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ABSTRACT

The problem of finding optimal designs when pure dispersion factors are present in

the class of regular single replicated two-level fractional factorial design of resolution

III and higher is studied. When a single dispersion factor is present, D-optimal and

A-optimal designs depend on the number of length three words involving the dispersion

factor in the defining relation for resolution III designs. When two dispersion factors

with equal dispersion main effect are present, D-optimal designs depend not only on

the number of length three and length four words involving the dispersion factors in

the defining relation but also on the values of the dispersion mean and main effects and

the structures of the words. Tables are given to show how D-optimality ordering of

designs changes when the values of the dispersion mean and main effects and the word

structure change.

Key words and phrases: A-optimality, D-optimality, location effect, separate dispersion

effect.

JEL classification: C13, C21, C90.

1. Introduction

Situations of non-constant variance happen when identifying important location

factors in many industrial and business experiments. Factors that are responsible for
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the changes of the variance of the response variable from one treatment combination

to another are called dispersion factors. Identification of dispersion factors has been

studied extensively. Box and Meyer (1986) initiated the investigation and proposed an

informal method to identify dispersion factors. Montgomery (1990) suggested plotting

these statistics on a normal probability plot. Some other papers in this line of studies,

for example, can be found in Chang and Ting (2009). More recently, van de Ven

(2008) showed the estimators of the dispersion effects proposed by Wiklander (1998),

Wiklander and Holm (2003), Liao and Iyer (2000), and Brenneman and Nair (2001)

are equivalent.

Not until Lin (2005) has the optimality property for the estimation of location

effects when dispersion factors are present in the model been studied. Lin (2005)

investigated D-optimal designs for estimating a specific set of location effects when

a single dispersion factor is present. Chang and Ting (2009) found D-optimal and

A-optimal designs for estimating all location main effects when one or two dispersion

factors are present. Ting (2009) focused further on investigating the D-optimality of

resolution III designs when two dispersion factors with equal dispersion main effect are

present. In all the aforementioned papers the dispersion factors may also have location

effects and vice versa. However, there are cases in industrial and business experiments

that some factors only have location effects and the others only have dispersion effects

in the model. In this paper our interest focuses on finding D-optimal and A-optimal

designs for estimating all location main effects when one or two pure dispersion factors

are present in the class of single replicated regular 2n−p fractional factorial designs of

resolution III or higher.

Model, notation, and the information matrix for the estimation of location main

effects are given in section 2. Section 3 investigates the D-optimality and A-optimality

of designs for estimating location main effects when one dispersion factor is present in

the model. In section 4, D-optimality ordering of designs for estimating location main

effects with two dispersion factors having the same dispersion main effect is given.

Section 5 contains the concluding remarks.
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2. Premilinaries

Let ~Y be the N × 1 response vector, where N = 2n−p, and F1, F2, . . . , Fn be the n

two-level factors where F1, F2, . . . , Fa denote the a dispersion factors and Fa+1, Fa+2, . . . , Fn

denote the n − a location factors. Let FiFj , be the two-factor interaction, FiFjFk, be

the three-factor interaction, and so on. Assume that two-factor and higher-order inter-

actions are negligible, the model employed here is

~Y = X~β + ε ,

where ~β is the (n − a + 1) × 1 vector of the overall mean and all location main effects;

X =
[

~1, ~xa+1, . . . , ~xn

]

is the N × (n − a + 1) model matrix, ~1 is a vector of ones,

and ~xj = (x1j , x2j , . . . , xNj)
′ with xij = 1 if factor j appears at its high level in the

ith response or, xij = −1 if factor j appears at its low level; and ~ε is the vector of

uncorrelated random error with E(~ε) = ~0 and V(~ε) = γ0IN +γ1D1 +γ2D2 + · · ·+γaDa,

where IN is the identity matrix of order N , γ0 is the dispersion mean, γj is the dispersion

main effect of factor Fj , Dj is the N × N diagonal matrix with diagonal elements

x1j , x2j , . . . , xNj, and
∑a

j=1 |γj | < γ0, such that the variances of the response variables

are all positive.

Since the variance of the response variables are not all the same, the generalized

least squares estimator, ~̂β, of ~β is used. Now ~̂β = (X ′ V(~Y )−1X)−1X ′ V(~Y )−1~Y and

the variance-covariance matrix of ~̂β is V
(

~̂β
)

= (X ′ V(~Y )−1X)−1. X ′ V(~Y )−1X is called

the information matrix for the estimation of ~β and is denoted as M hereafter.

3. Optimal 2
n−p fractional factorial design with one dispersion factor

Without loss of generality, F1 is assumed as the single dispersion factor. Then

V(~Y ) = γ0IN + γ1D1, |γ1| < γ0, V(~Y )−1 = m0IN + mD1, where m0 = γ0/(γ
2
0 − γ2

1),

m = −γ1/(γ
2
0 − γ2

1), and M = (mij), i, j = 0, 2, 3, . . . , n has the following form,

M = N

[

m0
~0′

~0 M11

]

,

where ~0 is a vector of zeroes; M11 is a square matrix of order n − 1 whose diagonal

elements are m0 and off-diagonal element mij = m if F1FiFj is a word in the defining
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relation, or mij = 0, otherwise. The derivation of M follows a similar procedure as in

Chang and Ting (2009).

A design is said to be D-optimal if it minimizes the determinant of M−1, or equiv-

alently maximizes the determinant of M , and is said to be A-optimal if it minimizes

the trace of M−1. Through straightforward algebra one can obtain that the determi-

nant of M is det(M) = Nn(m2
0 − m2)θmn−2θ

0 , and the trace of M−1 is tr(M−1) =

N−1((n − 2θ)m−1
0 + 2θm0(m

2
0 − m2)−1), where θ is the number of length three words

of the form F1FiFj in the defining relation. In the following, the optimality property

of designs is investigated according to design resolution.

(I) Designs of resolution IV or higher. For designs of resolution IV or higher, θ = 0,

and they are “robust” against single dispersion factor.

(II) Designs of resolution III. Since m0 > |m|, one can show that det(M) is decreasing

in θ, and tr(M−1) is increasing in θ. The following Theorem 3.1 is a direct

consequence.

Theorem 3.1. Designs having the minimum number of length three words involving

the dispersion factor in the defining relation are the D-optimal and A-optimal in 2n−p
III

.

4. Optimal 2
n−p fractional factorial design with two dispersion factors

and equal dispersion main effect

Without loss of generality, F1 and F2 are assumed as the two dispersion factors,

and γ1 = γ2 = γ. Then V(~Y ) = γ0IN + γD1 + γD2, |γ| = γ0/2, V(~Y )−1 = m0IN +

mD1 +mD2 +m1D1D2, where m0 = ϕ−1γ0(γ
2
0 −2γ2), m = −ϕ−1γγ2

0 , m1 = 2ϕ−1γ0γ
2,

and ϕ = γ2
0(γ2

0 − 4γ2); and M = (mij), i, j = 0, 3, 4, . . . , n, has the following form,

M = N

[

m0
~ℓ′

~ℓ M11

]

,

where ~ℓ = (m30, . . . ,mn0)
′ and mi0 = m1 if F1F2Fi is a word in the defining relation,

otherwise mi0 = 0; M11 is a square matrix of order n − 2 whose diagonal elements

are m0 and off-diagonal element mij = m if either F1FiFj or F2FiFj is a word in the
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defining relation, or mij = m1 if F1F2FiFj is a word in the defining relation, otherwise

mij = 0. The derivation of M follows a similar procedure as in Chang and Ting (2009).

Designs having fewer words of the forms F1FiFj , F2FiFj , F1F2Fi, and F1F2FiFj

in the defining relation are better in terms of D-optimality and A-optimality. The

following Theorem 4.1 is thus stated without proof.

Theorem 4.1. Designs having no length three words involving either one or both of

the dispersion factors and no length four words involving both of the dispersion factors

in the defining relation are D-optimal and A-optimal.

In the following, the optimality property of designs is investigated by design reso-

lution.

(I) Designs of resolution V or higher. By Theorem 4.1, designs of resolution V or

higher are robust against two dispersion factors.

(II) Design of resolution IV. The optimality property of designs of resolution IV is

similar to that of the optimality property of designs of resolution III with single

dispersion factor. The following Theorem 4.2 is a direct consequence

Theorem 4.2. Designs having the minimum number of length four words involving

both of the dispersion factors in the defining relation are D-optimal and A-optimal in

2n−p
IV

.

(III) Designs of resolution III. The optimality property is not direct and the optimality

ordering of these designs depends not only on the number of words involving the

dispersion factors but also on the forms of the words and the values of γ0 and γ.

Some structural characteristics concerning M are stated in the followings.

(1) There is at most one nonzero element in ~ℓ.

(2) If there is one nonzero element in ~ℓ, then except for the diagonal element,

all the elements in the corresponding row and column in M11 are zero, i.e.,

if mi′0 = m1, then mi′j = mji′ = 0, ∀j 6= i′.
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(3) In M11, m appears at most twice in each row and in each column, and m1

appears at most once in each row and in each column. And if mij = mij′ =

m, then mjj′ = m1.

(4) Through row and column operations, M can be transformed into a matrix

of the form diag(Iδ1 ⊗ U, Iδ2 ⊗ P, Iδ3 ⊗ Q, Iδ4 ⊗ T,m0In−1−4δ1−3δ2−2(δ3+δ4)),

where

U =













m0 m m m1

m m0 m1 m

m m1 m0 m

m1 m m m0













, P =







m0 m m

m m0 m1

m m1 m0






,

Q =

[

m0 m

m m0

]

, T =

[

m0 m1

m1 m0

]

.

Values of the δs depend on the number of words of the forms F1FiFj , F2FiFj ,

F1F2Fi, and F1F2FiFj in the defining relation. The determinant of M equals

to the determinant of the transformed matrix of M above.

(5) U indicates that the defining relation contains words of the forms F1FiFj ,

F2FiFj′ , F2Fi′Fj , F1Fi′Fj′ , F1F2FjFj′ , and F1F2FiFi′ . For example, F1F3F4,

F2F3F5, F2F4F6, F1F5F6, F1F2F4F5, and F1F2F3F6, say.

(6) P indicates that the defining relation contains words of the forms F1FiFj ,

F2FiFj′ , and F1F2FjFj′ . For example, F1F3F4, F2F3F5, and F1F2F4F5, say.

(7) T indicates that there are words of the forms F1F2FiFj or F1F2Fi in the

defining relation, and Q indicates that there are words of the forms F1FiFj

or F2FiFj in the defining relation.

An example is given below to show how values of the δs are determined.

Example 1. Consider 2n−p
III designs with three words of the forms F1FiFj , F2FiFj ,

F1F2Fi, and F1F2FiFj in the defining relation. The followings are four possible designs.

Design 1 contains F1F2F3F4, F1F2F5F6, and F1F2F7F8 in the defining relation. Design

2 contains F1F3F4, F2F3F5, and F1F2F4F5. Design 3 contains F1F3F4, F2F5F6, and

F1F2F7F8. Design 4 contains F1F2F3, F1F2F4F5, and F1F2F6F7. For Design 1, δ1 =
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δ2 = δ3 = 0, δ4 = 3; for Design 2, δ1 = δ3 = δ4 = 0, δ2 = 1; for Design 3, δ1 = δ2 = 0,

δ3 = 2, δ4 = 1; and for Design 4, δ1 = δ2 = δ3 = 0, δ4 = 3.

In the following we investigate how different forms of the words and values of

γ0 and γ affect the order of designs when the total number of words of the forms

F1FiFj, F2FiFj , F1F2Fi, and F1F2FiFj in the defining relation is fixed. Our focus is

on D-optimality and the total number of words involving the dispersion factors is less

than or equal to six.

Case 1. One word in the defining relation involves the dispersion factors.

According to the values of the δs, there are two possible designs and are listed in Table 1.

Designs with word of the form F1F2FiFj or F1F2Fi in the defining relation have the

same δs’ values. Their information matrices through row and column operations are of

the same form and are considered as the same design.

Let det(di) denote the determinant of the information matrix of design di. One

can show that det(d1) > det(d2), regardless of the values of γ0 and γ. Hence, the

D-optimality ordering of the designs is d1 ≻ d2, where “≻” indicates that d1 is better

than d2 in terms of D-optimality. That is, when there is one word in the defining

relation containing the dispersion factors, the best word structures are either F1F2FiFj ,

or F1F2Fi.

Case 2. Two words in the defining relation involve the dispersion factors.

According to the values of the δs, there are three possible designs and are listed in

Table 2. k × (F1F2FiFj) means that there are k words of the form F1F2FiFj in the

defining relation, and i and j are all distinct. For example, for k = 2, the two words

are F1F2F3F4 and F1F2F5F6, say.

One can show that det(d1) > det(d2) > det(d3), regardless of the values of γ0 and

γ. Hence, the D-optimality ordering of the designs is d1 ≻ d2 ≻ d3. That is, when

there are two words in the defining relation containing the dispersion factors, the best

word structures are either (F1F2FiFj , F1F2Fi′Fj′) or (F1F2FiFj , F1F2Fi′).

When number of words involving the dispersion factors is more than two, the

D-optimality ordering is not strict anymore.
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Case 3. Three words in the defining relation involve the dispersion factors.

According to the values of the δs, there are five possible designs and are listed in Table 3.

P indicates designs having words of the forms as stated in (6).

One can show that det(d1) > det(d4) > det(d5), and det(d2) > det(d3) > det(d4) >

det(d5), regardless of the values of γ0 and γ. However, the overall D-optimality order-

ing of the above five designs depends also on the values of γ0 and γ. When 0 < |γ| <

0.3827γ0, the ordering is d2 ≻ d3 ≻ d1 ≻ d4 ≻ d5; when 0.3827γ0 < |γ| < 0.4370γ0, the

ordering is d2 ≻ d1 ≻ d3 ≻ d4 ≻ d5; and when 0.4370γ0 < |γ| < 0.5γ0, the ordering

is d1 ≻ d2 ≻ d3 ≻ d4 ≻ d5. That is, when the absolute value of the common dis-

persion main effect is large, the best word structures are (F1FiFj , F2FiFj′ , F1F2FjFj′).

However, when the absolute value of the common dispersion main effect is moderate

or small, the best word structures are either (F1F2FiFj , F1F2Fi′Fj′ , F1F2Fi′′Fj′′) or

(F1F2Fi, F1F2Fi′Fj′ , F1F2Fi′′Fj′′).

Case 4. Four words in the defining relation involve the dispersion factors.

According to the values of the δs, there are seven possible designs and are listed in

Table 4. Now

det(d1) > det(d2),

det(d1) > det(d5) > det(d6) > det(d7),

det(d2) > det(d6) > det(d7), and

det(d3) > det(d4) > det(d5) > det(d6) > det(d7),

regardless of the values of γ0 and γ. The overall D-optimality ordering of the above

designs, for different values of γ0 and γ, are given in Table 5. When the absolute value of

the common dispersion main effect is large, the best word structures are either (F1FiFj ,

F2FiFj′ , F1F2FjFj′ , F1F2Fi′′Fj′′) or (F1F2Fi, F1Fi′Fj , F2Fi′Fj′ , F1F2FjFj′). However,

when the absolute value of the common dispersion main effect is moderate or small,

the best word structures are either (F1F2FiFj , F1F2Fi′Fj′ , F1F2Fi′′Fj′′ , F1F2Fi∗Fj∗) or

(F1F2Fi, F1F2Fi′Fj′ , F1F2Fi′′Fj′′ , F1F2Fi∗Fj∗).

Case 5. Five words in the defining relation involve the dispersion factors.

According to the values of the δs, there are nine possible designs and are listed in
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Table 6. Now

det(d1) > det(d2) > det(d3),

det(d1) > det(d6) > det(d7) > det(d8) > det(d9),

det(d2) > det(d7) > det(d8) > det(d9),

det(d3) > det(d8) > det(d9), and

det(d4) > det(d5) > det(d6) > det(d7) > det(d8) > det(d9),

regardless of the values of γ0 and γ. The overall D-optimality ordering of the above

designs, for different values of γ0 and γ, are given in Table 7. When the absolute

value of the common dispersion main effect is large, the best word structures are

either (F1FiFj , F2FiFj′ , F1F2FjFj′ , F1F2Fi′′Fj′′ , F1F2Fi∗Fj∗) or (F1F2Fi, F1Fi′Fj ,

F2Fi′Fj′ , F1F2FjFj′ , F1F2Fi′′Fj′′). However, when the absolute value of the com-

mon dispersion main effect is moderate or small, the best word structures are either

(F1F2FiFj , F1F2Fi′Fj′ , F1F2Fi′′Fj′′ , F1F2Fi∗Fj∗ , F1F2Fi′′′Fj′′′) or (F1F2Fi, F1F2Fi′Fj′ ,

F1F2Fi′′Fj′′ , F1F2Fi∗Fj∗, F1F2Fi′′′Fj′′′).

Case 6. Six words in the defining relation involve the dispersion factors.

According to the values of the δs, there are 13 possible designs and are listed in Table 8.

U indicates designs having words of the forms as stated in (5). Now

det(d1) > det(d2) > det(d5) > det(d6) > det(d12) > det(d13),

det(d3) > det(d4) > det(d5) > det(d6),

det(d3) > det(d9) > det(d10) > det(d11) > det(d12) > det(d13),

det(d4) > det(d10) > det(d11) > det(d12) > det(d13),

det(d5) > det(d11) > det(d12) > det(d13), and

det(d7) > det(d8) > det(d9) > det(d10) > det(d11) > det(d12) > det(d13),

regardless of the values of γ0 and γ. The overall D-optimality ordering of the above

designs, for different values of γ0 and γ, are given in Table 9. When the absolute value

of the common dispersion main effect is large, the best word structures are (F1FiFj ,

F2FiFj′ , F1Fi′Fj′ , F2Fi′Fj , F1F2FjFj′ , F1F2FiFi′). However, when the absolute value
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of the common dispersion main effect is moderate or small, the best word structures

are either (F1F2FiFj , F1F2Fi′Fj′ , F1F2Fi′′Fj′′ , F1F2Fi∗Fj∗ , F1F2Fi′′′Fj′′′ , F1F2Fî Fj )̂

or (F1F2Fi, F1F2Fi′Fj′ , F1F2Fi′′Fj′′ , F1F2Fi∗Fj∗, F1F2Fi′′′Fj′′′ , F1F2Fî Fj )̂.

Example 2. Consider the following four 26−2
III designs. Design dA has I = F1F2F5 =

F4F5F6 = F1F2F4F6, dB has I = F1F3F5 = F1F2F4F6 = F2F3F4F5F6, dC has I =

F1F3F5 = F2F4F6 = F1F2F3F4F5F6, and dD has I = F1F2F5 = F1F3F6 = F2F3F5F6.

The numbers of words of the forms F1FiFj , F2FiFj , F1F2Fi, and F1F2FiFj in the defin-

ing relations are all two. The corresponding (δ1, δ2, δ3, δ4) values for the four designs

are dA : (0, 0, 0, 2), dB : (0, 0, 1, 1), dC : (0, 0, 2, 0), and dD : (0, 0, 1, 1), respectively.

One can see from Table 2 that dA is of type d1, dB and dD are of type d2, and dC

is of type d3. According to the results in Case 2, dA ≻ dB = dD ≻ dC . That is,

regardless of the values of γ0 and γ, design dA is D-optimal in estimating the location

main effects among all designs having two words of the forms F1FiFj , F2FiFj , F1F2Fi,

and F1F2FiFj in the defining relation.

Example 3. Consider the following two 29−4
III designs. Design dA has generators F6 =

F2F3, F7 = F1F3, F8 = F2F4, F9 = F1F2F3F4F5, and the corresponding defining

relation up to words of length four is I = F2F3F6 = F1F3F7 = F2F4F8 = F1F2F6F7 =

F3F4F6F8 = F5F7F8F9. Design dB has generators F6 = F1F3, F7 = F2F4, F8 =

F1F2F5, F9 = F1F2, and the corresponding defining relation up to words of length four

is I = F1F3F6 = F2F4F7 = F1F2F9 = F5F8F9 = F1F2F5F8 = F1F4F7F9 = F2F3F6F9.

The numbers of words of the forms F1FiFj , F2FiFj , F1F2Fi, and F1F2FiFj in the

defining relations are all four. The corresponding (δ1, δ2, δ3, δ4) values for the two

designs are dA : (0, 1, 1, 0), and dB : (0, 0, 2, 2). From Table 4 one can see that dA is of

type d2, and dB is of type d5. By Table 5, dB is better than dA in terms of D-optimality

when 0 < |γ| < 0.3827γ0, otherwise dA is better among all designs having four words

of the forms F1FiFj , F2FiFj , F1F2Fi, and F1F2FiFj in the defining relation.

5. Concluding remarks

D-optimal designs for the estimation of location main effects when two dispersion
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factors are present in the model depend not only on the number of length three words

containing either one or both of the dispersion factors and length four words containing

both of the dispersion factors, but also on the word structures in the defining relation,

and the values of γ0 and γ. It seems to the author that when the absolute value of the

common dispersion main effect is moderate or small, minimum aberration works well

in distinguishing designs. That is, designs having more length four words involving

both of the dispersion factors are better. However, when the absolute value of common

dispersion main effect is large, having words of the specific structures as stated in (5)

and (6) in section 4 results in a better design. That is, having more factors in common

for the length three and length four words that contain the dispersion factors gives a

better design.
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Table 1 Values of the δs and word structures with one word involving the dispersion
factors.

Design (δ1, δ2, δ3, δ4) Word Structures

d1 (0, 0, 0, 1) F1F2FiFj

F1F2Fi

d2 (0, 0, 1, 0) F1FjFj or F2FiFj

Table 2 Values of the δs and word structures with two words involving the dispersion
factors.

Design (δ1, δ2, δ3, δ4) Word Structures

d1 (0, 0, 0, 2) 2 × (F1F2FiFj)

F1F2FiFj , F1F2Fi′

d2 (0, 0, 1, 1) F1F2FiFj , F1Fi′Fj′ or F2Fi′Fj′

F1FiFj or F2FiFj , F1F2Fi′

d3 (0, 0, 2, 0) 2 × (F1FiFj) or F2FiFj)

Table 3 Values of the δs and word structures with three words involving the dispersion
factors.

Design (δ1, δ2, δ3, δ4) Word Structures

d1 (0, 1, 0, 0) P

d2 (0, 0, 0, 3) 3 × (F1F2FiFj)

2 × (F1F2FiFj), F1F2Fi′

d3 (0, 0, 1, 2) 2 × (F1F2FiFj), F1Fi′Fj′(F2Fi′Fj′)

F1F2FiFj , F1Fi′Fj′(F2Fi′Fj′), F1F2Fi′′

d4 (0, 0, 2, 1) F1F2FiFj , 2 × (F1Fi′Fj′ or F2Fi′Fj′)

2 × (F1FiFj), F1F2Fi′

d5 (0, 0, 3, 0) 3 × (F1FiFj or F2FiFj)



OPTIMAL TWO-LEVEL FRACTIONAL FACTORIAL DESIGNS 249

Table 4 Values of the δs and word structures with four words involving the dispersion
factors.

Design (δ1, δ2, δ3, δ4) Word Structures

d1 (0, 1, 0, 1) P , F1F2Fi′Fj′

P , F1F2Fi′

d2 (0, 1, 1, 0) P , F1Fi′Fj′ or F2Fi′Fj′

d3 (0, 0, 0, 4) 4 × (F1F2FiFj)

3 × (F1F2FiFj), F1F2Fi′

d4 (0, 0, 1, 3) 3 × (F1F2FiFj), F1Fi′Fj′ or F2Fi′Fj′

2 × (F1F2FiFj), F1Fi′Fj′ or F2Fi′Fj′ , F1F2Fi′′

d5 (0, 0, 2, 2) 2 × (F1F2FiFj), 2 × (F1Fi′Fj′ or F2Fi′Fj′)

F1F2FiFj , 2 × (F1Fi′Fj′ or F2Fi′Fj′), F1F2Fi′′

d6 (0, 0, 3, 1) F1F2FiFj , 3 × (F1Fi′Fj′ or F2Fi′Fj′)

3 × (F1FiFj or F2FiFj), F1F2Fi′

d7 (0, 0, 4, 0) 4 × (F1Fi′Fj′ or F2Fi′Fj′)

Table 5 D-optimality ordering with four words involving the dispersion factors.

Interval D-optimality ordering

0< |γ| <0.3827γ0 d3 ≻ d4 ≻ d1 ≻ d5 ≻ d2 ≻ d6 ≻ d7

0.3827γ0< |γ| <0.4370γ0 d3 ≻ d1 ≻ d4 ≻ d2 ≻ d5 ≻ d6 ≻ d7

0.4370γ0< |γ| <0.4611γ0 d1 ≻ d3 ≻ d2 ≻ d4 ≻ d5 ≻ d6 ≻ d7

0.4611γ0< |γ| <0.5γ0 d1 ≻ d2 ≻ d3 ≻ d4 ≻ d5 ≻ d6 ≻ d7
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Table 6 Values of the δs and word structures with five words involving the dispersion
factors.

Design (δ1, δ2, δ3, δ4) Word Structures

d1 (0, 1, 0, 2) P , 2 × (F1F2Fi′Fj′)

P , F1F2Fi′Fj′ , F1F2Fi′′

d2 (0, 1, 1, 1) P , F1F2Fi′Fj′ , F1Fi′′Fj′′ or F2Fi′′Fj′′

P , F1Fi′Fj′ or F2Fi′Fj′ , F1F2Fi′′

d3 (0, 1, 2, 0) P , 2 × (F1Fi′Fj′ or F2Fi′Fj′)

d4 (0, 0, 0, 5) 5 × (F1F2FiFj)

4 × (F1F2FiFj), F1F2Fi′

d5 (0, 0, 1, 4) 4 × (F1F2FiFj), F1Fi′Fj′ or F2Fi′Fj′

3 × (F1F2FiFj), F1Fi′Fj′ or F2Fi′Fj′ , F1F2Fi′′

d6 (0, 0, 2, 3) 3 × (F1F2FiFj), 2 × (F1Fi′Fj′ or F2Fi′Fj′)

2 × (F1F2FiFj), 2 × (F1Fi′Fj′ or F2Fi′Fj′), F1F2Fi′′

d7 (0, 0, 3, 2) 2 × (F1F2FiFj), 3 × (F1Fi′Fj′ or F2Fi′Fj′)

F1F2FiFj , 3 × (F1Fi′Fj′ or F2Fi′Fj′), F1F2Fi′′

d8 (0, 0, 4, 1) F1F2FiFj , 4 × (F1Fi′Fj′ or F2Fi′Fj′)

4 × (F1FiFj or F2FiFj), F1F2Fi′

d9 (0, 0, 5, 0) 5 × (F1FiFj or F2FiFj)

Table 7 D-optimality ordering with five words involving the dispersion factors.

Interval D-optimality ordering

0< |γ| <0.3827γ0 d4 ≻ d5 ≻ d1 ≻ d6 ≻ d2 ≻ d7 ≻ d3 ≻ d8 ≻ d9

0.3827γ0< |γ| <0.4370γ0 d4 ≻ d1 ≻ d5 ≻ d2 ≻ d6 ≻ d3 ≻ d7 ≻ d8 ≻ d9

0.4370γ0< |γ| <0.4611γ0 d1 ≻ d4 ≻ d2 ≻ d5 ≻ d3 ≻ d6 ≻ d7 ≻ d8 ≻ d9

0.4611γ0< |γ| <0.4744γ0 d1 ≻ d2 ≻ d4 ≻ d3 ≻ d5 ≻ d6 ≻ d7 ≻ d8 ≻ d9

0.4744γ0< |γ| <0.5γ0 d1 ≻ d2 ≻ d3 ≻ d4 ≻ d5 ≻ d6 ≻ d7 ≻ d8 ≻ d9
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Table 8 Values of the δs and word structures with six words involving the dispersion
factors.

Design (δ1, δ2, δ3, δ4) Word Structures

d1 (1, 0, 0, 0) U

d2 (0, 2, 0, 0) 2 × P

d3 (0, 1, 0, 3) P , 3 × (F1F2Fi′Fj′)

P , 2 × (F1F2Fi′Fj′), F1F2Fi′′

d4 (0, 1, 1, 2) P , 2 × (F1F2Fi′Fj′), F1Fi′′Fj′′ or F2Fi′′Fj′′

P , F1F2Fi′Fj′ , F1Fi′′Fj′′ or F2Fi′′Fj′′ , F1F2Fi∗

d5 (0, 1, 2, 1) P , F1F2Fi′Fj′ , 2 × (F1Fi′′Fj′′ or F2Fi′′Fj′′)

P , 2 × (F1Fi′Fj′ or F1Fi′Fj′), F1F2Fi′′

d6 (0, 1, 3, 0) P , 3 × (F1Fi′Fj′ or F2Fi′Fj′)

d7 (0, 0, 0, 6) 6 × (F1F2FiFj)

5 × (F1F2FiFj), F1F2Fi′

d8 (0, 0, 1, 5) 5 × (F1F2FiFj), F1Fi′Fj′ or F2Fi′Fj′

4 × (F1F2FiFj), F1Fi′Fj′ or F2Fi′Fj′ , F1F2Fi′′

d9 (0, 0, 2, 4) 4 × (F1F2FiFj), 2 × (F1Fi′Fj′ or F2Fi′Fj′)

3 × (F1F2FiFj), 2 × (F1Fi′Fj′ or F2Fi′Fj′), F1F2Fi′′

d10 (0, 0, 3, 3) 3 × (F1F2FiFj), 3 × (F1Fi′Fj′ or F2Fi′Fj′)

2 × (F1F2FiFj), 3 × (F1Fi′Fj′ or F2Fi′Fj′), F1F2Fi′′

d11 (0, 0, 4, 2) 2 × (F1F2FiFj), 4 × (F1Fi′Fj′ or F2Fi′Fj′)

F1F2FiFj , 4 × (F1Fi′Fj′ or F2Fi′Fj′), F1F2Fi′′

d12 (0, 0, 5, 1) F1F2FiFj , 5 × (F1Fi′Fj′ or F2Fi′Fj′)

5 × (F1FiFj or F1FiFj), F1F2Fi′

d13 (0, 0, 6, 0) 6 × (F1FiFj or F2FiFj)
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Table 9 D-optimality ordering with six words involving the dispersion factors.

Interval D-optimality ordering

0< |γ| <0.2692γ0 d7 ≻ d8 ≻ d3 ≻ d9 ≻ d4 ≻ d10 ≻ d1 ≻ d2 ≻ d5 ≻ d11 ≻ d6 ≻ d12 ≻ d13

0.2692γ0< |γ| <0.3059γ0 d7 ≻ d8 ≻ d3 ≻ d9 ≻ d4 ≻ d1 ≻ d10 ≻ d2 ≻ d5 ≻ d11 ≻ d6 ≻ d12 ≻ d13

0.3059γ0< |γ| <0.3173γ0 d7 ≻ d8 ≻ d3 ≻ d9 ≻ d1 ≻ d4 ≻ d10 ≻ d2 ≻ d5 ≻ d11 ≻ d6 ≻ d12 ≻ d13

0.3173γ0< |γ| <0.3383γ0 d7 ≻ d8 ≻ d3 ≻ d9 ≻ d1 ≻ d4 ≻ d2 ≻ d10 ≻ d5 ≻ d11 ≻ d6 ≻ d12 ≻ d13

0.3383γ0< |γ| <0.3743γ0 d7 ≻ d8 ≻ d3 ≻ d1 ≻ d9 ≻ d4 ≻ d2 ≻ d10 ≻ d5 ≻ d11 ≻ d6 ≻ d12 ≻ d13

0.3743γ0< |γ| <0.3771γ0 d7 ≻ d8 ≻ d1 ≻ d3 ≻ d9 ≻ d4 ≻ d2 ≻ d10 ≻ d5 ≻ d11 ≻ d6 ≻ d12 ≻ d13

0.3771γ0< |γ| <0.3827γ0 d7 ≻ d1 ≻ d8 ≻ d3 ≻ d9 ≻ d4 ≻ d2 ≻ d10 ≻ d5 ≻ d6 ≻ d11 ≻ d12 ≻ d13

0.3827γ0< |γ| <0.4025γ0 d7 ≻ d1 ≻ d3 ≻ d8 ≻ d2 ≻ d4 ≻ d9 ≻ d5 ≻ d10 ≻ d6 ≻ d11 ≻ d12 ≻ d13

0.4025γ0< |γ| <0.4163γ0 d1 ≻ d7 ≻ d3 ≻ d8 ≻ d2 ≻ d4 ≻ d9 ≻ d5 ≻ d10 ≻ d6 ≻ d11 ≻ d12 ≻ d13

0.4163γ0< |γ| <0.4370γ0 d1 ≻ d7 ≻ d3 ≻ d2 ≻ d8 ≻ d4 ≻ d9 ≻ d5 ≻ d6 ≻ d10 ≻ d11 ≻ d12 ≻ d13

0.4370γ0< |γ| <0.4611γ0 d1 ≻ d2 ≻ d3 ≻ d7 ≻ d4 ≻ d8 ≻ d5 ≻ d6 ≻ d9 ≻ d10 ≻ d11 ≻ d12 ≻ d13

0.4611γ0< |γ| <0.4744γ0 d1 ≻ d2 ≻ d3 ≻ d4 ≻ d7 ≻ d5 ≻ d8 ≻ d6 ≻ d9 ≻ d10 ≻ d11 ≻ d12 ≻ d13

0.4744γ0< |γ| <0.4825γ0 d1 ≻ d2 ≻ d3 ≻ d4 ≻ d5 ≻ d7 ≻ d6 ≻ d8 ≻ d9 ≻ d10 ≻ d11 ≻ d12 ≻ d13

0.4825γ0< |γ| <0.5γ0 d1 ≻ d2 ≻ d3 ≻ d4 ≻ d5 ≻ d6 ≻ d7 ≻ d8 ≻ d9 ≻ d10 ≻ d11 ≻ d12 ≻ d13


