/an; n, 1, c)

n
j=1

|aj|
,

x21
a21

+ · · · +
x2n
a2n

< 1.

We provide some exact probability density function expressions for hSEn,1 and hBEn,1 in the next example by using
Corollary 3.3 and Example 2. It will be seen that the probability density function (i) of the next example is the same as
that given by Theorem 6.3 of Jiang et al. [11] when c = 1.

Example 3. (i) hSE2,1(x1, x2) =
1

a1a2π
,

x21
a21

+
x22
a22

< 1, soSE
2,1 has a uniform distribution on the central elliptical region with

respective horizontal and vertical axes a1, a2;

(ii) hSE3,1(x1, x2, x3) =
e

4a1a2a3π2s
(1 + s)−

1+s
2 (1 − s)−

1−s
2


cos πs

2 ln 1+s
1−s + π sin πs

2


, where s =


x21/a

2
1 + x22/a

2
2 + x23/a

2
3 and

s < 1;

(iii) hBE2,1(x1, x2) =
4

a1a2π2

 1√
x21/a

2
1+x22/a

2
2

e1/2−t2
√

t2−x21/a
2
1−x22/a

2
2
sin


t
√
1 − t2 + 2 arcsin


1+t
2 − arcsin

√
1 − t2


dt, x21

a21
+

x22
a22

<

1;

(iv) hBE3,1(x1, x2, x3) =
−3e4/3−t2/2

8ta1a2a3π2 (1 + t)−(2−t)(1+t)2/4(1 − t)−(1−t)2(2+t)/4
π(1 − t2) cos π(2−t)(1+t)2

4 +

−2t + (1 − t2) ln 1−t

1+t


sin π(2−t)(1+t)2

4


, where t =


x21/a

2
1 + x22/a

2
2 + x23/a

2
3 and t < 1.

4. Conclusions

Through the c-characteristic function, we have given a new approach for studying spherically symmetric distributions.
The c-characteristic function expression of any functional of any Ferguson–Dirichlet process is given. With this expression,
we can easily obtain first two moments of any random functional. In addition, we give the exact n-dimensional probability
density function of the randommean of a symmetric Ferguson–Dirichlet processwith parametermeasure over any spherical
surface, spherical solid, ellipsoidal surface, and ellipsoidal solid.
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Appendix A. Proof of Lemma 3.1

For any k ≥ 2, let {Bk1, . . . , Bkk} be a partition of Ω . Then (U(Bk1), . . . ,U(Bkk)) follows a Dirichlet distribution with
parameter (µ(Bk1), . . . , µ(Bkk)). So,

k
j=1 U(Bkj) = 1 and

k
j=1 µ(Bkj) = c , for all k ≥ 2. Define ℓk(y) =

k
j=1 ℓ(bkj)δy(Bkj)
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and Xk =


Ω
ℓk(y) dU(y), where bkj ∈ Bkj, and where δy(Bkj) is 1, for y ∈ Bkj, and is 0 otherwise, for 1 ≤ j ≤ k. Assume

max1≤j≤k µ(Bkj) → 0 as k → ∞. Then ℓk(y) → ℓ(y) as k → ∞ for all y ∈ Ω , and Xk =
k

j=1 ℓk(bkj)U(Bkj). The
c-characteristic function of Xk, by Definition 2.1, can be expressed as

g(t;Xk, c) = E(1 − it · Xk)
−c

= E


1 − i

k
j=1

[t · ℓk(bkj)]U(Bkj)

−c

= E


k

j=1

U(Bkj)[1 − it · ℓk(bkj)]

−c

= R−c (µ(Bk1), . . . , µ(Bkk); 1 − it · ℓk(bk1), . . . , 1 − it · ℓk(bkk))

=

k
j=1


1 − it · ℓk(bkj)

−µ(Bkj) ,

where R denotes Carlson’s R function [2], and the last identity follows from Eq. (6.6-5) of [2, p. 175]. Then the limit of
c-characteristic functions of Xk’s, as k approaches ∞, is

lim
k→∞

g(t;Xk, c) = exp


lim
k→∞

k
j=1

−µ(Bkj) ln

1 − it · ℓk(bkj)



= exp

−


Ω

ln (1 − it · ℓ(y)) dµ(y)


.

Note that the last identity is the transition from a Riemann sum to an integral. By the Lebesgue Dominated Convergence
Theorem, we have limk→∞ Xk = X . Hence, by Theorem 2.4 of Jiang et al. [11], the c-characteristic function of X is

g(t;X, c) = exp

−


Ω

ln (1 − it · ℓ(y)) dµ(y)


.

Appendix B. Proof of Theorem 3.1

First, we list some equations which are useful in the proof. The following two equations, concerning Appell’s notation,
(a, k) = a(a + 1) · · · (a + k − 1), can easily be shown.

Γ (a + n) = Γ (a)(a, n), (B.1)

(a, 2n) = 22n
 a
2
, n

 
a + 1
2

, n


. (B.2)

From Gröbner and Hofreiter [7, p. 105], we have

 2π

0
(a cos x + b sin x)n dx =


(1/2, n/2)2(a2 + b2)n/2π

(n/2)!
, n is even,

0, n is odd,
(B.3)

where a and b are real numbers. The following equation follows from Eq. 3.621.5 of Gradshteyn and Ryzhik [6, p. 389], π

0
sina−1 x cosb−1 x dx =

B(a/2, b/2)
2

, a, b > 0 and b is odd,
0, a, b > 0 and b is even,

(B.4)

where B(α, β) denotes the complete beta function.
By Lemma 3.1, the c-characteristic functions ofSn,r andBn,r are

g(t;Sn,r , c) = exp


−


Sn,r

ln(1 − it · y) dµn,r(y)



= exp


−cΓ (n/2)
2rn−1πn/2


Sn,r

ln(1 − it · y) dy


,
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and

g(t;Bn,r , c) = exp


−


Bn,r

ln(1 − it · y) dνn,r(y)



= exp


−cnΓ (n/2)
2rnπn/2


Bn,r

ln(1 − it · y) dy


,

respectively. Consider the following transformation:

y1 = r cos θ1,

y2 = r sin θ1 cos θ2,

y3 = r sin θ1 sin θ2 cos θ3,

...

yn−1 = r sin θ1 sin θ2 · · · sin θn−2 cos θn−1,

yn = r sin θ1 sin θ2 · · · sin θn−2 sin θn−1,

where θ1, θ2, . . . , θn−2 run from 0 to π , and θn−1 from 0 to 2π . We then have
Snr

ln(1 − it · y) dy =

 π

0
. . .

 π

0

 2π

0
ln(1 − it1r cos θ1 − · · · − itnr sin θ1 sin θ2 · · · sin θn−2 sin θn−1)

× rn−1 sinn−2 θ1 sinn−3 θ2 · · · sin θn−2 dθn−1dθn−2 · · · dθ1

=

∞
k=1

−ik

k

 π

0
. . .

 π

0

 2π

0
(t1 cos θ1 + · · · + tn sin θ1 sin θ2 · · · sin θn−2 sin θn−1)

k

× rn+k−1 sinn−2 θ1 sinn−3 θ2 · · · sin θn−2 dθn−1dθn−2 · · · dθ1

=

∞
k=1

−ik

k

k
m1=0

m1 is even


k
m1


(1/2,m1/2)2(t2n−1 + t2n )

m1/2π

(m1/2)!

×

 π

0
. . .

 π

0
(t1 cos θ1 + · · · + tn−2 sin θ1 · · · sin θn−3 cos θn−2)

k−m1

× rn+k−1 sinm1+n−2 θ1 sinm1+n−3 θ2 · · · sinm1+1 θn−2 dθn−2 · · · dθ1

=

∞
k=1

−ik

k

k
m1=0

m1 is even

k−m1
m2=0

m2 is even

· · ·

k−m1−···−mn−3
mn−2=0

mn−2 is even


k
m1

 
k − m1

m2


· · ·


k − m1 − · · · − mn−3

mn−2



× B

m1 + 2

2
,
m2 + 1

2


B

m1 + m2 + 3

2
,
m3 + 1

2


· · ·

B

m1 + · · · + mn−3 + n − 2

2
,
mn−2 + 1

2


× B


m1 + · · · + mn−2 + n − 1

2
,
k − m1 − · · · − mn−2 + 1

2


×

(1/2,m1/2)2(t2n−1 + t2n )
m1/2π

(m1/2)!
rn+k−1tm2

n−2t
m3
n−3 · · · tmn−2

2 tk−m1−···−mn−2
1

= −

∞
k=1

(1/2, k)πn/2rn−1

kΓ (n/2)(n/2, k)
[−r2(t21 + · · · + t2n )]

k.

The third identity above can be obtained by the following expression

(t1 cos θ1 + · · · + tn sin θ1 sin θ2 · · · sin θn−2 sin θn−1)
k

=

k
m1=0


k
m1


[(sin θ1 sin θ2 · · · sin θn−2)

m1(tn−1 cos θn−1 + tn sin θn−1)
m1

× (t1 cos θ1 + · · · + tn−2 sin θ1 · · · sin θn−3 cos θn−2)
k−m1 ],
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and Eq. (B.3). The fourth identity follows by using Eq. (B.4) and the binomial identity repeatedly. The fifth identity can be
obtained by Eqs. (B.1) and (B.2).

Similarly,
Bnr

ln(1 − it · y) dy =

 r

0

 π

0
. . .

 π

0

 2π

0
ln(1 − it1γ cos θ1 − · · · − itnγ sin θ1 sin θ2 · · · sin θn−2 sin θn−1)

× γ n−1 sinn−2 θ1 sinn−3 θ2 · · · sin θn−2 dθn−1dθn−2 · · · dθ1dγ

= −

∞
k=1

(1/2, k)πn/2

kΓ (n/2)(n/2, k)
[−(t21 + · · · + t2n )]

k
 r

0
γ 2k+n−1 dγ

= −

∞
k=1

(1/2, k)πn/2rn

knΓ (n/2)(n/2 + 1, k)
[−r2(t21 + · · · + t2n )]

k.

Therefore, the identities of the theorem hold.
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