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Mathematical models can be used to study the chemotherapy on tumor cells. Especially, in 1979, Goldie
and Coldman proposed the first mathematical model to relate the drug sensitivity of tumors to their
mutation rates. Many scientists have since referred to this pioneering work because of its simplicity
and elegance. Its original idea has also been extended and further investigated in massive follow-up stud-
ies of cancer modeling and optimal treatment.

Goldie and Coldman, together with Guaduskas, later used their model to explain why an alternating
non-cross-resistant chemotherapy is optimal with a simulation approach. Subsequently in 1983, Goldie
and Coldman proposed an extended stochastic based model and provided a rigorous mathematical proof
to their earlier simulation work when the extended model is approximated by its quasi-approximation.
However, Goldie and Coldman’s analytic study of optimal treatments majorly focused on a process with
symmetrical parameter settings, and presented few theoretical results for asymmetrical settings. In this
paper, we recast and restate Goldie, Coldman, and Guaduskas’ model as a multi-stage optimization prob-
lem. Under an asymmetrical assumption, the conditions under which a treatment policy can be optimal
are derived. The proposed framework enables us to consider some optimal policies on the model analyt-
ically. In addition, Goldie, Coldman and Guaduskas’ work with symmetrical settings can be treated as a
special case of our framework. Based on the derived conditions, this study provides an alternative proof to
Goldie and Coldman’s work. In addition to the theoretical derivation, numerical results are included to
justify the correctness of our work.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Chemotherapy has been widely used in the treatment of tumor
cells. One of the major obstacles to achieving satisfactory treat-
ment outcomes is the emergence of drug resistance. Mutants have
become resistant to the applied agents. This resistance is inherited
by daughter cells during mitosis and could lead to the incurability.
Researchers have identified and studied several mechanisms
relating to the development of resistance. For instance, genetic
alternation can lead the loss or gain of functions for particular
proteins. A protein that serves as a receptor with diminished func-
tion can reduce the rate of drug transport into the cell. The gain of
function by a protein involved in repairing the drug-induced
damage can increase a mutant’s tolerance against drug toxicity.
Both of these changes can reduce the sensitivity of mutants to
applied agents [1].

Based on biological observations and studies, researchers have
developed several mathematical models to further investigate
the drug resistance problems. In particular, in 1979, Goldie and
Coldman proposed the first model relating the drug sensitivity of
tumors to their mutation rates [2]. This ground-breaking work sub-
sequently simulated massive studies in cancer modeling and opti-
mal treatment. Kimmel, Axelrod and other researchers proposed
models to consider the gene amplification [3–8]. Cojocaru and
Agur considered a model of a cell-cycle-phase-specific drug [9].
Swierniak and Smieja investigated the optimal therapy under drug
resistance based on optimal control theory [10]. Murray and Cold-
man studied the effects of heterogeneity on optimal therapy [11].
Wodarz and Komarova developed a stochastic model to elucidate
the relevance of tumor size, turnover rate and the number of drugs
used in the combination therapy to treatment success [12,13].
Combination of two drugs to improve therapy of chronic myeloid
leukemia was considered in [14]. Gaffney explored the age struc-
ture and rest phases in modeling adjuvant chemotherapy schedul-
ing [15,16]. Jackson and Byrne considered a model to study the
drug resistance and vasculature in solid tumor [17]. The details
and more relevant work can be referred to the articles [18–22].

In a follow-up paper published by Goldie, Coldman, and Gua-
duskas in 1982 [23], they used their original model and a simula-
tion method to explain why alternating non-cross-resistant
chemotherapy is optimal when two agents are used in the therapy.
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Later in 1983, they proposed an extended model that included the
stochastic nature of the resistance phenomena [24]. When
considering the quasi-approximation of their extended model, they
offered a rigorous proof to justify their earlier simulation of the
optimality of alternating non-cross-resistant chemotherapy.

However, the proof presented by Goldie and Coldman is based
on the assumption that both agents have equal efficacies. With this
symmetrical assumption, an optimal treatment policy likely will
not favor any one of the applied agents, and thus, an alternating
policy is optimal. However, Goldie and Coldman presented few
theoretical results regarding asymmetrical cases. Therefore, this
study presents the original model of Goldie and Coldman as a mul-
ti-stage decision-making problem. Under a weaker assumption,
this study presents the conditions under which a treatment policy
is optimal. The proposed work provides a possible theoretical
extension of the Goldie and Coldman model to asymmetrical cases.
The symmetrical assumption of the Goldie and Coldman model can
be treated as a special case in the proposed framework and hence-
forth, this study provides an alternative proof to their 1983 work
[24]. The derivations presented in this study show that the alterna-
tive policy can also be optimal in a special asymmetrical case. In
addition to the theoretical derivations, the following discussion in-
cludes numerical results to justify the correctness of the proposed
method.
2. The model framework

In this section, we briefly review and restate Goldie, Coldman,
and Guaauskas’ model [23]. Suppose that the chemotherapy is ap-
plied to a tumor consisting of three phenotypes of cells: R1; R2 and
S. This chemotherapy includes two various drugs. The R1 phenotype
is resistant to the first drug, but sensitive to the second drug. The R2

phenotype is resistant to the second drug, but sensitive to the first
drug. The S phenotype is sensitive to both drugs. Mutations may oc-
cur during the tumor growth process. This model is based on the
assumption that an S type cell can mutate to either a R1 or R2 type
cell. Both R1 and R2 type cells can mutate to a new phenotype of cells:
R1;2. An R1;2 type cell is resistant to both drugs. Furthermore, it is as-
sumed that the drug resistance is caused by one single mutational
event. No resistance is acquired through a dynamic process such
as the multi-step gene amplification considered [3,7]. Initially, the
doubly resistant cell does not exist in the tumor. When it appears,
the patient’s cancer becomes incurable. Therefore, the goal of the
therapy is to administer the two available drugs to minimize the
probability of the occurrence of R1;2 type cells.

Consider a n-cycle treatment problem. Each cycle consists of
two phases: the treatment phase and the growth phase. During
each treatment phase, one drug is introduced to eliminate the tar-
geted tumor cells. For example, if the first drug is applied, a propor-
tion of cells sensitive to this drug (in this case, R2 and S type cells)
will be eliminated. During the growth phase, the duplication of tu-
mor cells causes tumor growth. The following sections present a
detailed description of each phase.
2.1. The treatment phase

During the treatment phase, drugs are applied to eliminate tu-
mor cells. For simplicity, in Goldie and Coldman’s model, the effect
of drug-intervention is assumed to be instantaneous. That is, upon
the application of the drugs, a proportion of cells sensitive to the
applied drug is immediately eliminated. A drug’s cell cycle specific-
ity as [9] is not considered in details in this framework. The frac-
tion of survival is determined based on the log-kill law [1]. This
law can be understood from the solution thermodynamics. In a
solution of drug molecules, only those molecules with sufficient
kinetic energy and the right orientation interact with the target
cells. These interactions are stochastic in nature, and the survival
probability of target cells can be stated as the following equation
[1].

logðPsurvivalÞ ¼ �bD;

where b is a drug and target cell dependent constant and D is the
dosage level. The log-scale survival probability is negatively propor-
tional to the dosage level. A greater dosage level leads to a lower
survival probability. The following discussion is based on the
assumption that the dosage levels of both drugs remain fixed
throughout the entire treatment process. Moreover, always con-
sider the expected residual population size. In other words, if the
survival probability Psurvival ¼ 1

k2 and the initial population size is
N0, the residual population size after treatment is 1

k2 � N0. For ease
of presentation, k2 is referred as the log-kill constant of the applied
drug against the target cell.

Suppose that the initial sizes of the R1;R2, and S type cells are
R1ðN0Þ; R2ðN0Þ, and SðN0Þ, respectively. Let R1ðNÞ; R2ðNÞ, and SðNÞ
denote the sizes of the R1; R2, and S type cells at the end of the
treatment phase. Suppose that the log-kill constants for the first
drug against R2 and S type cells are k1;r

2 and k1;s
2, respectively.

The log-kill constants for the second drug against R1 and S type
cells are k2;r

2 and k2;s
2. The variation in the number before and after

treatment can be calculated using the following equations.
After the first drug is applied, we have the following

relationship:

R1 Nð Þ ¼ R1ðN0Þ;

R2 Nð Þ ¼ 1

k2
1;r

R2ðN0Þ

and

S Nð Þ ¼ 1

k2
1;s

SðN0Þ:

Similarly, after the second drug is applied, we have the follow-
ing relationship:

R1 Nð Þ ¼ 1

k2
2;r

R1 N0ð Þ;

R2 Nð Þ ¼ R2 N0ð Þ

and

S Nð Þ ¼ 1

k2
2;s

S N0ð Þ:
2.2. The growth phase

During the growth phase, cells may duplicate and the entire
population grows. Assume that all types of cells duplicate at the
same rate. Let the doubling time of the population be d days. Let
the duration of each growth phase be d0 days and let the initial size
of the population before a growth phase be N0. At the end of the
growth phase, the size of population reaches N. At this point, N0

and N can be related with the following equation

N ¼ N0 � 2
d0
d : ð1Þ

Suppose that the initial sizes of the R1; R2, and S type cells are
R1ðN0Þ; R2ðN0Þ, and SðN0Þ, respectively. Let R1ðNÞ; R2ðNÞ, and SðNÞ
denote the sizes of the R1; R2, and S type cells at the end of the growth
phase. Assume that no doubly resistant R1;2 cells appear during the
entire growth phase. In this case, N0 ¼ R1ðN0Þ þ R2ðN0Þ þ SðN0Þ.
and N ¼ R1ðNÞ þ R2ðNÞ þ SðNÞ. Because mutations from S type cells
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to R1 or R2 type cells may occur, various types of cells do not increase
proportionally. The following theorem describes the dynamics of the
mutations and duplications, and provides essential formulae to
compute R1ðNÞ; R2ðNÞ, and SðNÞ.

Theorem 2.1. Let a1 denote the spontaneous mutation rate from an S
type cell to an R1 type cell, and a2 denote the spontaneous mutation
rate from an S type cell to an R2 type cell. Let DN denote the increase of
the population size. Suppose that when DN ! 0, the increase of R1 and
R2 type cells follows the following equations:
R1ðN0 þ DNÞ ¼ R1 N0ð Þ þ R1 N0ð Þ
N0

DN

þ a1 1� R1 N0ð Þ
N0

� R2 N0ð Þ
N0

� �
DN þ o DN2

� �
ð2Þ

and

R2ðN0 þ DNÞ ¼ R2 N0ð Þ þ R2 N0ð Þ
N0

DN

þ a2 1� R1 N0ð Þ
N0

� R2 N0ð Þ
N0

� �
DN þ o DN2

� �
: ð3Þ

Then, R1ðNÞ; R2ðNÞ, and SðNÞ can be obtained with the following
equations:

R1ðNÞ ¼
N
N0

R1 N0ð Þ þ a1

a1 þ a2
S N0ð Þ N

N0
1� N

N0

� ��a1�a2
� �

; ð4Þ

R2ðNÞ ¼
N
N0

R2 N0ð Þ þ a2

a1 þ a2
S N0ð Þ N

N0
1� N

N0

� ��a1�a2
� �

ð5Þ

and

SðNÞ ¼ S N0ð Þ � N
N0

� �1�a1�a2

: ð6Þ
Proof. See Appendix A. h

When DN is very small, the second term on the right hand
side of Eq. (2) shows that the duplication of R1 type cells is pro-
portional to R1ðN0Þ

N0
. The third term indicates that a portion

a1ð1� R1ðN0Þ
N0
� R2ðN0Þ

N0
Þ of S type cells mutates to R1 type cells. The

assumptions in Eqs. (2) and (2) are extended from the original
idea of [2], in which Goldie and Coldman considered only one
type of resistant cells. When considering the case of two types
of resistant cells in [23], they introduced some approximations
to their derivations, but did not explicitly describe how they ob-
tained these expressions.

The results of Eqs. (4)–(6) can be obtained by solving a system
of differential equations, and are therefore exact expressions. The
following section presents the formula to evaluate the probability
that no doubly resistant cells appear.
2.3. Probability of occurrence of no double resistance

The Goldie, Coldman, and Guaauskas-model is based on the
assumption that only R1 and R2 type cells can mutate to R1;2 type
cells (i.e., An S type cell can mutate to an R1 or an R2 type cell,
but can not directly mutate to an R1;2 type cell). Let the mutation
rates from an S type cell to an R1 or an R2 type cell be a1 and a2,
respectively. The following lemma and theorem present the under-
lying assumptions of the mutation process and the probability that
no doubly resistant cells are present.
Lemma 2.2. During the growth phase, let the population size grow
from N to N þ DN with DN ! 0. Suppose that no mutations from an
R1 type or an R2 type cell to an R1;2 type cell occur during this period.
Let the mutation rate from an S type cell to an R1 type cell be a1, and
let the mutation rate from an S type cell to an R2 type cell be a2. The
increase of R1 type cells caused by the duplication of R1 type cells is

DR1;dupðNÞ � DN ¼ dR1ðNÞ
dN

� a1 1� R1ðNÞ
N
� R2ðNÞ

N

� �� �
DN

and the increase of R2 type cells caused by the duplication of R2 type
cells is

DR2;dupðNÞ � DN ¼ dR2ðNÞ
dN

� a2 1� R1ðNÞ
N
� R2ðNÞ

N

� �� �
DN:
Proof. The number of R1 type cells may increase caused by the
duplication of R1 type cells themselves or the mutations from S
type cells to R1 type cells. When no mutations from R1 type cells
to R1;2 type cells occur as the population size grows from N to
N þ DN, the increase of R1 type cells can be calculated as

R1 N þ DNð Þ � R1ðNÞ � a1 1� R1ðNÞ
N
� R2ðNÞ

N

� �
DN

ffi dR1ðNÞ
dN

� a1 1� R1ðNÞ
N
� R2ðNÞ

N

� �� �
DN:

Similarly,

R2 N þ DNð Þ � R2ðNÞ � a2 1� R1ðNÞ
N
� R2ðNÞ

N

� �
DN

ffi dR2ðNÞ
dN

� a2 1� R1ðNÞ
N
� R2ðNÞ

N

� �� �
DN: �

This lemma appears in the appendix of [23]. However, Goldie,
Coldman, and Gudauskas considered that the number of R1 and
R2 type cells is much smaller compared with the number of S type
cells. Therefore, 1� R1ðNÞ

N � R2ðNÞ
N is approximately 1 in their expres-

sions. Because R1;2 type cells are present during the process R1 type
or R2 type cells duplicate, these relationships can be used to calcu-
late the probability that no mutations to R1;2 type cells will occur.
Theorem 2.3. During the growth phase, an R1 or an R2 type cell may
mutate to an R1;2 type cell with mutation rates a1;2 and a2;1,
respectively. Let Pno-resistðNÞ denote the probability that no R1;2 type
cell is present when the total population size is N. Let Pno-resistðN0jNÞ
denote the probability that no R1;2 type cell is present when the total
population size is N0 conditioned on that no R1;2 type cell being present
when the total population size is N. If the population size increases
from N to N þ DN with DN ! 0 during the growth phase and the
probability of that no doubly resistant cells generated is

Pno-resistðN þ DNjNÞ ¼ 1� a1;2 � DR1;dupðNÞ � DN � a2;1

� DR2;dupðNÞ � DN þ OðDN2Þ; ð7Þ

then the probability of no doubly resistant cell being present is

Pno-resistðNÞ ¼ exp
�
�a1;2 R1ðNÞ � R1ðN0Þð Þ � a2;1 R2ðNÞ � R2ðN0Þð Þ

þa1a1;2 þ a2a2;1

1� a1 � a2
SðNÞ � SðN0Þð Þ

�
: ð8Þ
Proof. See Appendix B. h

The expression in Eq. (7) is based on the non-homogeneous
Poisson process assumption [25] introduced in [2,23]. This Poisson
type process is based on the implicit assumption that the probabil-
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ity of simultaneous occurrence of two mutational events is negligi-
ble (i.e. OðDN2Þ) as DN approaches zero. Therefore, simultaneous
mutations to R1 (or R2) and to R1;2 are neglected. Moreover, in con-
trast to a typical Poisson process, the increase in the number of
cells DN serves as the time counter in this mutation process. The
intensity function of the mutation from R1 type cells to R1;2 type
cells is a1;2 � DR1;dupðNÞ. Therefore, the probability of no R1;2 type
cells being generated by the mutation of R1 type cells is
1� a1;2 � DR1;dupðNÞ þ OðDN2Þ. Similarly, the probability of no R1;2

type cells being generated by the mutation of R2 type cells is
1� a2;1 � DR2;dupðNÞ þ OðDN2Þ. Because these two events are as-
sumed to be independent, the probability of no R1;2 type cells gen-
erated as the population increases from N to N þ DN is the product
of 1� a1;2 � DR1;dupðNÞ þ OðDN2Þ and 1� a2;1 � DR2;dupðNÞ þ OðDN2Þ
indicated in Eq. (7). One thing worth mentioning is that the inten-
sity function depends on R1ðNÞ (or R2ðNÞ) because the occurrence
of mutations to R1;2 type cells depends on the number of R1ðNÞ
(or R2ðNÞ) within the entire tumor cell population.

3. The optimal n-cycle treatment problem

The previous section presents the details of the treatment and
the growth phases in one cycle. During the treatment phase, a drug
is applied to reduce the tumor size. Thereafter, the tumor grows
during the growth phase. Mutations from either R1 or R2 type cells
to R1;2 type cells might occur during this phase. The growth process
described in Theorem 2.1 assumes that no doubly resistant cell
presents. The probability for such an event occurring can be eval-
uated, and it serves as the measure of good treatment outcomes.
An optimal n-cycle treatment problem is to select optimal treat-
ment options for each cycle to maximize the probability of the
non-occurrence of doubly resistant cells throughout the entire n
cycles. This section provides the formulation of this problem and
the following section provides a close-form solution to this prob-
lem under certain assumptions.

To ease the following presentation, first consider several nota-
tions. Consider an n-cycle treatment process with an initial popu-
lation of cells. The population size varies when the population
experiences various drug interventions and growth phases at dif-
ferent cycles. Therefore, the population size can be viewed as a
function of treatment options and settings of growth phases. Let
NðiÞ0 ;

�NðiÞ0 and �NðiÞ denote the population sizes before the treatment,
after the treatment, and after the growth phase of the ith cycle.
These population sizes can be expressed as

NðiÞ0 ¼ NðiÞ0 ðT1; . . . Ti�1;G1; . . . Gi�1Þ;
�NðiÞ0 ¼ �NðiÞ0 ðT1; . . . Ti;G1; . . . Gi�1Þ

and

�NðiÞ ¼ �NðiÞðT1; . . . Ti;G1; . . . GiÞ:

The term Ti represents the treatment option of the ith treatment
phase and Gi represents the settings of the ith growth phase. In the
following, we assume that the duration of each growth phase is d0

(Fig. 1). Growth and mutation are spontaneous and are not affected
by external forces. Therefore, we suppress variables Gi. The term Ti

is 1 or �1 for i ¼ 1 . . . n. Each Ti represents the first or second drug
selected as the treatment option in the ith cycle, respectively. For
simplicity, our expression will include Ti explicitly only when nec-
essary. Moreover, we denote ðT1; . . . TiÞ as T1!i for notational
convenience.

The following discussion presents the formulation of the n-cycle
treatment problem. The entire treatment process can be formu-
lated as an optimization problem. Briefly speaking, a population
initially consists of Nð1Þ0 cells. During the treatment and the growth
phases of each cycle, the population size may decrease and then in-
crease because of the implementation of drug therapy followed by
cell duplication. An S type cell may mutate to a R1 or R2 type cell
with rates a1 and a2, respectively. An R1 or R2 type cell can further
mutate to a doubly resistant R1;2 type cell with rates a1;2 and a2;1

Fig. 2.

3.1. Treatment phase at the ith cycle

Suppose that the log-kill constants for the first drug against R2

and S type cells are k1;r
2 and k1;s

2, respectively. The log-kill con-
stants for the second drug against R1 and S type cells are k2;r

2

and k2;s
2, respectively. During the ith cycle, denote the treatment

option Ti = 1 if the first drug is applied and Ti = �1 if the second
drug is applied. Let NðiÞ0 and �NðiÞ0 be the population sizes before
and after the treatment of the ith treatment phase. The variation
in the number of R1; R2, and S type cells before and after treatment
can be calculated using the following equations:

R1
�NðiÞ0

� �
¼ ðk2;rÞðTi�1Þ � R1 NðiÞ0

� �
; ð9Þ

R2
�NðiÞ0

� �
¼ ðk1;rÞð�Ti�1Þ � R2 NðiÞ0

� �
ð10Þ

and

S �NðiÞ0

� �
¼ ðk2;sÞðTi�1Þ � ðk1;sÞð�Ti�1Þ � S NðiÞ0

� �
: ð11Þ

In Eq. (9), the notation ðk2;rÞðTi�1Þ denotes k2;r with power
ðTi � 1Þ. Eqs. (10) and (11) apply similar notations.

3.2. Growth phase at the ith cycle

Let �NðiÞ0 and �NðiÞ be the population sizes before and after growth
of the ith growth phase. The variation in the number of R1; R2 and S
type cells before and after growth can be calculated using the fol-
lowing equations. Eqs. (1) and (4)–(6) lead to the following:
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R1ð�NðiÞÞ ¼ 2
d0
d R1

�NðiÞ0

� �
þ a1

a1 þ a2
S �NðiÞ0

� �
2

d0
d 1� 2

d0
d

� ��a1�a2
� �

; ð12Þ

R2ð�NðiÞÞ ¼ 2
d0
d R2

�NðiÞ0

� �
þ a2

a1 þ a2
S �NðiÞ0

� �
2

d0
d 1� 2

d0
d

� ��a1�a2
� �

; ð13Þ

and

Sð�NðiÞÞ ¼ S �NðiÞ0

� �
� 2

d0
d

� �1�a1�a2

: ð14Þ
3.3. Optimal n-cycle treatment problem

The objective of an optimal n-cycle treatment problem is to
select one of two available drugs as the treatment option for each
cycle to maximize the probability of no doubly resistant cells
appearing throughout the entire n cycles. The following theorem
states this formulation.

Theorem 3.1. The evaluation of the probability that no doubly
resistant cell appears can be obtained from Eq. (8). The overall
optimization problem can be expressed as
max
Ti; i¼1...n

Pn-cycle
no-resist ¼ max

Ti; i¼1...n
exp

Xn

i¼1

�a1;2 R1
�NðiÞ T1!i�1;Ti
� �� ��� 

�R1
�N0
ðiÞ

T1!i�1;Ti
� �� ��

�a2;1ðR2
�NðiÞ T1!i�1;Ti
� �� �

�R2
�N0
ðiÞ

T1!i�1;Ti
� �� �

Þþa1a1;2þa2a2;1

1�a1�a2
S �NðiÞ T1!i�1;Ti

� �� ��
�S �N0

ðiÞ
T1!i�1;Ti
� �� ����

; ð15Þ

where Ti is 1 or �1 to represent the first or second drug selected as
the treatment option in the ith treatment phase. The objective func-
tion Pn-cycle

no-resist is the probability that no doubly resistant cell will appear
during the n-cycle treatment process.

This theorem can be easily proved by recursively applying
Eq. (8). Because an exponential function is a strictly increasing
function, this problem is equivalent to the following problem:

min
Ti; i¼1...n

Xn

i¼1

�
a1;2 R1

�NðiÞ T1!i�1;Ti
� �� �

�R1
�N0
ðiÞ

T1!i�1;Ti
� �� �� �

þa2;1 R2
�NðiÞ T1!i�1;Ti
� �� �

�R2
�N0
ðiÞ

T1!i�1;Ti
� �� �� �

�a1a1;2þa2a2;1

1�a1�a2
S �NðiÞ T1!i�1;Ti

� �� �
�S �N0

ðiÞ
T1!i�1;Ti
� �� �� ��

: ð16Þ

This problem can be further expressed as the following problem.
Appendix C presents the details of these derivations.

min
Ti; i¼1...n

Xn

i¼1

2
d0
d �1

� �
a1;2kTi�1

2;r R1 N0
ðiÞ T1!i�1ð Þ

� ���

þa2;1k�Ti�1
1;r R2 N0

ðiÞ T1!i�1ð Þ
� ��

þ a1a1;2þa2a2;1

a1þa2ð Þ 1�a1�a2ð Þ

2
d0
d �2ð1�a1�a2Þd

0
d �ða1þa2Þ 2

d0
d �1

� �� �
�kTi�1

2;s k�Ti�1
1;s S N0

ðiÞ T1!i�1ð Þ
� ��

:ð17Þ

It can be noted that the objective function of this optimization
problem is expressed as a function of T1!i�1; and Ti in the last
expression. The following section shows that with a given T1!i�1,
if Ti is properly chosen at each cycle, then the treatment process
can be optimized.

4. Optimal therapy under equal efficacy assumptions

In this section, we assume that the first and second drugs have
the same efficacy on S type cells. In other words, their kill constants
against S type cells k1;s

2 and k2;s
2 are equivalent to ks

2. This
assumption is used to derive the analytical solution to the optimal
treatment problem.

Because both drugs have the same log-kill constant against S
type cells, the objective function of the optimization problem can
be expressed as

min
Ti; i¼1...n

Xn

i¼1

 
2

d0
d �1

� �
a1;2kTi�1

2;r R1 N0
ðiÞ T1!i�1ð Þ

� �
þa2;1k�Ti�1

1;r R2 N0
ðiÞ T1!i�1ð Þ

� �� �

þ
ða1a1;2þa2a2;1Þ 2

d0
d �2ð1�a1�a2 Þd

0
d �ða1þa2Þ 2

d0
d �1

� �� �
k�2

s S N0
ðiÞðT1!i�1Þ

� �
ða1þa2Þð1�a1�a2Þ

1
A: ð18Þ

Eqs. (11) and (14) show that

SðNðiÞ0 Þ ¼ 2
d0
d

� �1�a1�a2

k�2
s

� �i�1

� S Nð1Þ0

� �
:

Based on this relation, the objective function in Eq. (18) can be sim-
plified as

min
Ti; i¼1...n

Xn

i¼1

2
d0
d �1

� �
a1;2kTi�1

2;r R1 N0
ðiÞðT1!i�1Þ

� �
þa2;1k�Ti�1

1;r R2 N0
ðiÞðT1!i�1Þ

� �� �� �
:

ð19Þ

Dropping the positive constant 2
d0
d � 1 leads to the following equiv-

alent objective function:

min
Ti; i¼1...n

Xn

i¼1

a1;2kTi�1
2;r R1 N0

ðiÞ T1!i�1ð Þ
� �

þ a2;1k�Ti�1
1;r R2 N0

ðiÞ T1!i�1ð Þ
� �� �

:

The optimal policy under this equal efficacy but not fully sym-
metric assumption is described in the following lemma and theo-
rem. They partially solve the general n-cycle treatment problem
and represent the major results of this paper. Goldie, Coldman
and Gudauskas’ work is a special case of this assumption, as de-
scribed in the following section.

Lemma 4.1. Let T1!i�1 be chosen as an arbitrary �T1!i�1 during the
first i� 1 treatment phases. Denote T�i and T��i as alternative options
for the ith treatment phase. The following relationship holds:

If

a1;2k
T�i �1
2;r R1 N0

ðiÞ �T1!i�1
� �� �

þ a2;1k
�T�i �1
1;r R2 N0

ðiÞ �T1!i�1
� �� �

6 a1;2k
T��i �1
2;r R1 N0

ðiÞ �T1!i�1
� �� �

þ a2;1k
�T��i �1
1;r R2 N0

ðiÞ �T1!i�1
� �� �

;

then

a1;2kTiþ1�1
2;r R1 N0

ðiþ1Þ �T1!i�1;T
�
i

� �� �
þ a2;1k�Tiþ1�1

1;r R2 N0
ðiþ1Þ �T1!i�1;T

�
i

� �� �
6 a1;2kTiþ1�1

2;r R1 N0
ðiþ1Þ �T1!i�1;T

��
i

� �� �
þ a2;1k�Tiþ1�1

1;r R2 N0
ðiþ1Þ �T1!i�1;T

��
i

� �� �

for both Tiþ1 ¼ 1 and Tiþ1 ¼ �1.
Proof. See Appendix D. h
Theorem 4.2. In an n-cycle treatment process, the optimal treatment
options for minimizing the probability of the occurrence of doubly
resistant cells R1;2 can be determined as follows. For i ¼ 1, the optimal
treatment option is

T�1 ¼ arg min
T1

a1;2kT1�1
2;r R1 N0

ð1Þ
� �

þ a2;1k�T1�1
1;r R2 N0

ð1Þ
� �� �

: ð20Þ

Suppose that the optimal treatment options of the first ði� 1Þth
cycles have been determined to be T�i!i�1. The optimal treatment
option for ith cycle is
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T�i ¼ arg min
Ti

a1;2kTi�1
2;r R1 N0

ðiÞ T1!i�1 ¼ T�1!i�1

� �� ��
þa2;1k�Ti�1

1;r R2 N0
ðiÞ T1!i�1 ¼ T�1!i�1

� �� ��
: ð21Þ
Proof. This theorem can be proved by induction. For i ¼ 1, it is
obvious that

T�1 ¼ arg min
T1

a1;2kT1�1
2;r R1 N0

ð1Þ
� �

þ a2;1k�T1�1
1;r R2 N0

ð1Þ
� �� �

:

Let i ¼ k be true. We have

T�k¼ arg min
Tk

a1;2kTk�1
2;r R1 N0

ðkÞ T1!k�1¼ T�1!k�1

� �� �
þa2;1k�Tk�1

1;r R2

�
� N0

ðkÞ T1!k�1¼ T�1!k�1

� �� ��
:

This in turn implies that

) a1;2k
T�k�1
2;r R1 N0

ðkÞ T1!k�1 ¼ T�1!k�1

� �� �
þ a2;1k

�T�k�1
1;r R2 N0

ðkÞ T1!k�1 ¼ T�1!k�1

� �� �
6 a1;2kTk�1

2;r R1 N0
ðkÞ T1!k�1 ¼ T�1!k�1

� �� �
þ a2;1k�Tk�1

1;r R2 N0
ðkÞ T1!k�1 ¼ T�1!k�1

� �� �
for any Tk. By Lemma 4.1,

a1;2kTkþ1�1
2;r R1 N0

ðkþ1Þ T1!k ¼ T�1!k

� �� �
þ a2;1k�Tkþ1�1

1;r R2 N0
ðkþ1Þ T1!k ¼ T�1!k

� �� �
6 a1;2kTkþ1�1

2;r R1 N0
ðkþ1Þ T�1!k�1; Tk

� �� �
þ a2;1k�Tkþ1�1

1;r R2 N0
ðkþ1Þ T�1!k�1; Tk

� �� �
:

This corresponds to the ðkþ 1Þth term in the summation of the
objective function. To optimize the treatment process up to the
ðkþ 1Þth cycle, it is only necessary to select the treatment option
at the ðkþ 1Þth cycle as

T�kþ1 ¼ arg min
Tkþ1

a1;2kTkþ1�1
2;r R1 N0

ðkþ1Þ T1!k ¼ T�1!k

� �� �
þ a2;1k�Tkþ1�1

1;r

�

R2 N0
ðkþ1Þ T1!k ¼ T�1!k

� �� ��
: �

The following example demonstrates that the method described
in Theorem 4.2 can obtain optimal treatment options. In Table 1, the
treatment options for each cycle are chosen based on Theorem 4.2.
The options in Table 2 represent another sequence of treatment op-
tions that does not satisfy the condition specified in Theorem 4.2. It
can be observed that the probability of the non-occurrence of R1;2

type cells in Table 2 is less than that of Table 1.
Table 1
The log-kill constants k1;r

2 ¼ 225; k2
2;r ¼ 1225 and the mutation rates a1 ¼ 10�4:5 ; a2;1 ¼ 1

i Ti R1
�NðiÞ0

� �
R2

�NðiÞ0

� �
S �NðiÞ0

� �
R1ð�NðiÞÞ ¼ R1 Nðiþ1

0

�
1 �1 143.7779 23017.4434 2498174556.9603 48074.3641
2 1 48074.3641 0.0231 935746151.9207 89956.7773
3 �1 1.7769 56.7235 350504274.5691 6717.4707
4 �1 0.1327 106.2234 131289074.7550 2515.3778
5 1 2515.3778 0.0001 49177206.6724 4710.9238
6 �1 0.0931 2.9794 18420402.9209 353.0295
7 �1 0.0070 5.5800 6899766.5123 132.1932
8 1 132.1932 0.0000 2584459.0984 247.5779
9 �1 0.0049 0.1566 968065.9221 18.5531

10 �1 0.0004 0.2933 362610.3544 6.9473
Example 1.
Let the doubling time of the population be d ¼ 36 days, the
duration of each growth phase be d0 ¼ 21 days, and the initial
total size be N ¼ 1010. The log-kill constants are
k1;r

2 ¼ 225; k2
2;r ¼ 1225, and k1;s

2 ¼ k2
2;s � k2

s ¼ 4. The mutation
rates are set to be a1 ¼ 10�4:5; a2;1 ¼ 10�5; a2 ¼ 10�7, and
a1;2 ¼ 10�6:5. Assume that the population starts with one S type
cell, and that no doubly resistant cells are present during the
period that the population increases to N ¼ 1010. The expected
sizes of R1 and R2 can be computed as
R1 N0
ð1Þ

� �
¼ a1

a1 þ a2
Nð1� N�a1�a2 Þ ¼ 7278754:7155;

R2 N0
ð1Þ

� �
¼ a2

a1 þ a2
Nð1� N�a1�a2 Þ ¼ 23017:4434

and

S N0
ð1Þ

� �
¼ 1010 � R1 N0

ð1Þ
� �

� R2 N0
ð1Þ

� �
¼ 9992698228:

The probability that no doubly resistant cells are present is

exp �a1;2R1 N0
ð1Þ

� �
�a2;1R2 N0

ð1Þ
� �

þa1a1;2þa2a2;1

1�a1�a2
S N0

ð1Þ
� �

�1
� �� �

¼ 0:08874434:

Table 1 and Table 2 present summaries of the details of a
10-cycle treatment problem with two sequences of treatment
options. The results in these tables confirm the correctness of The-
orem 4.2.
5. Optimal therapy under equal mutation rates

Goldie, Coldman and Gudauskas’ work can be viewed as special
cases of Theorem 4.2. They consider two cases with symmetrical
parameter settings such that alternating therapy is optimal
[23,24]. Both cases require that the initial sizes of R1 and R2 satisfying

the condition that R1 N0
ð1Þ

� �
¼ R2 N0

ð1Þ
� �

and the log kill constants

k1;r
2
; k2

2;r ; k2
1;s and k2;s

2 are equivalent. In case 1, the mutation rates
a1; a2; a1;2 and a2;1 are assumed to be equivalent. In case 2, the
assumptions on mutation rates are relaxed as a1 ¼ a2 and
a1;2 ¼ a2;1. The following theorems restate Goldie, Coldman and
Gudauskas’ results on symmetrical cases based on our formulation.
Details of two numerical examples are provided based on our previ-
ously derived formulae. These examples reconfirm the correctness
of Goldie, Coldman and Gudauskas’ work on symmetrical cases.
0�5; a2 ¼ 10�7, and a1;2 ¼ 10�6:5.

Þ
�

R2ð�NðiÞÞ ¼ R2 Nðiþ1Þ
0

� �
Sð�NðiÞÞ ¼ S Nðiþ1Þ

0

� �
Pno-resistð�NðiÞÞ Pno-resist

34638.5416 3742984607.6829 0.88898526 0.07889241
56.7235 1402017098.2766 0.99135534 0.07821041
106.2234 525156299.0201 0.99930279 0.07815588
167.1089 196708826.6894 0.99931563 0.07810240
2.9794 73681611.6835 0.99954557 0.07806691
5.5800 27599066.0493 0.99996335 0.07806404
8.7785 10337836.3935 0.99996403 0.07806124
0.1566 3872263.6885 0.99997611 0.07805937
0.2933 1450441.4176 0.99999807 0.07805922
0.4613 543294.6914 0.99999811 0.07805907



Table 2
The log-kill constants k1;r

2 ¼ 225; k2
2;r ¼ 1225 and the mutation rates a1 ¼ 10�4:5 ; a2;1 ¼ 10�5 ; a2 ¼ 10�7, and a1;2 ¼ 10�6:5.

i Ti R1
�NðiÞ0

� �
R2

�NðiÞ0

� �
S �NðiÞ0

� �
R1ð�NðiÞÞ ¼ R1 Nðiþ1Þ

0

� �
R2ð�NðiÞÞ ¼ R2 Nðiþ1Þ

0

� �
Sð�NðiÞÞ ¼ S Nðiþ1Þ

0

� �
Pno-resistð�NðiÞÞ Pno-resist

1 1 7278754.7155 0.0153 2498174556.9603 10953668.6417 151.3662 3742984607.6829 0.31665894 0.02810169
2 �1 216.3688 151.3662 935746151.9207 18250.8043 283.4821 1402017098.2766 0.99810679 0.02804849
3 1 18250.8043 0.0002 350504274.5691 34060.1175 21.2344 525156299.0201 0.99671496 0.02795635
4 �1 0.6728 21.2344 131289074.7550 2516.1870 39.7693 196708826.6894 0.99973885 0.02794905
5 1 2516.1870 0.0000 49177206.6724 4712.1363 2.9793 73681611.6835 0.99954545 0.02793634
6 �1 0.0931 2.9793 18420402.9209 353.0295 5.5798 27599066.0493 0.99996336 0.02793532
7 1 353.0295 0.0000 6899766.5123 661.1294 0.4180 10337836.3935 0.99993621 0.02793354
8 �1 0.0131 0.4180 2584459.0984 49.5315 0.7829 3872263.6885 0.99999486 0.02793339
9 1 49.5315 0.0000 968065.9221 92.7592 0.0586 1450441.4176 0.99999105 0.02793314

10 �1 0.0018 0.0586 362610.3544 6.9495 0.1098 543294.6914 0.99999928 0.02793312
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5.1. The mutation rates a1 = a2 = a1;2 = a2;1

Theorem 5.1. Under the assumptions of Theorem 4.2, if the condi-

tions R1 N0
ð1Þ

� �
¼ R2 N0

ð1Þ
� �

, the log kill constants k1;r
2 ¼ k2

2;r ¼ k2
1;s

¼ k2
2;s and the mutation rates a1 ¼ a2 ¼ a1;2 ¼ a2;1 are satisfied, the

alternating treatment policy is optimal to problem (15). In other
words, Tiþ1 ¼ �Ti for i ¼ 1 to n� 1.
Proof. See Appendix E. h

In the following, we reproduce Goldie, Coldman and Gudauskas’
example. The numerical results are computed with formulae
derived in this paper and henceforth are slightly different
compared with results stated in [23]. It can be observed that the
alternating policy is optimal.

Example 2.
Let the doubling time of the population be d ¼ 36 days, the
duration of each growth phase be d0 ¼ 21 days, and the initial
population size be N ¼ 1010. The log-kill constants are
k1;r

2 ¼ k2
2;r ¼ k2

1;s ¼ k2
2;s ¼ 100, and the mutation rates are

a1 ¼ a2 ¼ a1;2 ¼ a2;1 ¼ 10�6. We assume that the population starts
with one S type cell. Suppose that during the process that the
population size increases to N ¼ 1010, no doubly resistant cells
present. Then, the expected sizes of R1 and R2 can be computed as

R1 N0
ð1Þ

� �
¼ a1

a1 þ a2
Nð1� N�a1�a2 Þ ¼ 230253:2075;

R2 N0
ð1Þ

� �
¼ a2

a1 þ a2
Nð1� N�a1�a2 Þ ¼ 230253:2075

and

S N0
ð1Þ

� �
¼ 1010 � R1 N0

ð1Þ
� �

� R2 N0
ð1Þ

� �
¼ 9999539494:

The probability that no doubly resistant cells are present is

exp �a1;2R1 N0
ð1Þ

� �
�a2;1R2 N0

ð1Þ
� �

þa1a1;2þa2a2;1

1�a1�a2
S N0

ð1Þ
� �

�1
� �� �

¼0:643709:
Table 3
The log-kill constants k1;r

2 ¼ k2
2;r ¼ 100, and the mutation rates a1 ¼ a2 ¼ a1;2 ¼ a2;1 ¼ 10�

i Ti R1
�NðiÞ0

� �
R2

�NðiÞ0

� �
S �NðiÞ0

� �
R1ð�NðiÞÞ ¼ R1 Nðiþ1Þ

0

�
1 1 230253.2075 2302.5321 99995394.9359 345050.5894
2 1 345050.5894 35.1048 1498236.8673 516992.6476
3 1 516992.6476 0.5351 22448.1709 774613.7562
4 1 774613.7562 0.0082 336.3423 1160609.2729
5 1 1160609.2729 0.0001 5.0394 1738949.0871
6 �1 17389.4909 0.0002 0.0755 26054.7972
7 �1 260.5480 0.0003 0.0011 390.3809
8 �1 3.9038 0.0004 0.0000 5.8491
9 �1 0.0585 0.0006 0.0000 0.0876

10 �1 0.0009 0.0010 0.0000 0.0013
A 10-cycle treatment problem with three different sequences of
treatment options are presented in Tables 3–5, respectively. It can
be observed that the alternating policy in Table 5 has the greatest
probability of the non-occurrence of double resistance. Henceforth,
it is the optimal strategy.
5.2. The mutation rates a1 ¼ a2 and a1;2 ¼ a2;1

Theorem 5.2. Under the assumptions of Theorem 4.2, if the condi-

tions R1 N0
ð1Þ

� �
¼ R2 N0

ð1Þ
� �

, the log kill constants k1;r
2 ¼ k2

2;r � k2
r ;

k2
1;s ¼ k2

2;s � k2
s and the mutation rates a1 ¼ a2 � a1; a1;2 ¼ a2;1

� a1;2 are satisfied, the alternating treatment policy is optimal to the
problem (15). In other words, Tiþ1 ¼ �Ti for i ¼ 1 to n� 1.
Proof. See Appendix E. h

A 10-cycle treatment problem is presented in Tables 6–8. Op-
tions in Tables 6 and 7 do not satisfy conditions in Theorem 5.1.
Options in Table 8 are obtained with the method stated in Theorem
5.1. It can be observed that the probability of the non-occurrence of
R1;2 type cells is maximized under alternating treatment policy.
Therefore, it is optimal.

Example 3.
Let the doubling time of the population be d ¼ 36 days, the
duration of each growth phase be d0 ¼ 21 days, and the initial
population size N be 1010. The log-kill constants are set to be
k1;r

2 ¼ k2
2;r � k2

r ¼ 144; k2
1;s ¼ k2

2;s � k2
s ¼ 100 and the mutation

rates are set to be a1 ¼ a2 ¼ 10�6; a1;2 ¼ a2;1 ¼ 10�5:5. We assume
that the population starts with one S type cell. Furthermore,
assume that no doubly resistant cells are present during the
process that the population size increases to N ¼ 1010. The
expected sizes of R1 and R2 can be computed as

R1 N0
ð1Þ

� �
¼ a1

a1 þ a2
Nð1� N�a1�a2 Þ ¼ 230253:2075;
6.
�

R2ð�NðiÞÞ ¼ R2 Nðiþ1Þ
0

� �
Sð�NðiÞÞ ¼ S Nðiþ1Þ

0

� �
Pno-resistð�NðiÞÞ Pno-resist

3510.4792 149823686.7292 0.89055922 0.57326169
53.5054 2244817.0858 0.84201372 0.48269421
0.8153 33634.2261 0.77288782 0.37306847
0.0124 503.9436 0.67977357 0.25360209
0.0002 7.5506 0.56082867 0.14222732
0.0003 0.1131 0.99137213 0.14100020
0.0004 0.0017 0.99987018 0.14098190
0.0006 0.0000 0.99999805 0.14098162
0.0010 0.0000 0.99999997 0.14098162
0.0014 0.0000 1.00000000 0.14098162



Table 4
The log-kill constants k1;r

2 ¼ k2
2;r ¼ 100, and the mutation rates a1 ¼ a2 ¼ a1;2 ¼ a2;1 ¼ 10�6.

i Ti R1
�NðiÞ0

� �
R2

�NðiÞ0

� �
S �NðiÞ0

� �
R1ð�NðiÞÞ ¼ R1 Nðiþ1Þ

0

� �
R2ð�NðiÞÞ ¼ R2 Nðiþ1Þ

0

� �
Sð�NðiÞÞ ¼ S Nðiþ1Þ

0

� �
Pno-resistð�NðiÞÞ Pno-resist

1 1 230253.2075 2302.5321 99995394.9359 345050.5894 3510.4792 149823686.7292 0.89055922 0.57326169
2 1 345050.5894 35.1048 1498236.8673 516992.6476 53.5054 2244817.0858 0.84201372 0.48269421
3 1 516992.6476 0.5351 22448.1709 774613.7562 0.8153 33634.2261 0.77288782 0.37306847
4 �1 7746.1376 0.8153 336.3423 11606.0929 1.2217 503.9436 0.99614708 0.37163107
5 �1 116.0609 1.2217 5.0394 173.8949 1.8305 7.5506 0.99994156 0.37160935
6 �1 1.7389 1.8305 0.0755 2.6055 2.7427 0.1131 0.99999822 0.37160869
7 1 2.6055 0.0274 0.0011 3.9038 0.0411 0.0017 0.99999869 0.37160820
8 1 3.9038 0.0004 0.0000 5.8491 0.0006 0.0000 0.99999805 0.37160748
9 1 5.8491 0.0000 0.0000 8.7638 0.0000 0.0000 0.99999709 0.37160640

10 �1 0.0876 0.0000 0.0000 0.1313 0.0000 0.0000 0.99999996 0.37160638

Table 5
The log-kill constants k1;r

2 ¼ k2
2;r ¼ 100, and the mutation rates a1 ¼ a2 ¼ a1;2 ¼ a2;1 ¼ 10�6.

i Ti R1
�NðiÞ0

� �
R2

�NðiÞ0

� �
S �NðiÞ0

� �
R1ð�NðiÞÞ ¼ R1 Nðiþ1Þ

0

� �
R2ð�NðiÞÞ ¼ R2 Nðiþ1Þ

0

� �
Sð�NðiÞÞ ¼ S Nðiþ1Þ

0

� �
Pno-resistð�NðiÞÞ Pno-resist

1 1 230253.2075 2302.5321 99995394.9359 345050.5894 3510.4792 149823686.7292 0.89055922 0.57326169
2 �1 3450.5059 3510.4792 1498236.8673 5170.8251 5260.6835 2244817.0858 0.99653698 0.57127647
3 1 5170.8251 52.6068 22448.1709 7747.4974 78.8348 33634.2261 0.99740051 0.56979144
4 �1 77.4750 78.8348 336.3423 116.0815 118.1189 503.9436 0.99992211 0.56974706
5 1 116.0815 1.1812 5.0394 173.9257 1.7698 7.5506 0.99994157 0.56971377
6 �1 1.7393 1.7698 0.0755 2.6059 2.6517 0.1131 0.99999825 0.56971278
7 1 2.6059 0.0265 0.0011 3.9045 0.0397 0.0017 0.99999869 0.56971203
8 �1 0.0390 0.0397 0.0000 0.0585 0.0595 0.0000 0.99999996 0.56971201
9 1 0.0585 0.0006 0.0000 0.0877 0.0009 0.0000 0.99999997 0.56971199

10 �1 0.0009 0.0009 0.0000 0.0013 0.0013 0.0000 1.00000000 0.56971199

Table 6
The log-kill constants k1;r

2 ¼ k2
2;r � k2

r ¼ 144,and the mutation rates a1 ¼ a2 ¼ 10�6; a1;2 ¼ a2;1 ¼ 10�5:5.

i Ti R1
�NðiÞ0

� �
R2

�NðiÞ0

� �
S �NðiÞ0

� �
R1ð�NðiÞÞ ¼ R1 Nðiþ1Þ

0

� �
R2ð�NðiÞÞ ¼ R2 Nðiþ1Þ

0

� �
Sð�NðiÞÞ ¼ S Nðiþ1Þ

0

� �
Pno-resistð�NðiÞÞ Pno-resist

1 1 230253.2075 1598.9806 99995394.9359 345050.5894 2456.3431 149823686.7292 0.69390704 0.17231628
2 1 345050.5894 17.0579 1498236.8673 516992.6476 26.4657 2244817.0858 0.58056497 0.10004080
3 1 516992.6476 0.1838 22448.1709 774613.7562 0.2890 33634.2261 0.44278554 0.04429662
4 1 774613.7562 0.0020 336.3423 1160609.2729 0.0032 503.9436 0.29504571 0.01306953
5 1 1160609.2729 0.0000 5.0394 1738949.0871 0.0000 7.5506 0.16059477 0.00209890
6 �1 12076.0353 0.0000 0.0755 18093.6092 0.0001 0.1131 0.98115067 0.00205933
7 �1 125.6501 0.0001 0.0011 188.2624 0.0001 0.0017 0.99980202 0.00205893
8 �1 1.3074 0.0001 0.0000 1.9589 0.0001 0.0000 0.99999794 0.00205892
9 �1 0.0136 0.0001 0.0000 0.0204 0.0002 0.0000 0.99999998 0.00205892

10 �1 0.0001 0.0002 0.0000 0.0002 0.0003 0.0000 1.00000000 0.00205892

Table 7
The log-kill constants k1;r

2 ¼ k2
2;r � k2

r ¼ 144, and the mutation rates a1 ¼ a2 ¼ 10�6; a1;2 ¼ a2;1 ¼ 10�5:5.

i Ti R1
�NðiÞ0

� �
R2

�NðiÞ0

� �
S �NðiÞ0

� �
R1ð�NðiÞÞ ¼ R1 Nðiþ1Þ

0

� �
R2ð�NðiÞÞ ¼ R2 Nðiþ1Þ

0

� �
Sð�NðiÞÞ ¼ S Nðiþ1Þ

0

� �
Pno-resistð�NðiÞÞ Pno-resist

1 1 230253.2075 1598.9806 99995394.9359 345050.5894 2456.3431 149823686.7292 0.69390704 0.17231628
2 1 345050.5894 17.0579 1498236.8673 516992.6476 26.4657 2244817.0858 0.58056497 0.10004080
3 1 516992.6476 0.1838 22448.1709 774613.7562 0.2890 33634.2261 0.44278554 0.04429662
4 �1 5379.2622 0.2890 336.3423 8059.7868 0.4332 503.9436 0.99155881 0.04392270
5 �1 55.9707 0.4332 5.0394 83.8614 0.6490 7.5506 0.99991112 0.04391880
6 �1 0.5824 0.6490 0.0755 0.8726 0.9724 0.1131 0.99999806 0.04391871
7 1 0.8726 0.0068 0.0011 1.3074 0.0101 0.0017 0.99999861 0.04391865
8 1 1.3074 0.0001 0.0000 1.9589 0.0001 0.0000 0.99999794 0.04391856
9 1 1.9589 0.0000 0.0000 2.9350 0.0000 0.0000 0.99999691 0.04391843

10 �1 0.0204 0.0000 0.0000 0.0305 0.0000 0.0000 0.99999997 0.04391842
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R2 N0
ð1Þ

� �
¼ a2

a1 þ a2
Nð1� N�a1�a2 Þ ¼ 230253:2075

and
S N0
ð1Þ

� �
¼ 1010 � R1 N0

ð1Þ
� �

� R2 N0
ð1Þ

� �
¼ 9999539494:
The probability that no doubly resistant cell are present is

exp �a1;2R1 N0
ð1Þ

� �
�a2;1R2 N0

ð1Þ
� �

þa1a1;2þa2a2;1

1�a1�a2
S N0

ð1Þ
� �

�1
� �� �

¼0:24832761:

The details of the example are provided in Tables 6–8.



Table 8
The log-kill constants k1;r

2 ¼ k2
2;r � k2

r ¼ 144, and the mutation rates a1 ¼ a2 ¼ 10�6; a1;2 ¼ a2;1 ¼ 10�5:5.

i Ti R1
�NðiÞ0

� �
R2

�NðiÞ0

� �
S �NðiÞ0

� �
R1ð�NðiÞÞ ¼ R1 Nðiþ1Þ

0

� �
R2ð�NðiÞÞ ¼ R2 Nðiþ1Þ

0

� �
Sð�NðiÞÞ ¼ S Nðiþ1Þ

0

� �
Pno-resistð�NðiÞÞ Pno-resist

1 1 230253.2075 1598.9806 99995394.9359 345050.5894 2456.3431 149823686.7292 0.69390704 0.17231628
2 �1 2396.1846 2456.3431 1498236.8673 3591.1281 3681.2639 2244817.0858 0.99238161 0.17100351
3 1 3591.1281 25.5643 22448.1709 5380.6262 38.3168 33634.2261 0.99431706 0.17003170
4 �1 37.3655 38.3168 336.3423 55.9851 57.4106 503.9436 0.99988075 0.17001143
5 1 55.9851 0.3987 5.0394 83.8829 0.5974 7.5506 0.99991116 0.16999632
6 �1 0.5825 0.5974 0.0755 0.8728 0.8950 0.1131 0.99999814 0.16999601
7 1 0.8728 0.0062 0.0011 1.3077 0.0093 0.0017 0.99999861 0.16999577
8 �1 0.0091 0.0093 0.0000 0.0136 0.0140 0.0000 0.99999997 0.16999577
9 1 0.0136 0.0001 0.0000 0.0204 0.0001 0.0000 0.99999998 0.16999576
10 �1 0.0001 0.0001 0.0000 0.0002 0.0002 0.0000 1.00000000 0.16999576
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6. Optimal therapy under unequal mutation rates

Results in Section 5 can be anticipated since the role of type R1

and R2 are symmetrical in Theorems 5.1 and 5.2. The treatment pro-
cess does not favor either the first drug or the second drug and
henceforth alternating therapy is the optimal policy. In this section,
we consider a special case with asymmetrical parameter settings. In

this special case, the log kill constants are set to be k1;r
2 ¼ k2

2;r ¼
k2

r ; k2
1;s ¼ k2

2;s ¼ k2
s and the mutation rates are set to be a1 ¼ a2;1 �

a1;a2 ¼ a1;2 � a2. It can shown that the alternating therapy is still
optimal in this case. Besides a proof to the theorem stated in the fol-
lowing, we provide an intuitive explanation to why it is valid.

Theorem 6.1. Under the assumptions of Theorem 4.2, if the conditions

a2R1 N0
ð1Þ

� �
¼ a1R2 N0

ð1Þ
� �

, the log kill constants k1;r
2 ¼ k2

2;r � k2
r ;

k2
1;s ¼ k2

2;s � k2
s and the mutation rates a1 ¼ a2;1 � a1; a2 ¼ a1;2 � a2

are satisfied, the alternating treatment policy is optimal to the problem
(15). In other words, Tiþ1 ¼ �Ti for i ¼ 1 to n� 1.
Proof. See Appendix F. h

It is worth mentioning that the condition a2R1 N0
ð1Þ

� �
¼ a1R2 N0

ð1Þ
� �

is a mild assumption. If we assume that a population

starts with one S type cell and the population grows without the
appearance of R1;2 type cells, this condition is satisfied at the starting
point of the n-cycle treatment process. Moreover, with a1 – a2 in
this case, S type cells mutate to R1 and R2 type cells with various
rates. However, this asymmetrical setting can be offset by the effect
of that R1 type cells mutate to R1;2 with rate a2 and R2 type cells mu-
tate to R1;2 with rate a1. Therefore, the parameter settings can be
viewed as symmetrical in a broad sense represented in Fig. 3 and
the alternating therapy is still optimal. The following example is
used to illustrate Theorem 6.1.

Example 4.
Let the doubling time of the population be d ¼ 36 days, the
duration of each growth phase be d0 ¼ 21 days, and the population
size N be 1010. The log-kill constants are set to be
k1;r

2 ¼ k2
2;r � k2

r ¼ 144; k2
1;s ¼ k2

2;s � k2
s ¼ 100 and the mutation
Fig. 3. Unequal mutate rates with a1 ¼ a2;1; a2 ¼ a1;2.
rates are set to be a1 ¼ a2;1 ¼ 10�6; a2 ¼ a1;2 ¼ 10�5. We assume
that the population starts with one S type cell. Furthermore,
assume that no doubly resistant cells present during the process
that the population size increases to N ¼ 1010. The expected sizes
of R1 and R2 can be computed as

R1 N0
ð1Þ

� �
¼ a1

a1 þ a2
Nð1� N�a1�a2 Þ ¼ 230229:3513;

R2 N0
ð1Þ

� �
¼ a2

a1 þ a2
Nð1� N�a1�a2 Þ ¼ 2302293:5132;

and

S N0
ð1Þ

� �
¼ 1010 � R1 N0

ð1Þ
� �

� R2 N0
ð1Þ

� �
¼ 9997467477:

The probability that no doubly resistant cells are present is

exp �a1;2R1 N0
ð1Þ

� �
�a2;1R2 N0

ð1Þ
� �

þa1a1;2þa2a2;1

1�a1�a2
S N0

ð1Þ
� �

�1
� �� �

¼ 0:01222056:

The details of a 10-cycle treatment problem are presented in
Tables 9–11. Options in Tables 9 and 10 do not satisfy the condi-
tions in Theorem 6.1. Options in Table 11 are obtained with the
method in Theorem 6.1. It can be observed that the probability
of non-occurrence of R1;2 type cells is maximized with options in
Table 11. Therefore, alternating therapy is optimal under this
asymmetrical parameter settings.
7. Discussion

Since Goldie and Coldman proposed their original model, many
researchers have studied its potential clinical application and mod-
el refinements. One notable study was presented by Day [26], who
explored various parameter changes in the model proposed by Gol-
die and Coldman and their corresponding optimal policies. Day set
the model parameters to a low, medium, or high value relative to a
reference level in a two-drug cyclic therapy. Based on various com-
binations of values in different model parameters, Day considered
how an optimal policy may change accordingly in 16 preselected
treatment strategies. One interesting result of this study is the
so-called ‘‘worst drug rule.’’ In other words, under certain
circumstances, the worst drug should be administering before
administering more effective drugs. This rule attracted clinical
oncologists to test its correctness.

Katouli and Komarova recently published a related study
[27,28] that reinvestigates Day’s work based on the model in
[12,13]. In their study, two characteristics of cancer drugs are
considered: potency and activity spectrum. A drug with a higher
potency can kill the tumor cells susceptible to it more effectively,
whereas a drug with a broader activity spectrum is effective
against to broader spectrum of mutant cells. In a cyclic treatment,
they considered two drugs A and B applied alternatively with peri-



Table 9
The log-kill constants k1;r

2 ¼ k2
2;r � k2

r ¼ 144 and the mutation rates a1 ¼ a2;1 ¼ 10�6; a2 ¼ a1;2 ¼ 10�5.

i Ti R1
�NðiÞ0

� �
R2

�NðiÞ0

� �
S �NðiÞ0

� �
R1ð�NðiÞÞ ¼ R1 Nðiþ1Þ

0

� �
R2ð�NðiÞÞ ¼ R2 Nðiþ1Þ

0

� �
Sð�NðiÞÞ ¼ S Nðiþ1Þ

0

� �
Pno-resistð�NðiÞÞ Pno-resist

1 1 230229.3513 111.0288 99974674.7714 345014.8328 772.0198 149792096.4874 0.31742318 0.00387909
2 1 345014.8328 0.0372 1497920.9649 516939.0731 9.1305 2244335.6001 0.17920290 0.00069514
3 1 516939.0731 0.0004 22443.3560 774533.4852 0.1366 33626.8896 0.07608196 0.00005289
4 1 774533.4852 0.0000 336.2689 1160489.0023 0.0020 503.8318 0.02107737 0.00000111
5 1 1160489.0023 0.0000 5.0383 1738768.8849 0.0000 7.5489 0.00308008 0.00000000
6 �1 83.8527 0.0000 0.0755 125.6370 0.0000 0.1131 0.99958224 0.00000000
7 �1 0.0061 0.0000 0.0011 0.0091 0.0001 0.0017 0.99999997 0.00000000
8 �1 0.0000 0.0001 0.0000 0.0000 0.0001 0.0000 1.00000000 0.00000000
9 �1 0.0000 0.0001 0.0000 0.0000 0.0002 0.0000 1.00000000 0.00000000

10 �1 0.0000 0.0002 0.0000 0.0000 0.0002 0.0000 1.00000000 0.00000000

Table 10
The log-kill constants k1;r

2 ¼ k2
2;r � k2

r ¼ 144 and the mutation rates a1 ¼ a2;1 ¼ 10�6; a2 ¼ a1;2 ¼ 10�5.

i Ti R1
�NðiÞ0

� �
R2

�NðiÞ0

� �
S �NðiÞ0

� �
R1ð�NðiÞÞ ¼ R1 Nðiþ1Þ

0

� �
R2ð�NðiÞÞ ¼ R2 Nðiþ1Þ

0

� �
Sð�NðiÞÞ ¼ S Nðiþ1Þ

0

� �
Pno-resistð�NðiÞÞ Pno-resist

1 1 230229.3513 111.0288 99974674.7714 345014.8328 772.0198 149792096.4874 0.31742318 0.00387909
2 1 345014.8328 0.0372 1497920.9649 516939.0731 9.1305 2244335.6001 0.17920290 0.00069514
3 1 516939.0731 0.0004 22443.3560 774533.4852 0.1366 33626.8896 0.07608196 0.00005289
4 �1 37.3521 0.1366 336.2689 55.9651 0.2067 503.8318 0.99981382 0.00005288
5 �1 0.0027 0.2067 5.0383 0.0040 0.3098 7.5489 0.99999988 0.00005288
6 �1 0.0000 0.3098 0.0755 0.0000 0.4642 0.1131 0.99999985 0.00005288
7 1 0.0000 0.0000 0.0011 0.0000 0.0000 0.0017 1.00000000 0.00005288
8 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.00000000 0.00005288
9 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.00000000 0.00005288

10 �1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.00000000 0.00005288

Table 11
The log-kill constants k1;r

2 ¼ k2
2;r � k2

r ¼ 144 and the mutation rates a1 ¼ a2;1 ¼ 10�6; a2 ¼ a1;2 ¼ 10�5.

i Ti R1
�NðiÞ0

� �
R2

�NðiÞ0

� �
S �NðiÞ0

� �
R1ð�NðiÞÞ ¼ R1 Nðiþ1Þ

0

� �
R2ð�NðiÞÞ ¼ R2 Nðiþ1Þ

0

� �
Sð�NðiÞÞ ¼ S Nðiþ1Þ

0

� �
Pno-resistð�NðiÞÞ Pno-resist

1 1 230229.3513 111.0288 99974674.7714 345014.8328 772.0198 149792096.4874 0.31742318 0.00387909
2 �1 16.6384 772.0198 1497920.9649 25.8370 1165.7973 2244335.6001 0.99952928 0.00387726
3 1 25.8370 0.0562 22443.3560 38.7253 0.2202 33626.8896 0.99987118 0.00387676
4 �1 0.0019 0.2202 336.2689 0.0030 0.3320 503.8318 0.99999988 0.00387676
5 1 0.0030 0.0000 5.0383 0.0045 0.0001 7.5489 0.99999999 0.00387676
6 �1 0.0000 0.0001 0.0755 0.0000 0.0001 0.1131 1.00000000 0.00387676
7 1 0.0000 0.0000 0.0011 0.0000 0.0000 0.0017 1.00000000 0.00387676
8 �1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.00000000 0.00387676
9 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.00000000 0.00387676

10 �1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.00000000 0.00387676
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ods DA and DB, respectively. By introducing a variety of methods,
they were able to systematically and extensively consider various
strategies through numerical explorations rather than limiting
themselves to 16 preselected treatment strategies, as in Day’s
work. They proposed an important concept called ‘‘mutual
strength.’’ A two-drug cyclic therapy can achieve satisfactory prob-
abilities of treatment success only if the two applied drugs are
mutually strong. They derived two general rules for successful cyc-
lic treatment. First, in a cyclic treatment with mutually strong
drugs with a similar activity spectrum, the best treatment strategy
is to apply the best drug first, but to use the worst drug for longer.
Second, in a cyclic treatment with mutually strong drugs with a
similar potency, the best treatment strategy is to use the less active
drug first, and to use the more active drug for longer. They also dis-
cussed how the effects of cross-resistance and toxicity may change
these general rules. They concluded that the worst drug may not
hold. Several biological studies have reached similar conclusions
for non-small-cell lung cancer [29–32].

The focus and approach of this study differ from those in the
study by Katouli and Komarova. The major concern of their work
is to explore the general rule, which elucidates the relationship
between model parameters and optimal treatment policies,
through systematic numerical analysis. Their treatment efficacy
is implicitly reflected by the variation in tumor cell’s death
and mutation rates. Instead, the present work is a control-theory
based approach. In this setting, drug administration is repre-
sented by explicit variables in the model. The maximal number
of cycles n can be determined by the maximal tolerable toxicity
from clinic consideration. Each cycle length is assumed to be the
minimal time required for the applied drugs to take full effect on
the targeted tumor cells. With the imposed equally efficacy
assumption against S type cells, the proposed model is mathe-
matically tractable. Specifically, Theorem 4.2 provides an explicit
link between treatment options at each stage and different mod-
el parameters. Although this is less general than the model pro-
posed by Katouli and Komarova, it produces an easily
implementable rule rather than the general treatment guideline
proposed by Katouli and Komarova (or by Day). The rule can
be briefly stated as follows. Let R1ðNðiÞ0 Þ and R2ðNðiÞ0 Þ denote the
size of R1 and R2 type cells at the ith cycle, respectively. Let
a1;2 denote the mutation rate for R1 type cells mutating to R1;2

type cells, and a2;1 denote the mutation rate for R2 type cells
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mutating to R1;2 type cells. Without treatment at the ith cycle,
the expected size of R1;2 type cells caused by the mutation of
R1 and R2 type cells is a1;2R1ðNðiÞ0 Þ þ a2;1R2ðNðiÞ0 Þ. If the application
of Drug 1 at the ith cycle yields the greatest reduction in this ex-
pected size of R1;2 type cells, then the treatment option at the ith
cycle should be Drug 1. Otherwise, the treatment option at the
ith cycle should be Drug 2. This present work further considers
that asymmetry exists both in killing constants and cell’s muta-
tion rates (serve as counterparts of potency and activity spec-
trum in the method of Katouli and Komarova). Optimal
treatment options for each cycle under this circumstance can
also be obtained by Theorem 4.2. It can be observed that, under
such an asymmetrical parameter setting, an optimal treatment
strategy does not necessarily consist of cycles of alternating
length throughout the entire treatment process. For instance, in
Table 1, Drug 2 is first used with a duration of one cycle fol-
lowed by the usage of Drug 1 with a duration of one cycle.
Thereafter, Drug 2 is used with a duration of two cycles followed
by the usage of Drug 1 with a duration of two cycles. In contrast,
some previous research only consider strategies consisting of cy-
cles of alternating length such as Day’s 16 preselected sequences
of treatment options. Katouli and Komarova did little to address
issues on asymmetry existing both in potency and activity spec-
trum in their study. Henceforth, they also focused on strategies
consisting of cycles of alternating lengths DA and DB.

Regarding aspects of modeling refinements, two important top-
ics closely related to the present study should be considered. One is
the drug’s cell cycle specificity and the other is the gene amplifica-
tion phenomenon. In their original work, Goldie and Coldman
made two assumptions for simplification. First, their model simply
assumes that a portion of cells susceptible to the applied agent are
eliminated upon drug-intervention without further referring to the
cell-cycle dependence of various agents. Second, a tumor cell is
either completely resistant or susceptible to an anticancer agent;
partial resistance is not considered. A single mutational event dur-
ing the cell’s duplication process can cause a susceptible cell to
produce resistant progeny cells. Researchers have suggested sev-
eral refinements on these simplifications based on the findings of
cell cycle specificity and gene amplification. The following para-
graphs present a brief discussion of the biological backgrounds of
these two phenomena, the corresponding modeling and treatment
approaches, some important studies and their connections to this
present work.

The cell cycle refers to the sequence of phases that each cell
undergoes from its birth to division. A cycle consists of the growth
phase (G1), DNA synthesis phase (S), the preparation for division
phase (G2), and the division phase (M). After division, the daughter
cells can either enter the G1 phase or enter a dormant phase (G0).
Cells in the G0 phase enter G1 phase again after a variable period
of time [33]. From a treatment viewpoint, the cell cycle is of inter-
est because various anticancer agents are only effective at specific
phases. Different agents may perturb the cycle transition time, or
hold or kill cells at specific phases. These agents can be combined
into one therapy to maximize the cumulative treatment efficacy.
For example, an agent may be used to hold cells in the S phase
and to release them when another G2=M agent achieves its maxi-
mal killing potential [20,34]. When a treatment process takes into
account these cycle specific effects, the entire cell population is
dissected into one, two, or three disjoint compartments [35–38].
Cells at the same phase are classified into the same compartment
and they are all sensitive or resistance to one applied agent. The
dynamics of the growth and death of cells in each compartment
and the possible transitions between any two compartments are
described by a set of ordinary differential equations. These equa-
tions may include control variables to represent how agents are
administrated to control the targeted population. One performance
index is used to evaluate the treatment efficacy under various
usages of agents (i.e., controllers) against the cell population. The
performance index usually penalizes unfavorable events, such as
a large tumor population size and the side effects of the applied
agents.

In these cell-cycle-specific treatment problems, the optimal
control theory framework can be used to study how agents
should be administrated to maximize the performance index.
Analytical solutions to these problems can be analyzed using
the celebrated Pontryagin Maximum Principle [39,40]. Two types
of candidates can be obtained from this principle: a bang-bang
strategy or a singular strategy. In the context of anticancer ther-
apy, a bang-bang strategy corresponds to a treatment protocol in
which the maximal dose level or no agents are applied alterna-
tively over the entire treatment period. A singular strategy refers
to a treatment protocol in which the dose level of applied agents
varies over the entire treatment period. Previous research [41–44]
has shown that irregular structures, such as a multiplicity of solu-
tions or periodic trajectories, may be present in these control
problems, and further investigation on the optimality of solutions
is required. The Legendre–Clebsch condition or Goh conditions
can be used to rule out the optimality of singular strategy
[45,46]. Sufficient conditions on the local optimality for bang-
bang strategies to these problems may be obtained by construct-
ing differentiable solutions to the Hamilton–Jacobi–Bellman
equation with the method of characteristics [47–50].

Gene amplification refers to the process in which cells ac-
quire additional gene copies in their division process [51,52].
During mitotic cell division, the DNA content of a cell is gen-
erally first duplicated and then evenly distributed to two of its
daughter cells. This mechanism ensures that the DNA content
in each cell is the same from generation to generation. How-
ever, the genome of tumor cells might evolve, leading to an
increased number of copies of genes, and thus conferring a
greater level of resistance to chemotherapeutic drugs [53,54].
This process could also be reversible. In certain populations,
tumor cells with additional copies of genes can lose their in-
creased copies of genes and thus gradually have less resistance
to chemotherapeutic agents[55,56]. Therefore, depending on
whether the additional copies of genes can persist from
generation to generation after the selective agents are re-
moved, gene amplification may be unstable or stable.

Researchers have also used stochastic models with multiple
compartments [3–8] to study these evolutionary processes. The
concept behind this approach is to stratify the entire tumor
cell population into several subpopulations according to the
number of the amplified genes, and hence, the levels of resis-
tance to chemotherapeutic drugs in each subpopulation. The
lifespan of cells and the transition probability between any
two subpopulations (with each represented as one compart-
ment in the model) are properly specified to capture the pop-
ulation’s evolutionary behavior. Kimmel and Axelrod [3]
analyzed a discrete-time model to elucidate the asymptotic
properties of an unstable gene amplification process. If the
gene is not extinct, they proved that the limit distribution of
the number of gene copies exists under intervention of selec-
tive agents. Another study has presented similar work on mod-
eling stable gene amplification as a multitype Galton–Watson
process [57].

An optimization framework can also be used to study ther-
apy based on evolving resistance modeling with multiple com-
partments. Swierniak and Smieja presented an interesting
study on this topic [10]. They considered an infinite dimen-
sional compartment model and treat the cell cycle specificity
and gene amplification in one unified model. They applied a
decomposition technique to make it possible to analyze the
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dynamical properties of their system. When drug intervention
is considered as a controller in their model, the necessary con-
dition of the optimal control can be obtained by transforming
the original model into an integro-differential system. From
methodological viewpoints, the presented approach in this pa-
per is similar to the research in [10,20]. The optimal treatment
problem is formulated as a discrete control problem and the
solution stated in Theorem 4.2 is obtained with dynamical pro-
gramming approach. A future extension to the present work
should take the effects of gene amplification and cell-cycle
specificity into account. A similar implementable rule should
be derived when these effects are represented as multi-type/
multiple compartment models as the work in [20]. Moreover,
if the assumption of equal efficacy against S type cells is inva-
lid in these models, how this implementable rule may change
needs to be studied. This further analysis will bring the pres-
ent work closer to realistic situations.
Appendix A. Proof of Theorem 2.1

The objection of this section is to prove Theorem 2.1. First, we
calculate the formula of RðNÞ.
A.1. The formula of RðNÞ

Consider that N is approximated as a continuous variable. The
sizes R1ðNÞ and R2ðNÞ may be expanded about the point N by
Taylor’s theorem as follows:

R1 N þ DNð Þ ¼ R1ðNÞ þ
dR1ðNÞ

dN
DN þ o DN2

� �

and R2 N þ DNð Þ ¼ R2ðNÞ þ
dR2ðNÞ

dN
DN þ o DN2

� �
:

If the tumor population grows by DN, an expected increase R1ðNÞ
N DN

due to the duplication of R1 type cells and an expected increase

a1 1� R1ðNÞ
N � R2ðNÞ

N

� �
DN due to the mutations of S to R1 type cells will

contribute to the increase of R1 type cells. Therefore, the expected
number of R1 type cells is

R1 NþDNð Þ¼R1ðNÞþ
R1ðNÞ

N
DNþa1 1�R1ðNÞ

N
�R2ðNÞ

N

� �
DNþo DN2

� �
:

Similarly,

R2 N þ DNð Þ ¼ R2ðNÞ þ
R2ðNÞ

N
DN þ a2 1� R1ðNÞ

N
� R2ðNÞ

N

� �
DN

þ o DN2
� �

:

Dividing both sides of the equality by DN and taking limit DN ! 0
yield

dR1ðNÞ
dN

¼ R1ðNÞ
N
þ a1 1� R1ðNÞ

N
� R2ðNÞ

N

� �

¼ 1� a1ð ÞR1ðNÞ
N
� a1

R2ðNÞ
N
þ a1; ðA1Þ

and
dR2ðNÞ

dN
¼ R2ðNÞ

N
þ a2 1� R1ðNÞ

N
� R2ðNÞ

N

� �

¼ 1� a2ð ÞR2ðNÞ
N
� a2

R1ðNÞ
N
þ a2: ðA2Þ
Let RðNÞ ¼ R1ðNÞ þ R2ðNÞ and a ¼ a1 þ a2. Adding Eqs. (A1) and
(A2) leads to

dRðNÞ
dN

¼ 1� að ÞRðNÞ
N
þ a:

This implies

dRðNÞ
dN

þ a� 1
N

RðNÞ ¼ a) dRðNÞ
dN

� e
R N

N0

a�1
N dN þ a� 1

N
RðNÞ � e

R N

N0

a�1
N dN

¼ a � e
R N

N0

a�1
N dN ) d

dN
RðNÞ � e

R N

N0

a�1
N dN

 !
¼ a � e

R N

N0

a�1
N dN

) RðNÞ � e
R N

N0

a�1
N dN ¼

Z
a � e

R N

N0

a�1
N dN

dN þ C:

Since
R N

N0

a�1
N dN ¼ a� 1ð Þ ln N

N0
, we have

RðNÞ ¼ e
�
R N

N0

a�1
N dN

Z
a � e

R N

N0

a�1
N dN

dN þ C

 !
¼ N

N0

� �1�a

Z
a � N

N0

� �a�1

dN þ C

 !
¼ N

N0

� �1�a Na

Na�1
0

þ C

 !
¼ N þ C

N
N0

� �1�a

:

With the initial condition RðNÞ ¼ RðN0Þ at N ¼ N0, we have

RðN0Þ ¼ N0 þ C
N0

N0

� �1�a

:

It implies

C ¼ RðN0Þ � N0:

Therefore, we have

RðNÞ ¼ N þ RðN0Þ � N0ð Þ N
N0

� �1�a

: ðA3Þ
A.2. The formula of SðNÞ

Because RðNÞ þ SðNÞ ¼ N and Eq. (A3), we know that

SðNÞ ¼ N � RðNÞ ¼ N � N þ RðN0Þ � N0ð Þ N
N0

� �1�a
 !

¼ SðN0Þ �
N
N0

� �1�a

:

A.3. The formula of R1ðNÞ

Because Eq. (A1) and R1ðNÞ þ R2ðNÞ ¼ RðNÞ, we have
dR1ðNÞ
dN

¼ 1� a1ð ÞR1ðNÞ
N
� a1

RðNÞ � R1ðNÞ
N

þ a1

¼ R1ðNÞ
N
� a1

RðNÞ
N
þ a1:

According to Eq. (A3), it produces

dR1ðNÞ
dN

¼ R1ðNÞ
N
� a1

N þ RðN0Þ � N0ð Þ N
N0

� �1�a

N
þ a1

¼ R1ðNÞ
N
� a1 RðN0Þ � N0ð Þ

N1�a
0

N�a:

This implies
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dR1ðNÞ
dN

� 1
N

R1ðNÞ ¼ �
a1 RðN0Þ � N0ð Þ

N1�a
0

N�a

) dR1ðNÞ
dN

� e
R N

N0

�1
N dN
� 1

N
R1ðNÞ � e

R N

N0

�1
N dN

¼ �a1 RðN0Þ � N0ð Þ
N1�a

0

N�a � e
R N

N0

�1
N dN

) d
dN

R1ðNÞ � e
R N

N0

�1
N dN

 !

¼ �a1 RðN0Þ � N0ð Þ
N1�a

0

N�a � e
R N

N0

�1
N dN

) R1ðNÞ � e
R N

N0

�1
N dN

¼ �a1 RðN0Þ � N0ð Þ
N1�a

0

Z
N�a � e

R N

N0

�1
N dN

dN þ C1:

It gives

R1ðNÞ ¼ e
R N

N0

1
NdN �a1 RðN0Þ � N0ð Þ

N1�a
0

Z
N�a � e

R N

N0

�1
N dN

dN þ C1

 !

¼ N
N0

�a1 RðN0Þ � N0ð Þ
N1�a

0

Z
N�a � N0

N
dN þ C1

 !

¼ N
N0

�a1 RðN0Þ � N0ð Þ
N1�a

0

N0
1
�a

N�a þ C1

 !

¼ N
N0

a1

a1 þ a2

RðN0Þ � N0ð Þ
N�a

0

N�a þ C1

� �
:

With the initial condition R1ðNÞ ¼ R1ðN0Þ at N ¼ N0, we have

R1ðN0Þ ¼
N0

N0

a1

a1 þ a2

RðN0Þ � N0ð Þ
N�a

0

N�a
0 þ C1

� �

¼ a1

a1 þ a2
RðN0Þ � N0ð Þ þ C1:

It implies

C1 ¼ R1ðN0Þ �
a1

a1 þ a2
RðN0Þ � N0ð Þ

¼ R1ðN0Þ �
a1

a1 þ a2
R1ðN0Þ þ R2ðN0Þ � N0ð Þ

¼ a2

a1 þ a2
R1ðN0Þ �

a1

a1 þ a2
R2ðN0Þ � N0ð Þ:

Therefore, we have

R1ðNÞ ¼
N
N0

a1

a1þa2

RðN0Þ�N0ð Þ
N�a

0

N�aþ a2

a1þa2
R1ðN0Þ�

a1

a1þa2
R2ðN0Þ�N0ð Þ

� �

¼ N
N0

�a1

a1þa2

SðN0Þ
N�a

0

N�aþ a2

a1þa2
R1ðN0Þþ

a1

a1þa2
R1ðN0ÞþSðN0Þð Þ

� �

¼ N
N0

R1ðN0Þþ
a1

a1þa2
SðN0Þ

N
N0

1� N
N0

� ��a1�a2
� �

:

A.4. The formula of R2ðNÞ

Because R1ðNÞ þ R2ðNÞ ¼ RðNÞ and Eq. (A4), we know that
R2 Nð Þ ¼ RðNÞ � R1ðNÞ ¼ N � SðN0Þ
N
N0

� �1�a1�a2

� N
N0

R1ðN0Þ �
a1

a1 þ a2
SðN0Þ

N
N0
þ a1

a1 þ a2
SðN0Þ

N
N0

� �1�a1�a2

¼ N
N0

R1ðN0Þ þ R2ðN0Þ þ SðN0Þð Þ

� N
N0

R1ðN0Þ �
a1

a1 þ a2
SðN0Þ

N
N0
� SðN0Þ

N
N0

� �1�a1�a2

þ a1

a1 þ a2
SðN0Þ

N
N0

� �1�a1�a2

¼ N
N0

R2ðN0Þ þ
a2

a1 þ a2
SðN0Þ

N
N0

1� N
N0

� ��a1�a2
� �

:

Appendix B. Proof of Theorem 2.3

The objection of this section is to prove Theorem 2.3. According
to Eq. (7) and Lemma 2.2, we know that

Pno-resist NþDN Njð Þ¼1�a1;2
dR1ðNÞ

dN
�a1 1�R1ðNÞ

N
�R2ðNÞ

N

� �� �
DN

�a2;1
dR2ðNÞ

dN
�a2 1�R1ðNÞ

N
�R2ðNÞ

N

� �� �
DNþoðDN2Þ:

Since Pno-resistðNjNÞ ¼ 1, we have

Pno-resistðN þ DNjNÞ ¼ Pno-resistðNjNÞ

� 1� a1;2
dR1ðNÞ

dN
� a1 1� R1ðNÞ

N
� R2ðNÞ

N

� �� ��

DN � a2;1
dR2ðNÞ

dN
� a2 1� R1ðNÞ

N
� R2ðNÞ

N

� �� �

DN þ oðDN2Þ
�
:

It implies

Pno-resistðN þ DNjNÞ � Pno-resistðNjNÞ
DN

¼ Pno-resistðNjNÞ

� �a1;2
dR1ðNÞ

dN
� a1 1� R1ðNÞ

N
� R2ðNÞ

N

� �� ��

�a2;1
dR2ðNÞ

dN
� a2 1� R1ðNÞ

N
� R2ðNÞ

N

� �� �
þ oðDN2Þ

�
:

Given fixed N, let DN ! 0 and apply the relation
SðNÞ ¼ N � R1ðNÞ � R2ðNÞ. We have

dPno-resistðNÞ
dN

¼ Pno-resistðNÞ �a1;2
dR1ðNÞ

dN
� a2;1

dR2ðNÞ
dN

�

þ a1a1;2 þ a2a2;1ð Þ SðNÞ
N

�
:

This implies
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dPno-resistðNÞ
dN

þ a1;2
dR1ðNÞ

dN
þ a2;1

dR2ðNÞ
dN

� a1a1;2 þ a2a2;1ð Þ SðNÞ
N

� �
Pno-resistðNÞ ¼ 0:

Let

AðNÞ ¼ a1;2
dR1ðNÞ

dN
þ a2;1

dR2ðNÞ
dN

� a1a1;2 þ a2a2;1ð Þ SðNÞ
N

:

It processes

dPno-resistðNÞ
dN

þ AðNÞPno-resistðNÞ ¼ 0:

It implies

dPno-resistðNÞ
dN

� e
R N

N0
AðNÞdN

þ AðNÞPno-resistðNÞ � e
R N

N0
AðNÞdN

¼ 0

) d
dN

Pno-resistðNÞ � e
R N

N0
AðNÞdN

 !
¼ 0) Pno-resistðNÞ � e

R N

N0
AðNÞdN

¼ K:

It gives

Pno-resistðNÞ ¼ Ke
�
R N

N0
AðNÞdN

¼ K exp �
Z N

N0

a1;2
dR1ðNÞ

dN
þ a2;1

dR2ðNÞ
dN

��

� a1a1;2 þ a2a2;1ð Þ SðNÞ
N

�
dN
�

¼ K expð�a1;2 R1ðNÞ � R1ðN0Þð Þ � a2;1 R2ðNÞ � R2ðN0Þð Þ

þ a1a1;2 þ a2a2;1ð Þ
Z N

N0

SðNÞ
N

dNÞ:

Since

Z N

N0

SðNÞ
N

dN ¼
Z N

N0

SðN0Þ
N1�a

0

N�a

 !
dN ¼ SðN0Þ

N1�a
0

1
1� a

N1�a � N1�a
0

� �

¼ 1
1� a1 � a2

SðNÞ � SðN0Þð Þ;

we have

Pno-resist Nð Þ ¼ K exp �a1;2 R1ðNÞ � R1ðN0Þð Þ � a2;1 R2ðNÞ � R2ðN0Þð Þð

þa1a1;2 þ a2a2;1

1� a1 � a2
SðNÞ � SðN0Þð Þ

�
:

With the initial condition Pno-resist N0ð Þ ¼ 1 at N ¼ N0, we have

Pno-resist N0ð Þ ¼ K exp �a1;2 R1 N0ð Þ � R1ðN0Þð Þ � a2;1 R2 N0ð Þ � R2ðN0Þð Þð

þa1a1;2 þ a2a2;1

1� a1 � a2
S N0ð Þ � SðN0Þð Þ

�
¼ 1:

It implies

K ¼ 1:

Therefore, we have

Pno-resistðNÞ ¼ exp �a1;2 R1ðNÞ � R1ðN0Þð Þ � a2;1 R2ðNÞ � R2ðN0Þð Þð

þa1a1;2 þ a2a2;1

1� a1 � a2
SðNÞ � SðN0Þð Þ

�
:

Appendix C. Show that Eqs. (16) and (17) are equivalent

a1;2 R1
�NðiÞ T1!i�1;Ti
� �� �

�R1
�N0
ðiÞ

T1!i�1;Ti
� �� �� �

þa2;1 R2
�NðiÞ T1!i�1;Ti
� �� �

�R2
�N0
ðiÞ

T1!i�1;Ti
� �� �� �

�a1a1;2þa2a2;1

1�a1�a2
S �NðiÞ T1!i�1;Ti

� �
�S �N0

ðiÞ
T1!i�1;Ti
� �� �� ��

¼ðaÞa1;2 2
d0
d R1

�N0
ðiÞðT1!i�1;TiÞ

� �
þ

a1 2
d0
d �2ð1�a1�a2Þd

0
d

� �
a1þa2

0
@

S �N0
ðiÞðT1!i�1;TiÞ

� �
�R1

�N0
ðiÞðT1!i�1;TiÞ

� ��

þa2;1 2
d0
d R2

�N0
ðiÞðT1!i�1;TiÞ

� �
þ

a2 2
d0
d �2ð1�a1�a2Þd

0
d

� �
a1þa2

0
@

�S �N0
ðiÞðT1!i�1;TiÞ

� �
�R2

�N0
ðiÞðT1!i�1;TiÞ

� ��
�a1a1;2þa2a2;1

1�a1�a2
2ð1�a1�a2Þd

0
d S �N0

ðiÞ
T1!i�1;Ti
� �� ��

�S �N0
ðiÞ

T1!i�1;Ti
� �� ��

¼ 2
d0
d �1

� �
a1;2R1

�N0
ðiÞ

T1!i�1;Ti
� �� ��

þa2;1R2
�N0
ðiÞ

T1!i�1;Ti
� �� ��

þ a1a1;2þa2a2;1

a1þa2
2

d0
d �2ð1�a1�a2Þd

0
d

� ��

�a1a1;2þa2a2;1

1�a1�a2
2ð1�a1�a2Þd

0
d �1

� ��
� S �N0

ðiÞ
T1!i�1;Ti
� �� �

¼ 2
d0
d �1

� �
a1;2R1

�N0
ðiÞ

T1!i�1;Ti
� �� �

þa2;1R2
�N0
ðiÞ

T1!i�1;Ti
� �� �� �

þ a1a1;2þa2a2;1

a1þa2ð Þ 1�a1�a2ð Þ 2
d0
d �2ð1�a1�a2Þd

0
d � a1þa2ð Þ2

d0
d þ a1þa2ð Þ

� �

�S �N0
ðiÞ

T1!i�1;Ti
� �� �

¼ðbÞ 2
d0
d �1

� �
a1;2kTi�1

2;r R1 N0
ðiÞ T1!i�1ð Þ

� ��
þa2;1k�Ti�1

1;r R2 N0
ðiÞ T1!i�1ð Þ

� ��

þ
ða1a1;2þa2a2;1Þ 2

d0
d �2ð1�a1�a2Þd

0
d � a1þa2ð Þ 2

d0
d �1

� �� �
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2;s k�Ti�1
1;s

ða1þa2Þð1�a1�a2Þ

�S N0
ðiÞ T1!i�1ð Þ

� �
;

where (a) follows from Eqs. (12)–(14), and (b) follows from Eqs. (9)–
(11).

Therefore, we know that the objective function in (16) and the
objective function in (17) are equivalent.

Appendix D. Proof of Lemma 4.1

Case 1. The first drug is applied (i.e. Tiþ1 ¼ 1)

a1;2 k2;r
T��i �1R1 N0

ðiÞ �T1!i�1
� �� �

�k
T�i �1
2;r R1 N0

ðiÞ �T1!i�1
� �� �� �

Pa2;1 k1;r
�T�i �1R2 N0
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� �� �

�k
�T��i �1
1;r R2 N0
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� �� �� �

PðaÞa2;1k�2
1;r k1;r

�T�i �1R2 N0
ðiÞ �T1!i�1
� �� �

�k
�T��i �1
1;r R2 N0

ðiÞ �T1!i�1
� �� �� �

;

where (a) follows from 0 6 k�2
1;r 6 1. Rearranging terms in the

inequality leads to

) a1;2k
T��i �1
2;r R1 N0

ðiÞ �T1!i�1
� �� �

þ a2;1k�2
1;r k

�T��i �1
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� �� �

P a1;2k
T�i �1
2;r R1 N0
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�T�i �1
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;
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Case 2. The second drug is applied (i.e. Tiþ1 ¼ �1)

a2;1 k1;r
�T��i �1R2 N0

ðiÞ �T1!i�1
� �� �

� k
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where (b) follows from 0 6 k�2
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:

Base on the discussions in case 1 and 2, we have
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Therefore, we may have
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where (c) follows from Eqs. (9)–(13), and (d) follows from Eq. (D1).

Appendix E. Proof of Theorem 5.2

Since we know that Theorem 5.1 is the special case of Theorem
5.2, we will prove Theorem 5.2 by mathematical induction only.
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, in the following, we denote
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for simplicity. According to Theo-
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where (a) follows from Eq. (9), (10), (12) and (13). The statement
holds for the case i ¼ 1.

Suppose the statement holds for i ¼ 2 . . . k� 1. By Theorem 4.2,
we have
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where (a) follows from Eq. (9), (10), (12) and (13).
Based on the induction hypothesis, we know that T�k ¼ �T�k�1

and

T�k�1 ¼ arg min
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:

Minimization problem in Eq. (E1) can be considered term by term.
The minimization of the first term can be obtained as follows:
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Furthermore, it can be shown that the minimization of the second
term is achieved with �T�k as follows:
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Since T�k�1 ¼ �T�k, Eq. (E1) can be minimized with the choice of

T�kþ1 ¼ �T�k:
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Appendix F. Proof of Theorem 6.1

We will prove Theorem 5.2 by mathematical induction. Since
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where (a) follows from Eq. (9), (10), (12) and (13). The statement
holds for the case i ¼ 1.

Suppose the statement holds for i ¼ 2 . . . k� 1. By Theorem 4.2,
we have
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where (a) follows from Eq. (9).
Based on the induction hypothesis, we know that T�k ¼ �T�k�1

and

T�k�1 ¼ arg min
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:

Minimization problem in Eq. (F1) can be considered term by term.
The minimization of the first term can be obtained as follows:

arg min
Tkþ1

kr
T�k�1þT�kþTkþ1�1a2R1 Nðk�1Þ

0 T�1!k�2

� �� �
þ k�T�k�1�T�k�Tkþ1�1

r a1

�
R2 Nðk�1Þ

0 T�1!k�2

� �� ��
¼ arg min

Tkþ1

kr
Tkþ1�1a2R1 Nðk�1Þ

0 T�1!k�2

� �� ��
þk�Tkþ1�1

r a1R2 Nðk�1Þ
0 T�1!k�2

� �� ��
¼ T�k�1:

Furthermore, it can be shown that the minimization of the second
term is achieved with �T�k as follows:

arg min
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r
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Since T�k�1 ¼ �T�k, Eq. (F1) can be minimized with the choice of

T�kþ1 ¼ �T�k:
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