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Abstract

Default probability and asset correlation are key factors in determining credit default risk

in loan portfolios. Therefore, many articles have been devoted to the study in quantifying

default probability and asset correlation. However, the classical estimation methods (e.g.

MLE) usually use only historical data and often underestimate the default probability in

special situations, such as the occurrence of a financial crisis. By contrast, the Bayesian

method is seen to be a more viable alternative to solving such estimation problems. In this

paper, we consider the Bayesian approach by applying Markov chain Monte Carlo (MCMC)

techniques in estimating default probability and asset correlation under serially dependent

factor model. The empirical results and out-of-sample forecasting for S&P default data

provide strong evidence to support that the serially dependent factor model is reliable in

determining credit default risk.

Keywords: Default probability, asset correlation, serially dependent factor model, Bayesian

inference.

1. Introduction

Starting from mid-2007, the subprime credit crisis sweep across global financial mar-

kets. The crisis can be attributed to a number of pervasive factors in both the housing

and credit derivative markets (Diamond and Rajan [7]), which start to emerge over the

past few years. A detailed of the crisis can be found in Soros [27] and Crouhy et al.

[4]. This financial crisis results in a significantly higher global default rate, making bond

issuers and loan obligors face mounting financial pressure, in the weakening economy.

Risk management models that use historical data relationships in assessing the risk as-

sume the risk is driven by a statistical rule. For example, they assume the historical

data relationships represent a good basis for forecasting the development of future risks.

However, the global financial turmoil has evidently revealed the associated serious flaws

when one relies solely on such an approach. Models that use only historical data tend

to underestimate the default probability when a special financial issue occurs. Thus,
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the negative impacts from a slackening economy can not be timely forecast. With ad-

ditional subjective judgments, the Bayesian estimator proves to be a feasible choice for

the estimation of default probability. Some subjective and professional judgments can

compensate the insufficiency of historical data in credit risk modeling. (Kiefer [18, 19,

20])

Over the past decades, several models for measuring credit portfolio risk have been

developed. One of them is the independent factor model (Vasicek [29]). This model in-

corporates the idea that the dependence among individual obligors is driven by a common

factor. The independent factor model has been widely used in the credit risk field, as

well as been applied in estimating and pricing the economic capital allocations, loss rate

distribution on a credit portfolio, and credit derivatives (e.g., Gupton et al. [16], Gordy

[13], Schönbucher [26], Liao et al. [22], Wu et al. [31] and others). It is also suggested in

KMV’s portfolio ManagerTM , CreditMetricsTM and the Basel Committee (BCBS [1]).

Another important model in credit default risk modeling is the generalized linear mixed

models (GLMMs). McNeil and Wendin [23] and Czado and Pflüger [5] highlight the

usefulness of GLMMs in the modelling of portfolio credit risk. The utilities of GLMMs

can be maximized by including macroeconomic variable and systematic random effects

to construct a credit risk model.

In credit risk modeling, various estimation methods have been proposed for quanti-

fying default probability. These estimation methods can be summed up into two broad

categories. First, many studies use the classical (or non-Bayesian) approach. Gordy and

Heitfield [12] use maximum likelihood estimation method to estimate default probability

and asset correlation. Hanson and Schuermann [17] utilize both parametric and nonpara-

metric bootstrap methods to estimate default probability. The classical method usually

only takes historical data into account, which often underestimates default probability

during periods of economic recession. On the other hand, McNeil and Wendin [23] con-

sider the Bayesian approach by applying MCMC techniques to model credit risk under

the GLMMs. The model was further extended by Czado and Pflüger [5]. McNeil and

Wendin [23] and Czado and Pflüger [5] use non-informative priors for the unknown pa-

rameter of GLMM. In this paper, we discuss the prior behavior of the prior distribution

set-up under GLMMs in McNeil and Wendin [23]. Separately, Gössl [14] and Dwyer [8]

also apply the Bayesian method with MCMC techniques under the independent factor

model, while Kiefer [18, 19, 20] focus on the Binomial model and incorporate expert

information in quantifying default probability. But the fact that Dwyer [8] and Kiefer

[18, 19, 20] assume asset correlation as non-random was a key insufficiency. Moreover,

Kiefer [21] extend Binomial model into independent factor model. But, the property of

autocorrelation of factor have not considered in Kiefer [21].

In this paper, similar to the approach by Gössl [14], we consider the Bayesian ap-

proach by applying MCMC technique to estimate default probability and asset corre-

lation under serially dependent factor model. Adopting the serially dependent factor

model rather independent factor model is major difference between Gössl [14] and our

study. The original set-up in the independent factor model assumes an i.i.d. factor

for different time periods. A number of studies (Ebnöther and Vanini [9], McNeil and
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Wendin [23], and Czado and Pflüger [5]) suggest that the factor is related with macroe-
conomic variables. Moreover, they suggest that the common factor might follow a first
order autoregressive time series model (AR(1)). Thus, we use the serially dependent
factor model instead of the independent factor model with the result of out-of-sample
forecasting for supporting the serially dependent factor model is more reliable than the
independent factor model. We also provide an empirical study by using Standard and
Poor’s default data. Furthermore, the capital cushion of 2009 annual S&P portfolio is
also predicted in this paper.

This paper is organized as follows. The serially dependent factor model is introduced
in Section 2. Bayesian estimation and MCMC techniques are described in Section 3.
Section 4 shows the empirical study of Standard and Poor’s default data, the result of
out-of-sample forecasting, and capital cushion quantifying. The conclusion is summarized
in Section 5.

2. The Serially Dependent Factor Model

The serially dependent factor model is introduced in this section. The asset value
log-return, Xt,k,i, in time period t, ith obligor of rating category k, can be written as

Xt,k,i=
√

ρkZt +
√

1 − ρkεt,k,i, (1)

Zt=θZt−1 +
√

1 − θ2νt, i = 1, . . . , nt,k, k = 1, . . . ,K, t = 1, . . . , T, (2)

where nt,k, K, and T are the number of obligors of rating category k in time period t,
rating categories, and time period, respectively. Let εt,1,k, . . . , εt,k,nt,k

be i.i.d. N(0, 1),
ν1, . . . , νT be i.i.d. N(0, 1), εt,k,i independent of νt for all t, k, and i, Z0 ∼ N(0, 1), and
Z0 independent of νt, t = 1, . . . , T . The parameter ρk can be referred to the asset
correlation of rating category k between Xt,k,i and Xt,k,i for i and j. The designation
factor indicates that there is only one common factor Zt to all obligors and the factor is
assumed to be a first order autoregressive, AR(1), time series. The AR(1) time series is
a Markov process that has a Gaussian stationary distribution with mean 0 and variance
1 for |θ| < 1. If θ is positive and close to 1, then the factor Zt−1 last time period has a
positive and notable influence on the factor Zt for this time period and vice versa. More-
over, if θ equal to 0, the serially dependent factor model is equivalent to the independent
factor model. Hence θ is an important parameter to determine the leverage between Zt

and Zt−1. There is a significant difference between our model and the independent factor
model used in Gössl [14], which assumes Zt independent for all t with standard normal
distribution. In this paper, we feel that the dependence between Zt and Zt−1 exists.

The occurrence of default is equivalent to the case when the log return of an obligor’s
assets of rating category k falls below a threshold value ct,k,i, i.e.,

Yt,k,i = I(Xt,k,i < ct,k,i). (3)

Here Yt,k,i is the default indicator. The default probability pt,k,i indicate that the prob-
ability of ith obligor of rating category k default in time period t, so that pt,k,i is

pt,k,i=P (Yt,k,i = 1)
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=P (Xt,k,i < ct,k,i). (4)

In this paper, we assume that pt,k,i is the same between every obligor of rating category k

for all time periods, i.e., pt,k,i = pk for all t and i. Similarly, it is assumed that ct,k,i = ck.

By serially dependent factor model setup, Z1 = θZ0 +
√

1 − θ2ν1 is given. According

to Z0 ∼ N(0, 1), ν1 ∼ N(0, 1), Z0 independent of ν1 (model assumptions), and normal

additive property of normal random variable, we obtain Z1 ∼ N(0, 1). Again we know

Z2 = θZ1 +
√

1 − θ2ν2. When ν2 independent of ν1 and Z0 (model assumptions), we

obtain ν2 independent of Z1. Then Z2 ∼ N(0, 1) according to Z1 independent of ν2,

Z1 ∼ N(0, 1), ν2 ∼ N(0, 1), and normal additive property of normal random variable.

To continue the same process, the Zt ∼ N(0, 1), t = 1, . . . , T, is obtained. Then the

distribution of Xt,k,i follow N(0, 1) by additive property of normal random variable.

Thus, we obtain the threshold value ck equal to Φ−1(pk). Given the realization of pk,

ρk and Zt, we assume that the default indicators Yt,k,1, . . . , Yt,k,nt,k
are conditionally

independent Bernoulli distribution with common conditional default probability can be

expressed as

gt(pk, ρk, Zt)=P (Yt,k,i = 1|Zt)

=P (Xt,k,i < ck|Zt)

=P

(

εt,k,i ≤
ck −√

ρkZt√
1 − ρk

)

=Φ

(

Φ−1(pk) −
√

ρkZt√
1 − ρk

)

. (5)

For convenience, we denote Y = (Y1, . . . ,YK), each component of that vector is a vector

Yk = (Y1,k, . . . ,YT,k), where Yt,k = (Yt,k,1, . . . , Yt,k,nt,k
) and p = (p1, . . . , pK), ρ =

(ρ1, . . . , ρK), and Z = (Z1, . . . , ZT ). By assumption, the joint conditional pdf of Y =

(Y1, . . . ,YK) is

f(y|p,ρ,Z) =

T
∏

t=1

K
∏

k=1

[

gt(pk, ρk, Zt)
Pnt,k

i=1 yt,k,i(1 − gt(pk, ρk, Zt))
nt,k−

Pnt,k
i=1 yt,k,i

]

, (6)

here, y = (y1, . . . ,yK), each component of that vector is a vector yk = (y1,k, . . . ,yT,k),

where yt,k = (yt,k,1, . . . , yt,k,nt,k
). Notice that the joint conditional pdf of Y in (6) is a

key device for Bayesian estimation in this paper.

3. Bayesian Estimation and MCMC

In the serially dependent factor model, the unknown parameters are p, ρ, Z, and

θ. By Bayes rule, the corresponding joint posterior density function of the unknown

parameters is

f(p,ρ,Z, θ|y) =
f(y,p,ρ,Z, θ)

f(y)
. (7)
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By assuming the independence of p, ρ and θ, the joint pdf f(y,p,ρ,Z, θ) can be written

as

f(y,p,ρ,Z, θ) = f(y|p,ρ,Z) × f(p)× f(ρ) × f(Z|θ) × f(θ), (8)

where the joint distribution of K categories default probability is written as

f(p) =

K
∏

k=1

f(pk), (9)

and the joint distribution of K categories asset correlation is written as

f(ρ) =
K
∏

k=1

f(ρk), (10)

and

f(Z|θ)=f(Z1|θ) × f(Z2|Z1, θ) × f(Z3|Z1, Z2, θ) × · · · × f(ZT |Z1, . . . , ZT−1, θ)

=f(Z1|θ) × f(Z2|Z1, θ) × f(Z3|Z2, θ) × · · · × f(ZT |ZT−1, θ), (11)

where

f(Z1|θ) = EZ0 [f(Z0) × f(Z1|Z0, θ)] . (12)

Note that it is difficult to compute f(Z1|θ). For simplicity, we approximate f(Z|θ) as

f(Z|θ) ≈ f(Z2|Z1, θ) × f(Z3|Z2, θ) × · · · × f(ZT |ZT−1, θ). (13)

Unfortunately, the posterior distribution is generally unobtainable by analytical means,

and only its function form is known. A major limitation towards more widespread

implementation of Bayesian approaches is that obtaining the posterior distribution often

requires the integration of high-dimensional functions. We focus on Markov Chain Monte

Carlo method, which attempt to simulate direct draws from some complex distribution.

In this paper, we apply the Gibbs sampler that is particularly well-adapted to sample the

posterior distribution of a Bayesian approach. It is applicable when the joint distribution

is not explicitly known, but the conditional distribution of each variable is already known.

The goal of the Gibbs sampling algorithm is to generate a sample from the distribution of

each successive variable, based on the current values of the other variables. The purpose

of such a sequence is to compute an integral (such as an expected value) in approximating

the joint distribution. For more details of the Gibbs sampler, please refer to Robert and

Casella [25], Dagpunar [6], Rachev et al. [24] and Greenberg [15]. The full conditional

distribution is a key aspect for the application of the Gibbs sampler. By Equation (8),

we can obtain the full conditional distribution for each unknown parameter. Here, we

treat the components of p, ρ, and Z sequentially. First, the full conditional distribution

of pk is

f(pk|y,p−k,ρ,Z, θ) ∝ f(y|p,ρ,Z) × f(pk), (14)
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Table 1: Descriptive basic statistics of default rate in S&P historical default data for each rating
category.

Mean S.D. Min Median Max
A 0.00068 0.00116 0.00000 0.00000 0.00380
BBB 0.00255 0.00265 0.00000 0.00220 0.01000
BB 0.01097 0.01066 0.00000 0.00760 0.04220
B 0.05012 0.03269 0.00240 0.03269 0.13840
CCC 0.23559 0.12850 0.00000 0.23080 0.48421

Note: S.D. is the standard deviation, Min and Max stand for minimum and maximum.

where p−k = (p1, . . . , pk−1, pk+1, . . . , pK) and the full conditional distribution of ρk is

f(ρk|y,p,ρ−k,Z, θ) ∝ f(y|p,ρ,Z) × f(ρk), (15)

where ρ−k = (ρ1, . . . , ρk−1, ρk+1, . . . , ρK). Moreover, the full conditional distribution of

Zt is

f(Zt|y,p,ρ,Z−t, θ)∝f(y|p,ρ,Z) × f(Zt|Z−t, θ)

∝f(y|p,ρ,Z) × f(Zt|Zt−1, θ), (16)

where Z−t = (Z1, . . . , Zt−1, Zt+1, . . . , ZT ). The last full conditional distribution of the

parameter θ is

f(θ|y,p,ρ,Z) ∝ f(Z|θ) × f(θ). (17)

We apply the acceptance method (Geweke [11], section 3.2) to simulate the aforemen-

tioned univariate full conditional distributions. Booth and Hobert [2] and Wu [30] also

use the acceptance method to obtain random samples from the full conditional distri-

bution. We provide the steps of the acceptance method in appendix A. The customized

code in C has been used to accomplish the acceptance method in this paper.

4. An Empirical Study of S&P Historical Default Data

The default data used in this paper were published in Standard & Poor’s default

report (Standard & Poor’s [28]). The data covers a 29 year period from 1981 to 2009

in seven rating categories: ’AAA’, ’AA’, ’A’, ’BBB’, ’BB’, ’B’, and ’CCC’. The data

includes the number of obligors in a particular rating grade at the beginning of a year,

and the number of defaults that occur by year’s end. As there was only three default

for the top two grades, our analysis does not contain the rating category AAA and AA

(Gössl [14], McNeil and Wendin [23]). The basic statistics of the default rate for each

rating category are listed in Table 1.
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4.1. The Choice of Prior Distribution

In this subsection, we describe the prior distributions for the parameters used in

the serially dependent factor model. Without expert information supply, we use most

common approach of using non-informative priors for the parameters of our model. The

prior distribution of the default probability and asset correlation are given as Uniform

distribution restricted to (0, 1) for each rating category, i.e., pk ∼ U(0, 1) and ρk ∼
U(0, 1), k = 1, . . . ,K. The prior distribution sets for the autoregressive parameter θ is

given as U(−1, 1).

Another issue addressed here is related to the prior distribution set-up discussed in

McNeil and Wendin [23]. They consider the Bayesian approach by applying the MCMC

technique in modeling the credit risk under GLMMs. They also gave non-informative

priors for the intercepts, regression coefficients, and hyperparameters of GLMMs. In this

paper, we discuss the prior behavior of the prior distribution set-up under GLMMs in

McNeil and Wendin [23]. To address this problem, we derive the joint pdf of default

probability and asset correlation implied in McNeil and Wendin [23], where the result is

displayed in Figure 1. Note that we describe Figure 1 in one rating category. The detailed

derivation for the joint density of default probability and asset correlation implied in

McNeil and Wendin [23] is described in the appendix B. From Figure 1, we can see that,

given a constant asset correlation, the marginal shape of default probability appears as

a “U” shape. More precise, for a fixed asset correlation, the default probability is more

likely to happen near 0 or 1. Especially, when the fixed asset correlation is close to either

0 or 1, the phenomenon is more clear. Similar, for a fixed value default probability,

the marginal shape of asset correlation also appears as a “U” shape. Both of the “U”

shape phenomena are irrational and contradict to practical intuition. Kiefer [18, 19,

20] combines the expert information with the data information to calculate the prior

distribution of default probability in Binomial model. Moreover, Kiefer [21] extend this

work into independent factor model. The shape of prior distribution of default probability

set-up discussed in Kiefer [18, 19, 20, 21] is unimodal. Thus, we feel that the shapes of

prior distribution of default probability don’t appear “U” shape. Following this result,

we adopt the serially dependent factor model instead of GLMMs in this paper.

4.2. Empirical results

We use the MCMC method to provide iterative procedures to approximate samples

from our complicated posterior densities. The trace plots and the plots of autocorre-

lation functions for p, ρ, and θ under serially dependent factor model are respectively

presented in Figures 2 to 6. Obviously, the simulation stabilizes after approximately

10,000 iterations. Thus, we set the burn-in period to be 10,000.

Table 2 summarizes the posterior mean, standard derivation (S.D.), median, 2.5%

and 97.5% quantiles for the estimates of p, ρ, and θ under serially dependent factor

model. Table 3 also lists the estimates of p and ρ under independent factor model

(Gössl [14]). One can see that our posterior estimates for p are higher than that under

independent factor model for all rating categories. The phenomena may be due to the
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Figure 1: Joint pdf of default probability p and asset correlation ρ corresponding to McNeil and
Wendin [23].

Figure 2: The trace plots for p under serially dependent factor model.

serial dependence of S&P default data captured by serially dependent factor model.

The histograms of p, ρ, and θ under serially dependent factor model for each rating

category are presented in Figures 7, 8, and 9. For the histograms of p, this may not be

surprising, as the mode of density is close to 0 for the investment rating category. The

shapes of the histograms of p and ρ are both skewed to the right for each rating category.
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Figure 3: The plots of autocorrelation functions for p under serially dependent factor model.

Table 2: Posterior mean, standard deviation, median, 2.5% and 97.5% quantiles of p, ρ, and θ
based on S&P default data 1981-2009 under serially dependent factor model.

p

Rating Mean S.D. 2.5% Median 97.5%
A 0.0005 0.0003 0.0001 0.0005 0.0013
BBB 0.0027 0.0007 0.0017 0.0026 0.0046
BB 0.0121 0.0023 0.0094 0.0119 0.0185
B 0.0561 0.0110 0.0390 0.0545 0.0824
CCC 0.2348 0.0176 0.2140 0.2344 0.2914

ρ

Mean S.D. 2.5% Median 97.5%
A 0.0877 0.0505 0.0136 0.0832 0.2129
BBB 0.0768 0.0461 0.0112 0.0690 0.1823
BB 0.0696 0.0256 0.0309 0.0655 0.1296
B 0.1164 0.0374 0.0639 0.1096 0.2078
CCC 0.0724 0.0266 0.0339 0.0682 0.1416

θ
Mean S.D. 2.5% Median 97.5%

All rating 0.4987 0.1609 0.1455 0.5143 0.7678

Moreover, the left skewness is observed in the histogram of θ. This is the evidence of the

serial dependence existing in the S&P historical default data.



144 YI-PING CHANG, CHIH-TUN YU AND HUIMEI LIU

Figure 4: The trace plots for ρ under serially dependent factor model.

Table 3: Posterior mean, standard deviation, median, 2.5% and 97.5% quantiles of p and ρ based
on S&P default data 1981-2009 under independent factor model.

p

Rating Mean S.D. 2.5% Median 97.5%
A 0.0004 0.0002 0.0001 0.0004 0.0011
BBB 0.0022 0.0005 0.0015 0.0021 0.0042
BB 0.0100 0.0019 0.0084 0.0098 0.0172
B 0.0500 0.0080 0.0378 0.0491 0.0803
CCC 0.1954 0.0167 0.2011 0.1948 0.2720

ρ

Mean S.D. 2.5% Median 97.5%
A 0.0859 0.0442 0.0111 0.0811 0.2085
BBB 0.0779 0.0423 0.0119 0.0714 0.1840
BB 0.0713 0.0247 0.0312 0.0677 0.1306
B 0.1096 0.0315 0.0622 0.1048 0.2052
CCC 0.0668 0.0248 0.0326 0.0624 0.1375

4.3. Out-of-sample forecasts

In this subsection, we give the out-of-sample forecasting to support the serially de-

pendent factor model is more reliable than the independent factor model. We use S&P

default data from 1981 to 2008 to compute how likely the observed 2009 annual S&P
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Figure 5: The plots of autocorrelation functions for ρ under serially dependent factor model.

default data is under both models. The observed 2009 annual S&P default data is given

in Table 4. One can see that the annual default rates in 2009 are larger than average

default rate from 1981 to 2008 in each rating category except rating BB. In this paper,

we use conditional predictive ordinate (CPO) (Gelfand [10]) to achieve the out-of-sample

forecasting. Czado and Pflüger [5] also use CPO to compare the forecasting accuracy of

the credit risk model. The CPO of rating category k for 2009 is defined as

CPO2009,k := P
(

Y
(obs)

2009,k|Y
(obs)

t,k , t 6= 2009
)

, (18)

where Y
(obs)

t,k =
(

Y
(obs)
t,k,1 , Y

(obs)
t,k,2 , . . . , Y

(obs)
t,k,nt,k

)

. The conditional predictive ordinate sug-

gests how likely the joint observation Y
(obs)

2009,k is, when the model is fitted to all obser-

vations from 1981 to 2008 except Y
(obs)

2009,k. Obviously a good model should have large

CPO2009,k, k = 1, . . . ,K. Note that CPO2009,k, k = 1, . . . ,K can be calculated from

MCMC output. The relevant summary statistics are listed in Table 5. From Table 5,

the serially dependent factor model have larger log(CPO2009,k) for all rating categories.

Obviously the serially dependent factor model outperform than the independent factor

model. This is strong evidence supporting the serially dependent factor model is more

reliable than the independent factor model.
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Figure 6: The trace plot and plot of autocorrelation function for θ under serially dependent factor
model.

Figure 7: The histograms for p under serially dependent factor model.



BAYESIAN INFERENCE FOR CREDIT RISK 147

Figure 8: The histograms for ρ under serially dependent factor model.

Figure 9: The histogram for θ under serially dependent factor model.

Table 4: The observed 2009 annual S&P default data and default rate.

Rating Obligors Defaults Default Rate
A 1396 3 0.0021
BBB 1498 8 0.0053
BB 1002 7 0.0070
B 1223 124 0.1014
CCC 190 92 0.4842
Total 5309 265 0.0499
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Table 5: log(CPO2009,k) using 1981-2008 S&P default data.

log(CPO2009,k)
A BBB BB B CCC

Independent factor model -1.4244 -1.7162 -1.1984 -2.5912 -3.0120
Serially dependent factor model -1.3880 -1.6551 -1.1570 -2.5211 -2.9287

4.4. Quantify capital cushion

In this paper, we also use S&P default data from 1981 to 2008 to predict the capital

cushion of 2009 annual S&P portfolio. The most common way to quantify capital cushion

is the concept of economic capital (EC). For this purpose we assume that the 2009 annual

S&P portfolio loss can be defined as the random variable

L̃2009 =
K
∑

k=1

n2009,k
∑

i=1

EAD2009,k,i × LGD2009,k,i × Y2009,k,i, (19)

where EAD2009,k,i, LGD2009,k,i, and Y2009,k,i represent the “Exposure at Default”, “Loss

given Default”, and the default indicator of obligor i of rating category k in time period

2009, respectively as well as n2009,k is number of obligors of rating category k in 2009

annual S&P portfolio. Then the expected loss (EL) of the portfolio is defined as

EL =

K
∑

k=1

n2009,k
∑

i=1

EAD2009,k,i × LGD2009,k,i × E[Y2009,k,i], (20)

where E[Y2009,k,i] = pk. The α-quantile of L̃2009 is called Value-at-Risk (VaR) of the

portfolio, i.e.,

VaR = inf{VaR > 0|P (L̃2009 ≤ VaR) ≥ α}. (21)

Note that the VaR is a value of assessing the maximum probable loss of the investment

portfolio over a specific period of time under certain level of confidence (Chang et al.

[3]). Then EC is defined as the VaR minus the EL of the portfolio, determined by

EC = VaR − EL. (22)

One can see that EL, VaR, and EC are based on the portfolio loss variable L̃2009 that

can be estimated using Monte Carlo simulations with MCMC outputs. The detailed

simulation steps are shown in the appendix C. Under each MCMC iteration, we obtain

one EL, one VaR, and one EC. In this paper, the number of EC simulation is 10000.

Thus, an posterior distribution of EC can be obtained from 10000 EC. Note that, the

relevant parameters are α = 99.9%, EAD2009,k,i = 1.0, and LGD2009,k,i = 1.0 for all i

and k in these simulations. In Figure 10, we plot the estimated quantile of posterior

distribution of EC under different models and 2009 annual S&P portfolio total loss. The

x-axis of Figure 10 is the quantile level β and the y-axis is the β-quantile of EC.
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Figure 10: The estimated quantile of posterior distribution of EC (EC
(·)
β ) under different model

and 2009 annual S&P portfolio total loss.

Under an estimated quantile of posterior distribution of EC, if banks or the supervi-

sors of banks choose the higher quantile level β as criterion, it means they are conservative

about the economic capital. On the contrary, if the banks or the supervisors of banks

choose the lower quantile level β as criterion, it means the banks or the supervisors of

banks have liberal view about the economic capital. Moreover, we can obtain different

estimated quantile of posterior distribution of EC from different models. Under the fixed

quantile level β, we compare the β-quantile of EC of different models. The lower β-

quantile of EC means that the banks take more default risk. That is, if the β-quantile of

EC can’t cover the portfolio total loss, the banks go bankrupt. But, the lower β-quantile

of EC leads the banks increase the profit from investment. On the contrary, the higher

β-quantile of EC means that the banks decrease the circulation of capital assets and the

profit from investment. But it also leads the banks suffer less default risk even if the

sudden excess loss happen.

We use three dotted lines to separate Figure 10 into four parts. Note that the x-axis

coordinates of the three dotted line are 0.64, 0.74, and 0.88 respectively. For simplicity,

the estimated β-quantile of EC under serially dependent factor model is denoted as

EC
(D)
β . Similarly, the estimated β-quantile of EC under independent factor model is

denoted as EC
(I)
β . We are aware of at least four distinct facts from Figure 10.
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1. When β belongs to (0, 0.64), the EC
(D)
β is larger than EC

(I)
β . Both values are smaller

than 2009 total loss. This reflects both β-quantile of ECs can’t cover the 2009

annual S&P portfolio total loss. Even so, β-quantile of EC under serially dependent

factor model is closer to the 2009 annual S&P portfolio total loss. Thus, we realize

that the serially dependent factor model provide better estimation for EC than the

independent factor model in this β interval.

2. When β belongs to (0.64, 0.74). The EC
(D)
β is also larger than EC

(I)
β . The EC

(I)
β

is still smaller than 2009 total loss. Obviously, the serially dependent factor model

provides a precise and close estimation for the 2009 annual S&P portfolio total loss in

this situation. But, banks will be exposed to the huge default risk under independent

factor model. Thus, the serially dependent factor model also has better prediction

ability than the independent factor model in this β interval.

3. When β belongs to (0.74, 0.88), the EC
(D)
β is larger than EC

(I)
β . Both values are

larger than 2009 total loss. It means that both β-quantile of ECs can total cushion

the 2009 annual S&P portfolio total loss. It seems that the independent factor model

has better prediction ability than the serially dependent factor model in this situation.

However, we observe that β-quantile of EC under independent factor model just cover

the 2009 annual S&P portfolio total loss. If the 2009 annual S&P portfolio total loss

increases 10% or 20% due to unexpected bankruptcy, most of β-quantile of ECs under

independent factor model can’t cover the excess loss. Note that all β-quantile of ECs

under serially dependent factor model could cover the excess loss. Furthermore, as β

increases, the difference of β-quantile of ECs between the serially factor model and

the independent factor model become smaller. Thus, the serially dependent factor

model could supply good estimations of EC to banks.

4. When β belongs to (0.88, 1.0), the EC
(I)
β is larger than EC

(D)
β . Both values are

larger than 2009 total loss, indicating banks would overestimate the 2009 annual S&P

portfolio total loss under both models. It leads to banks to hold more capital and

decrease the circulations of capital assets and the profit from investment. Moreover,

the serially dependent factor model would provide better estimation for EC than the

independent factor model.

In above statements, we list the predicting scenarios under each model in the different

β intervals. Obviously, the serially dependent factor model has better prediction ability

than the independent factor model in most quantiles level β. This is another evidence

supporting the serially dependent factor model is more reliable than the independent

factor model.

Typically, the banks wish to hold smaller capital cushion and increase the circulations

of capital assets. Then banks will choose a small β-quantile of EC to estimate the 2009

annual S&P portfolio total loss. On the contrary, the supervisors of banks try to regulate

that banks should hold more capital to undertake the credit risk, which means that the

supervisors of banks would like to choose a high β-quantile of EC to cover the 2009
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annual S&P portfolio total loss. Thus, the choice of quantile level β depends on position

of chooser.

5. Conclusions

Considering the severe impact that the subprime credit crisis has caused on global

financial markets, it highlights the fact that many studies seriously underestimate the

risk of obligors, especially for those with high quality rating. A key issue is that only

historical data are used in estimating default probability and asset correlation. Finding

other methods in assigning the default probability and asset correlation to the particular

high quality ratings is necessary. In this paper, we chose the Bayesian approach and show

the feasibility of the Bayesian method in estimating the serially dependent factor model.

Several interesting findings were made from our empirical study. First, it shows the

evidence of profound serial dependence in S&P historical default data. Second, compar-

isons of the empirical results between Gössl [14] and our research reveals that the default

probability are underestimated when the serially dependence caused from the cyclical

state of economic, which can not be covered in independent factor model. Moreover, the

out-of-sample forecasting for S&P default data provide strong evidence to support that

the serially dependent factor model is more reliable than the independent factor model.

Furthermore, we provide the results of quantify capital cushion under serially dependent

factor model and independent factor model for banks and their supervisors. Using more

general prior distributions in estimating the default probability is an important issue for

further work.
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Appendix A.

In Section 3, we claim that the acceptance method can simulate the random samples

from the full conditional distributions. For example, suppose that we want to generate

random samples from f(pk|y,p−k,ρ,Z, θ), i.e., the full conditional distribution of pk.

Note that,

f(pk|y,p−k,ρ,Z, θ) ∝ f(yk|pk, ρk,Z) × f(pk). (A1)

We denote h(pk) = f(yk|pk, ρk,Z). According to Geweke [11], a random sample from

f(pk|y,p−k,ρ,Z, θ) can be obtained as follows.

Step 1: Sampling p
(∗)
k from f(pk), and independently, sample w from the uniform dis-

tribution on the interval (0, 1).



152 YI-PING CHANG, CHIH-TUN YU AND HUIMEI LIU

Step 2: If w ≤ h(p
(∗)
k

)

Suppk
h(pk) then accept p

(∗)
k , otherwise, go to Step 1.

Samples from the other full conditional distributions can be obtained in a similar way.

Appendix B.

In section 4.1, we claim the joint density of default probability and asset correlation

implied in McNeil and Wendin [23]. In appendix B, the detailed derivation has been

described. First of all, we show the conversion between the independent factor model

and the GLMM. In order to simplify the notation we describe the conversion between

the independent factor model and the GLMM in one rating category. Specifically, in the

independent factor model,

Xti =
√

ρZt +
√

1 − ρǫti, i = 1, . . . , nt, t = 1, . . . , T. (B1)

By dividing both sides by
√

1 − ρ, we have

X∗

ti = wZt + ǫti, (B2)

where X∗

ti = Xti/
√

1 − ρ and w =
√

ρ/(1 − ρ). This model (B2) is a special case of

GLMMs and corresponds to model 1 discussed in McNeil and Wendin [23]. Next, we

derive the joint distribution of default probability p and asset correlation ρ from (B2).

McNeil and Wendin [23] assume both p and ρ depend on parameter w and the threshold

parameter c. The relationship can be described as

w =

√

ρ

1 − ρ
and c =

√

1 + w2Φ−1(p). (B3)

McNeil and Wendin [23] consider that the prior distribution of the parameter w owns a

inverse-gamma distribution with parameter v and η. Moreover, the threshold parameters

c used in their paper is given a zero-mean Gaussian distribution with variance τ2, where

τ = 100. At the same time, w is independent of c. Thus, the joint pdf for w and c

becomes

f(w, c) =
1√

2πτ2
exp

(

− 1

2τ2
c2

)

× vη

Γ(η)
w−η−1exp

(−v

w

)

, (B4)

for a transformation of (w, c) to (p, ρ), we have f(p, ρ) as

f(p, ρ)=
1√

2πτ2
exp

(

− 1

2τ2

(

Φ−1(p)

√

1

1 − ρ

)2
)

× vη

Γ(η)

(√

ρ

1 − ρ

)

−η−1

× exp

(

−v

√

1 − ρ

ρ

)

× 1

1 − ρ2

(

π

2ρ

)

−1/2

exp

(

1

2
(Φ−1(p))2

)

. (B5)

McNeil and Wendin [23] choose the value of parameter (v, η) as (0, 0). In Figure 1, the

joint pdf f(p, ρ) is calculated by choosing parameter (v, η) = (10−4, 10−4).
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Appendix C.

In section 4.4, we discuss that EL, VaR, and EC can be estimated using Monte

Carlo simulations with MCMC outputs. In the appendix C, the detail Monte Carlo

simulations steps have been described. Firstly, we define some symbols. The MCMC

samples using 1981-2008 S&P default data under serially dependent factor model are

denoted as
(

p
(j)
k , ρ

(j)
k , θ(j), Z

(j)
1981, . . . , Z

(j)
2008 : 1 ≤ j ≤ G and 1 ≤ k ≤ K

)

, where G is the

number of MCMC iterations. For simplicity, the MCMC samples under independent

factor model is also denoted as
(

p
(j)
k , ρ

(j)
k , Z

(j)
1981, . . . , Z

(j)
2008 : 1 ≤ j ≤ G and 1 ≤ k ≤ K

)

.

Then the simulation steps of EL, VaR, and EC are shown in the following.

Step 1: Firstly, we generate Y
(j)
2009,k,i, i = 1, . . . , n2009,k, k = 1, . . . ,K from

Bernoulli
(

g2009

(

p
(j)
k , ρ

(j)
k , Z

(j)
2009

))

, where

g2009

(

p
(j)
k , ρ

(j)
k , Z

(j)
2009

)

= Φ





Φ−1(p
(j)
k ) −

√

ρ
(j)
k Z

(j)
2009

√

1 − ρ
(j)
k



 . (C1)

The value of Z
(j)
2009 can be generated as following

Z
(j)
2009 = θ(j) × Z

(j)
2008 +

√

1 −
(

θ(j)
)2

ν(j), (C2)

under serially dependent factor model and Z
(j)
2009 = ν(j) under independent

factor model, where random sample ν(j) generate from N(0, 1).

Step 2: Compute

L̃
(j)
2009 =

K
∑

k=1

n2009,k
∑

i=1

EAD2009,k,i × LGD2009,k,i × Y
(j)
2009,k,i. (C3)

Step 3: Repeat Step 1 to Step 2 N times, we obtain N L̃
(j)
2009 under jth MCMC iteration.

Note that N L̃
(j)
2009 become an empirical loss distribution. In this paper, we take

N = 10000.

Step 4: Compute the VaR, the α-quantile of the empirical loss distribution and EL, the

mean of the empirical loss distribution.

Step 5: The economic capital under jth MCMC iteration can then be obtained by

EC(j) = VaR(j) − EL(j). (C4)
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