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The case-only study and family-based study are two popular study designs for detecting gene-environment interactions. It is
well known that the case-only analysis is efficient, but its validity relies crucially on the assumption of gene-environment
independence in the study population. In contrast, the family-based analysis is robust to the violation of such an assumption,
but is less efficient. We propose a two-stage study design for detecting gene-environment interactions, where a case-only
study is performed at the first stage, and a case-parent/case-sibling study is performed at the second stage on a random
subsample of the first-stage case sample as well as their parents/unaffected siblings. Statistical inference procedures are
developed for the proposed two-stage study designs, which not only preserve the robustness property of the family-based
analysis, but also utilize information from the case-only analysis to enhance estimation efficiency and testing power.
Simulation results reveal both the robustness and efficiency of the proposed strategies. Genet. Epidemiol. 33:95–104, 2009.
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INTRODUCTION

Detecting the potential interplay between susceptibility
genotypes (G) and environmental exposures (E) has been
one of major goals in many epidemiologic studies for
complex human diseases. This is not only because the G-E
interaction itself can delineate disease etiology and hence
have important impacts on disease prevention and
intervention [Hunter, 2005; Olden, 2007], but also because
exploiting such interaction may result in greater statistical
power for locating genetic susceptibility loci [Chatterjee
et al., 2005; Kraft et al., 2007].

Statistical assessment of the G-E interaction can be
performed in traditional epidemiologic study designs such
as the case-control and the cohort designs. However, some
power studies [Hwang et al., 1994; Foppa and Spiegelman,
1997] showed that the power to detect interactions may be
quite limited with reasonably large sample sizes in such
studies. Piegorsch et al. [1994] noticed that the G-E
interaction can be detected in the nontraditional ‘‘case-
only’’ design that uses diseased subjects (cases) only. In
addition to its logistical convenience, the case-only
analysis can achieve remarkable power improvements
over traditional case-control/cohort analysis [Khoury and
Flanders, 1996; Yang et al., 1997; Umbach and Weinberg,
1997].

The validity of the case-only analysis of G-E interactions
hinges on the ‘‘G-E independence’’ assumption, which

assumes that the genotypes and environmental exposures
of interest are independent of each other in the study
population [Piegorsch et al., 1994; Albert et al., 2001; Gatto
et al., 2004]. Although the G-E independence assumption
is believed to be reasonable in general since the genetic
factors are determined at birth while the environmental
factors are acquired through life, there still remain
plausible settings where such an assumption fails. One
classic situation for the violation of the G-E independence
is ‘‘population stratification,’’ which arises when the
study population consists of a few hidden strata such as
ethnic groups, and both genotype frequencies and
environmental exposure distributions vary among
strata. Owing to such ‘‘population stratification,’’ even
though there is perfect G-E independence in each
stratum, there could exist overall correlation between
genotypes and environmental exposures in the study
population that eventually invalidates a case-only analy-
sis. Another important reason for the presence of
genotype-exposure dependencies is the confounding of
family history, which is apparently associated with both
susceptibility genes and lifestyle exposures. Thomas
[2000] noted that the interactions between BRCA1/2
mutations and oral contraceptive (OC) use found in a
case-only study [Ursin et al., 1997] for the breast cancer
might be due to G-E dependence arising from population
stratification, or from confounding by family history,
which could be associated with women’s tendency to use
OCs, and also with the carrier status of BRCA1/2 as these
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mutations account for the majority of hereditary breast
cancers.

All the study designs mentioned above involve
only unrelated subjects and hence are ‘‘population-
based.’’ The ‘‘family-based’’ designs using relatives of
the cases as ‘‘matched controls,’’ such as the
case-parent and case-sibling designs, can also be
applied to detect G-E interactions [Schaid, 1999;
Umbach and Weinberg, 2000; Witte et al., 1999;
Gauderman et al., 1999; Chatterjee et al., 2005]. It is
well known that family-based studies can provide
protection against population stratification bias [Laird
and Lange, 2006; Thomas and Witte, 2002], and may be
preferred for detecting G-E interaction involving rare
genetic variants [Witte et al., 1999; Gauderman, 2002].
Further, family-based analysis usually requires
weaker assumptions on distributions of genetic and
environmental factors than case-only analysis. For
example, the case-parent study requires only the G-E
independence given parental genotypes, which is a
type of within-family G-E independence that is
usually unaffected by population stratification and family
history [Thomas, 2000]. The case-sibling study is
even more robust since it requires no distributional
assumptions on genetic and environmental factors
[Chatterjee et al., 2005].

This report is focused on detecting G-E interactions
when there is concern on the validity of the G-E
independence in the study population. To ensure valid
statistical analysis of G-E interactions in the presence of
population-level dependencies between genotypes and
exposures, we consider a two-stage study design that aims
to exploit the respective advantages from the case-only
and the family-based designs. In the first stage, we collect
data on genetic and environmental factors for a sample of
cases and perform the case-only analysis on G-E interac-
tions. Since the case-only analysis may be biased under
population G-E dependencies, in the second stage, we
further recruit family controls for a random subset of the
first-stage case sample and perform the family-based
analysis for G-E interactions. The second-stage family-
based analysis, though robust to violation of the popula-
tion G-E independence assumption, may be less
powerful, especially when the second-stage study is
conducted on a smaller scale. We therefore propose a
refined two-stage analysis for detecting G-E interactions,
which is still robust to violation of the population G-E
independence assumption, but also utilizes information
from the first-stage case-only analysis. The rationale for
our proposal is derived from the general methodology in
Chen and Chen [2000] for regression analysis under two-
stage study designs.

In this report we consider specifically the use of the
case-parent or the case-sibling study as the second-
stage study. When performing the case-parent study,
genotype data for both parents of randomly selected cases
are collected at stage two (exposure data for parents
are not required for the G-E interaction analysis in
case-parent designs); when performing the case-sibling
study, genotype and exposure data for unaffected
siblings of randomly selected cases are collected at stage
two. Since parental genotype data are quite vulnerable
to being missing (especially for late-onset diseases), when
a case-parent study is undertaken at stage two, we extend
the approach of Chen [2004] to incorporate the incomplete

parental genotype data and hence to increase the power
for detecting G-E interactions.

METHODS

BACKGROUND AND MOTIVATION

Let D denote disease status with D 5 1 denoting affected
and D 5 0 denoting unaffected. Assume that the disease
penetrance model is given by

log
PrðD ¼ 1jG;EÞ

PrðD ¼ 0jG;EÞ

� �
¼ aþ bTmðG;EÞ; ð1Þ

where G denotes genotypes and E denote environmental
exposures, mðG;EÞ is a known vector of coded values of
ðG;EÞ with mð�Þ ¼ 0 for the reference genotype-exposure
group, and b ¼ ðbg; be; bgeÞ is a vector of association
parameters, where bg, be, and bge assess the genotype,
exposure, and genotype-by-exposure interaction effects,
and a is an intercept parameter that may be family specific
to account for unmeasured family-specific risk factors.
Specific penetrance models such as dominant, recessive,
multiplicative, and co-dominant models can be established
with suitably chosen mð�Þ. For example, a dominant model
for a locus is given by coding G as a 0-1 variable with ‘‘1’’
denoting homozygous/heterozygous presence and ‘‘0’’
denoting homozygous absence of the risk allele; a multi-
plicative model is given by coding G as the number of risk
alleles contained in the genotype. When the disease under
study is rare so that PrðD ¼ 1jG;EÞ � expfaþ b>mðG;EÞg,
the model (1) is equivalent to the model for relative disease
risks:

log
PrðD ¼ 1jG;EÞ

PrðD ¼ 1jG ¼ 0;E ¼ 0Þ

� �
¼ bTmðG;EÞ; ð2Þ

where (G ¼ 0;E ¼ 0) refers to the reference genotype-
exposure group.

If the G-E independence assumption holds in the study
population so that

PrðG;EÞ ¼ PrðGÞ � PrðEÞ; ð3Þ

then it has been shown that the interaction parameter bGE
can be estimated using data from diseased subjects (cases)
only [Piegorsch et al., 1994; Umbach and Weinberg, 1997].
In principle, such ‘‘case-only’’ analysis can be performed
by fitting a regression model for PrðGjE;D ¼ 1Þ to data on
ðG;EÞ from the cases. For example, when the penetrance
model is given by (1) with mðG;EÞ ¼ bgGþ beEþ bgeGE
and G is 0-1 coded (e.g., in a dominant or recessive
penetrance model), the ‘‘case-only’’ estimate for bge can be
obtained as the estimate bge by fitting the logistic regression
model

logit PrðG ¼ 1jE;D ¼ 1Þ ¼ g0 þ geE ð4Þ

to ðG;EÞ data from cases [Albert et al., 2001]; when G is
coded with multiple categories (e.g., in a multiplicative or
co-dominant model), a multinomial logistic regression
model can be applied similarly [Armstrong, 2003; Cheng,
2006].

The main advantage for the case-only analysis is that it
can achieve considerable higher efficiency than the
traditional case-control analysis when the G-E indepen-
dence assumption (3) holds, since the case-only analysis
explicitly utilizes this assumption, while the case-control
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analysis does not [Khoury and Flanders, 1996; Yang et al.,
1997; Umbach and Weinberg, 1997]. Also, the case-only
analysis is logistically more convenient since there is no
need to find appropriate controls. However, the case-only
analysis can produce non-negligible bias when the G-E
independence assumption (3) does not hold [Albert et al.,
2001].

Alternatively, the G-E interaction can be assessed in the
family-based association studies. For example, in the case-
parent trio study that genotypes cases and their parents
and determines environmental exposures of the cases, the
G-E interaction effect bge can be estimated through the
‘‘conditional on parental genotypes’’ (CPG) likelihood
[Schaid, 1999; Thomas, 2000], where the likelihood
contribution from a single case-parent trio is given by

PrðGjGp;E;D ¼ 1Þ

¼
PrðD ¼ 1jG;EÞPrðGjGpÞP

G�jGp
PrðD ¼ 1jG�;EÞPrðG�jGpÞ

¼
expfbTmðG;EÞgPrðGjGpÞP

G�jGp
expfbTmðG�;EÞgPrðG�jGpÞ

:

ð5Þ

In (5), D, G, and E are disease status, genotype and
environmental exposure for the case, Gp are genotypes of
both parents of the case, and the summation is over all
possible offspring genotypes G� for the given parental
genotypes Gp; the term PrðGjGpÞ is determined by the
Mendelian proportions. Note that, in derivation of (5) we
have employed the assumption

PrðG;EjGpÞ ¼ PrðGjGpÞ � PrðEjGpÞ; ð6Þ

namely, the genotype and environmental exposure are
independent of each other given parental genotypes, a
form of G-E independence within family. Note that the
assumption (6) is much weaker than assumption (3)
required in the case-only study: unlike (3), the assumption
(6) is much less affected by population stratification and
family history [see detailed discussions in Thomas, 2000;
Chatterjee et al., 2005]. Note also that exposure data for
parents are not required for G-E interaction analysis with
case-parent designs.

The case-sibling study is another popular family-based
design, especially for late-onset diseases since parents of
the cases are difficult to obtain. The G-E interaction
analysis in the case-sibling study can be based on the
conditional likelihood [Siegmund et al., 2000], which is
defined by conditioning on the number of affected siblings
in each family. As an example, assuming that one affected
and one unaffected siblings are chosen in each family, the
conditional likelihood for this case-sibling pair is of the
form

PrðD ¼ 1;Ds ¼ 0jDþDs ¼ 1;G;E;Gs;EsÞ

¼
PrðD ¼ 1;Ds ¼ 0jG;E;Gs;EsÞ

PrðD ¼ 1;Ds ¼ 0jG;E;Gs;EsÞ þ PrðD ¼ 0;Ds ¼ 1jG;E;Gs;EsÞ

¼
expfbTmðG;EÞg

expfbTmðG;EÞg þ expfbTmðGs;EsÞg
;

ð7Þ

where D, G, and E are disease status, genotype and
environmental exposure for the affected sibling, and Ds,
Gs, and Es are counterparts for the unaffected sibling. Note
that the case-sibling analysis of the G-E interaction does

not require any assumption on the joint distribution of
genotype and exposure, hence is fully robust to the
violation of the G-E independence assumption.

With the respective features of the case-only and family-
based (case-parent/case-sibling) studies in mind, our
proposal is to make a sensible compromise between the
two types of studies, so that it can enjoy the robustness
property of the family-based analysis and can utilize the
efficiency of the case-only analysis. To this end, we
propose a two-stage study design, which performs a
larger scale case-only study at stage one to obtain
convenient but possibly biased information on G-E
interactions from the diseased subjects and then performs
a smaller-scale case-parent/case-sibling study at stage two
to ascertain information on true G-E interactions. Data
from the first-stage case-only study and the second-stage
case-parent/case-sibling study are then integrated to yield
prudent and efficient analysis for G-E interactions.

PROPOSED TWO-STAGE STUDY DESIGN AND
ANALYSIS FOR G-E INTERACTION

Here, we describe the proposed two-stage study design
for detecting the G-E interaction.

In the first stage of the study, we collect genotype and
exposure data fGi;Eig

N
i¼1 for a sample of N cases. Case-only

analysis of the G-E interaction is then performed by fitting
a regression model for PrðGjE;D ¼ 1Þ to the first-stage
data. Our proposal applies with any type of the model
chosen for PrðGjE;D ¼ 1Þ, and, as will be seen later, the
validity of our proposal does not depend on correct
specification for this model. Also, numerical experiments
showed that the operation characteristics (testing power
and estimation efficiency) of our proposal are not sensitive
to the model choice for PrðGjE;D ¼ 1Þ in the first-stage
case-only analysis. Suppose that PðG;E; gÞ is a model
chosen for PrðGjE;D ¼ 1Þ and g is the vector of parameters
in this model. Let �g be the resulting estimate for g by fitting
the model PðG;E; gÞ to the first-stage data fGi;Eig

N
i¼1.

In the second stage, we randomly select a subset V of
the first-stage case-sample, and recruit family controls for
the randomly selected cases to perform a family-based
study for the G-E interaction. Specifically, the second-stage
study can be a case-parent or a case-sibling study. When a
case-parent study is performed, genotype data fGpigi2V for
both parents of randomly selected cases are collected at
stage two, and the estimate bbCPG for parameters in the
CPG likelihood (5) is obtained with second-stage data
fGi;Ei;Gpigi2V; when a case-sibling study is undertaken,
genotype and exposure data fGsi;Esigi2V for unaffected
siblings of the randomly selected cases are collected at
stage two, and the estimate bbCL for parameters in the
conditional likelihood (7) is obtained with second-stage
data fGi;Ei;Gsi;Esigi2V. Let bb be either bbCPG or bbCL
depending on the case-parent or the case-sibling study is
performed at stage two. Besides, let bg be the estimate of g
obtained by fitting PðG;E; gÞ to the second-stage case
sample fGi;Eigi2V (i.e., the genotype and exposure data for
the cases randomly selected at stage two).

As mentioned above, for inference on the G-E interac-
tion parameter bge, the case-only analysis based on �g is
presumably very efficient, but may be vulnerably biased
when the G-E independence assumption (3) fails. On the
other hand, the family-based analysis based on bb is quite
robust to the violation of (3) but is less efficient, especially
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when the second-stage study is performed on a small
scale. We thus propose a refined estimator that is still
robust but can be more efficient than the family-based
estimator bb by utilizing information from �g.

The proposed refined estimator for the association
parameter b is given as the simple formula

�b ¼ bb� Dðbg� �gÞ ð8Þ

with

D ¼ Cðbb;bgÞVðbgÞ�1;

where Cðbb;bgÞ is the covariance matrix between bb
and bg, and VðbgÞ is the variance matrix of bg;
these variance-covariance matrices can be simply
estimated using the sandwich estimators given in the
Appendix.

The estimator (8) is derived from the general approach
in Chen and Chen [2000], which is originally developed for
regression analysis under general two-stage study designs
where the second-stage sample is a random subsample
from the first-stage sample. Intuitively, we can see that the
estimator �b is always asymptotically unbiased no matter
the case-only estimates �g and bg are unbiased or not, since
the second term in the right side of (8) is asymptotically
zero as long as the second-stage sample is a random
subsample of the first-stage sample, so that both �g and bg
have the same asymptotic limit. This implies that the
assumptions required for the validity of �b is no more than
those required for the validity of the family-based
estimator bb. Specifically, when bb is obtained by a case-
parent analysis the resulting �b is valid when the within-
family G-E independence assumption (6) holds; when bb is
given by a case-sibling analysis, �b is valid without any
assumptions on the joint distribution of genotype and
exposure.

Moreover, as shown in Chen and Chen [2000], the
variance matrix of �b is given by

Vð �bÞ ¼ VðbbÞ � ð1� rÞDVðbgÞDT; ð9Þ

where VðbbÞ and VðbgÞ are variance matrices of bb and bg,
and r ¼ n=N is the subsampling fraction, i.e., the ratio
of the number n of the cases randomly selected at
stage two to the number N of the total (first stage) cases.
It is then observed that the refined estimator �b is
asymptotically more efficient (with smaller asymptotic
variance) than the family-based estimator bb; the relative
improvement in efficiency increases as the subsampling
fraction r decreases and the correlation between bb and bg
increases.

Let �bge and Vð �bgeÞ be the suitable components in �b and
Vð �bÞ corresponding to the G-E interaction parameter bge.

We propose �bge as an estimator for bge, and propose the

Wald test statistic �b
T

geVð
�bgeÞ
�1 �bge for testing the null

hypothesis H0 : bge ¼ 0 (no G-E interaction), which follows
a w2

k distribution under H0, with k the dimension of bge.
According to the above discussions, the proposed two-
stage analysis for the G-E interaction is expected to be
more efficient and powerful than the second-stage family-
based analysis and to be more robust against the violation
of the G-E independence assumption than the first-stage
case-only analysis. Our simulation results do confirm
these expectations.

ACCOUNTING FOR PARENTAL
MISSINGNESS IN THE SECOND-

STAGE CASE-PARENT STUDY

When the case-parent design is adopted in the second
stage of the study, the issue of parental missingness needs
to be considered since it is commonly encountered,
particularly for late-onset diseases, and may reduce the
power dramatically if the analysis is based on complete
trios only [Allen et al., 2003]. Chen [2004] proposed a
conditional likelihood approach to case-parent analysis of
gene-disease association with incomplete parental geno-
types, which keeps the full robustness property of the
traditional (complete data) case-parent analysis by Spiel-
man et al. [1993] and Schaid and Sommer [1993], while
imposing no assumptions on the mating type distribution.
Moreover,this approach can allow the parental missing-
ness to depend on the missing parental genotypes
themselves and does not require models for parental
missingness to be explicitly specified. We extend Chen’s
approach to analysis of G-E interactions and incorporate
this extension into the proposed two-stage analysis. The
derivation of this extension is similar to that in Chen
[2004], hence here we only sketch the outlines and defer
some details to the Appendix.

As in Allen et al. [2003] and Chen [2004], we adopt an
assumption on the parental missingness, which essentially
states that, given the parental genotypes, the parental
missingness is independent of offspring’s genotype [see
the Appendix, Equation (A.2), for the explicit mathema-
tical expression]. Also, as in traditional case-parent
analysis, we assume that the offspring’s genotype and
exposure are independently distributed conditional on the
parental genotypes. The likelihood proposed is based on
the conditional distribution of the offspring’s genotype G
given the number of observed parents R (R ¼ 0; 1; 2), the
genotypes of the observed parents Gop, if any, and the
offspring’s exposure E and disease status (D ¼ 1). It is easy
to see that, for ‘‘trio’’ (R ¼ 2) families, the conditional
probability PrðGjR ¼ 2;Gop;E;D ¼ 1Þ ¼ PrðGjGp;E;D ¼ 1Þ,
which has been given in (5). Among families with
incomplete parental data, including ‘‘dyad’’ (R ¼ 1) and
‘‘monad’’ (R ¼ 0) families, only the dyad families with one
heterozygous observed parent are found to be informative
for the association parameter b if no assumptions are
imposed on the mating type distribution. The explicit
expression of the conditional probability PrðGjR ¼
1;Gop;E;D ¼ 1Þ for a dyad with one heterozygous ob-
served parent is given in the Appendix, Equation (A.4),
which involves, in addition to the parameter of interest b,
also an exposure-specific nuisance parameter ZE that
depends on the offspring’s exposure level E.

The proposed conditional likelihood for case-parent
analysis with incomplete parental genotypes is obtained as
the product of all individual likelihoods (5) from complete
trios and all individual likelihoods (A.4) from dyads with
one heterozygous observed parent. Accordingly, for the
two-stage analysis where a case-parent study is conducted
at stage two, we propose to obtain the second-stage
estimator bb (along with estimates for the nuisance
parameters ZE’s) by maximizing the above conditional
likelihood. Note that, since each exposure level E would
induce a different nuisance parameter ZE in (A.4), such
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conditional likelihood is best applicable when the envir-
onmental exposure can be suitably categorized into a small
number of groups.

SIMULATION STUDIES

We examine through simulations the performance of the
proposed two-stage G-E interaction analysis. In all
simulations the candidate gene locus is diallelic, and the
environmental exposure is binary. Data were simulated
from the population consisting of two subpopulations
with constituent proportions (0.5,0.5). In the two subpo-
pulations, the frequencies of the risk allele are 20% and
40%; the frequencies of exposure are 20 and 50%; and the
disease prevalence rates are 1 and 5%. Genotypes for
offsprings and siblings were generated assuming that
Hardy-Weinberg equilibrium holds in each subpopulation.
Simulations were conducted under various choices for the
penetrance mode (dominant, recessive, or multiplicative),
the magnitude of the interaction effect, and sample sizes N
and n (number of cases in the first- and second-stage

samples). Size and power evaluations under each setting
were based, respectively, on 1,000 and 500 repeated runs.

When the dominant or recessive mode of penetrance
was considered, our first-stage case-only analysis was
performed by fitting a logistic model (4) to the first-stage
data; when the multiplicative mode was considered, a
multinomial logistic regression

log
PrðG ¼ 2jE;D ¼ 1Þ

PrðG ¼ 0jE;D ¼ 1Þ

� �
¼ g02 þ 2geE;

log
PrðG ¼ 1jE;D ¼ 1Þ

PrðG ¼ 0jE;D ¼ 1Þ

� �
¼ g01 þ geE

was applied. We found that the model specification in the
first-stage case-only analysis is not crucial in our proposal:
two other choices for PrðGjE;D ¼ 1Þ, including a conve-
nient linear model and a saturated multinomial logistic
regression model with genotype-specific parameters
yielded testing power very close to that presented in
Tables I and II (results not shown). This phenomenon may
be due to that, although the model specified for

TABLE I. Simulation results (mean, variance, mean of estimated variances, and size/power of the associated Wald test
for testing bge ¼ 0 at 5% significance level) for various estimators, including the first-stage case-only estimator �g, the
second-stage case-parent estimator eb using only trios, the second-stage case-parent estimator bb using trios and dyads,
and the two-stage estimator �b

Multiplicative model Recessive model Dominant model

bge 0 0.5 0.8 0 0.8 1 0 0.8 1

n=N ¼ 200=800
Mean �g 0.203 0.686 1.020 0.191 1.001 1.200 0.293 1.025 1.212ebge �0.014 0.532 0.857 �0.029 0.879 1.104 0.021 0.860 1.047

b̂ge �0.009 0.532 0.855 �0.025 0.851 1.090 0.016 0.851 1.040
�bge �0.007 0.535 0.853 �0.005 0.829 1.036 0.018 0.834 1.010

Var. �g 0.045 0.042 0.057 0.034 0.032 0.032 0.021 0.029 0.030ebge 0.147 0.141 0.181 0.442 0.452 0.447 0.279 0.357 0.411
b̂ge 0.147 0.148 0.187 0.357 0.376 0.369 0.241 0.300 0.341
�bge 0.150 0.152 0.187 0.303 0.260 0.238 0.168 0.214 0.247

Est. Var. �g 0.043 0.049 0.059 0.035 0.031 0.031 0.022 0.029 0.032ebge 0.144 0.157 0.186 0.467 0.456 0.473 0.258 0.358 0.400
b̂ge 0.139 0.156 0.184 0.377 0.363 0.363 0.234 0.310 0.342
�bge 0.122 0.135 0.167 0.281 0.241 0.222 0.162 0.219 0.244

Size/power �g 0.166 0.894 0.992 0.167 1 1 0.517 1 1ebge 0.054 0.272 0.536 0.040 0.247 0.344 0.049 0.293 0.394
b̂ge 0.059 0.288 0.546 0.052 0.324 0.433 0.043 0.327 0.444
�bge 0.061 0.368 0.646 0.055 0.442 0.595 0.042 0.436 0.557

n=N ¼ 300=900
Mean �g 0.210 0.728 1.022 0.194 1.011 1.226 0.288 1.074 1.263ebge 0.002 0.521 0.814 �0.012 0.923 1.126 �0.008 0.823 1.031

b̂ge 0.003 0.533 0.812 �0.005 0.923 1.130 �0.005 0.826 1.025
�bge 0.004 0.533 0.812 0.001 0.892 1.084 0.022 0.830 1.041

Var. �g 0.030 0.028 0.035 0.031 0.028 0.031 0.019 0.026 0.025ebge 0.101 0.090 0.115 0.313 0.295 0.286 0.163 0.218 0.248
b̂ge 0.095 0.103 0.133 0.264 0.264 0.243 0.138 0.192 0.213
�bge 0.098 0.108 0.132 0.223 0.192 0.197 0.103 0.141 0.156

Est. Var. �g 0.028 0.032 0.039 0.031 0.029 0.028 0.019 0.025 0.027ebge 0.095 0.103 0.120 0.302 0.301 0.310 0.169 0.215 0.236
b̂ge 0.093 0.101 0.119 0.250 0.243 0.226 0.147 0.198 0.213
�bge 0.085 0.091 0.101 0.198 0.183 0.181 0.105 0.147 0.159

Size/power �g 0.228 0.991 1 0.187 1 1 0.430 1 1ebge 0.057 0.341 0.660 0.044 0.386 0.518 0.048 0.448 0.588
b̂ge 0.058 0.432 0.674 0.055 0.476 0.640 0.046 0.460 0.624
�bge 0.061 0.470 0.750 0.060 0.600 0.752 0.052 0.610 0.748

99Two-Stage Analysis for Gene-Environment Interaction

Genet. Epidemiol.



PrðGjE;D ¼ 1Þ will affect the efficiency of the case-only
estimator, it can be seen from expression (9) that the
efficiency of the two-stage estimator is determined by the
efficiency of the family-based estimator and the correla-
tion between the family-based and case-only estimators.
That is, the efficiency and power property of the two-stage
analysis depend on the case-only analysis only through the
correlation between the family-based and case-only
estimators.

In the first simulation study we consider the two-stage
study using the case-parent design at the second stage.
Nuclear families with both parents and one offspring were
generated from one of two subpopulations with probabil-
ities 0.5 and 0.5, respectively. The disease status for the
offspring in each family was generated according to the
model

PrðD ¼ 1jG;EÞ ¼ K expfbgmðGÞ þ beEþ bgemðGÞEg;

where mðGÞ denotes the coding for the genotype according
to the chosen penetrance mode. The main effects bg and be
were fixed at 0.3, and the subpopulation-dependent
constant K was chosen to yield the desired overall disease
rates (1% in the first subpopulation and 5% in the second
subpopulation). As the first-stage ‘‘case-only’’ sample, N
affected offsprings (cases) were randomly sampled from
the generated nuclear families. The second-stage sample
was composed of n cases randomly selected from the first-
stage sample and their parents, where the parents were

allowed to be missing, with the missing probability
depending on the parental genotype and subpopulation
[in the first (second) subpopulation, the probability of
missing was 0.1 (0.2) for parents with zero or one risk allele
and was 0.3 (0.4) for parents with two risk alleles]. On
average, in the second-stage case-parent sample we have
65% complete trios, 30% dyads, and 5% monads. We
applied the method presented in the ‘‘Accounting
For Parental Missingness In The Second-Stage Case-parent
Study’’ subsection to obtain the second-stage case-parent
estimate bb. Besides, we also obtained the estimate ~b
based only on complete trios by applying traditional
case-parent analysis [the CPG likelihood approach
of Schaid and Sommer, 1993]. The simulation results with
n=N ¼ 200=800ð0:25Þ and 300=900ð0:33Þ are given in
Table I.

In the second simulation study the case-sibling design
was performed at the second stage. Nuclear families
consisting of two siblings were generated from one of two
subpopulations with probabilities 0.5 and 0.5, respectively.
The disease status for the siblings was simulated by the
model

logit PrðD ¼ 1jG;EÞ ¼ aþ bgmðGÞ þ beEþ bgemðGÞE;

with mðGÞ denoting the chosen coding for the genotype.
The values for main effects (bg, be ) were set to 0.3, and the
value of a was given by a normal random variable with
unit variance and a mean chosen to yield the desired

TABLE II. Simulation results (mean, variance, mean of estimated variances, and size/power of the associated Wald test
for testing bge ¼ 0 at 5% significance level) for various estimators, including the first-stage case-only estimator �c, the
second-stage case-sibling estimator bb, and the two-stage estimator �b

Multiplicative model Recessive model Dominant model

bge 0 0.5 0.8 0 0.8 1 0 0.8 1

n=N ¼ 200=800
Mean �g 0.220 0.646 0.892 0.286 1.005 1.165 0.316 1.035 1.208

b̂ge 0.002 0.506 0.822 0.024 0.869 1.031 �0.015 0.792 1.034
�bge 0.001 0.493 0.809 0.023 0.852 1.023 �0.009 0.792 0.996

Var. �g 0.010 0.010 0.013 0.035 0.033 0.034 0.022 0.025 0.031
b̂ge 0.095 0.105 0.119 0.382 0.394 0.379 0.214 0.244 0.274
�bge 0.064 0.069 0.086 0.249 0.263 0.261 0.140 0.150 0.182

Est. Var. �g 0.010 0.011 0.013 0.034 0.032 0.031 0.021 0.028 0.030
b̂ge 0.094 0.106 0.124 0.348 0.343 0.339 0.202 0.250 0.273
�bge 0.063 0.073 0.087 0.237 0.243 0.240 0.138 0.166 0.182

Sise/power �g 0.603 1 1 0.332 1 1 0.546 1 1
b̂ge 0.053 0.332 0.664 0.050 0.298 0.430 0.045 0.368 0.518
�bge 0.056 0.466 0.800 0.044 0.398 0.582 0.049 0.512 0.650

n=N ¼ 300=900
mean �g 0.221 0.649 0.891 0.282 0.989 1.163 0.315 1.038 1.207

b̂ge 0.009 0.516 0.815 �0.012 0.848 1.043 0.013 0.816 0.990
�bge 0.007 0.509 0.803 �0.011 0.818 1.014 �0.001 0.799 0.992

Var. �g 0.009 0.010 0.012 0.032 0.030 0.030 0.020 0.026 0.026
b̂ge 0.063 0.069 0.078 0.231 0.233 0.238 0.125 0.179 0.185
�bge 0.042 0.050 0.053 0.167 0.169 0.171 0.094 0.109 0.122

Est. Var. �g 0.009 0.010 0.012 0.033 0.028 0.028 0.019 0.025 0.027
b̂ge 0.062 0.070 0.081 0.228 0.219 0.222 0.132 0.164 0.178
�bge 0.043 0.050 0.059 0.157 0.161 0.164 0.092 0.114 0.125

Size/power �g 0.653 1 1 0.364 1 1 0.620 1 1
b̂ge 0.047 0.498 0.852 0.049 0.454 0.598 0.037 0.548 0.656
�bge 0.048 0.650 0.932 0.045 0.526 0.726 0.047 0.684 0.816
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overall disease rate (1% in the first subpopulation and 5%
in the second subpopulation). The exposures of each sib-
pair were generated by dichotomizing bivariate normal
random variables (marginal means 5 0, marginal var-
iances 5 1, correlation coefficient 5 0.3), with the cut-point
chosen to yield the desired frequency of exposure in each
subpopulation. As the first-stage ‘‘case-only’’ sample, N
affected siblings (cases) were randomly sampled from the
generated sib-pairs with one affected and one unaffected
sibling. The second-stage sample was obtained by ran-
domly selecting n cases from the first-stage sample and
then incorporating their unaffected siblings. The results
with n=N ¼ 200=800ð0:25Þ and 300=900ð0:33Þ are given in
Table II.

We have the following observations from the results
shown in Tables I and II. First, in the considered setting
where population stratification exits, the proposed estimator
�b, like the family-based estimator bb, is essentially unbiased
and so is its variance estimator. The Wald test based on �b for
testing bge ¼ 0 has correct type-I error rates. On the contrary,
the case-only estimator �g is biased for bge, and the associated
Wald test for testing bge ¼ 0 has substantially inflated type-I
error rates. These results highlight the potential drawback for
the case-only design and the importance of more robust
study designs such as the family-based and the proposed
two-stage designs. Second, the proposed estimator �b is
usually more efficient (with smaller variability) than the
family-based (case-parent and case-sibling) estimators bb
using only the second-stage data, and the Wald test based
on �b for testing bge ¼ 0 is more powerful than that
based on bb. The relative improvements in power for our
proposal over the second stage family-based test can
be as high as 40% when the subsampling fraction 5 0.25
and 30% when the subsampling fraction 5 0.33. The
power improvements are more significant for the
recessive and dominant penetrance models, and are less
significant for the multiplicative model. Also, comparing
results between Tables I and II we see that the power
improvements are similar regardless of which study design
(case-parent/case-sibling) is undertaken at stage two.
Third, we see from Table I that, except when the penetrance
mode is multiplicative, the estimator ~b based only
on complete trios is less efficient than the estimator bb we
proposed for further exploiting incomplete trios and
the two-stage estimator �b we proposed for exploiting both
the incomplete trios and the first-stage case-only sample.

To gain more insights into the ability of utilizing the
‘‘case-only’’ information for the proposed two-stage
analysis, we further conducted simulations under the
settings described above with dominant penetrance and
bge ¼ 1 (assuming all parents were available when the
case-parent study was performed at stage two). We fixed
the number of families sampled in the second stage at
n ¼ 200 but varied the number of cases in the first stage
sample: N ¼ 400; 500; 600; 800; 1; 000, or 2; 000 (correspond-
ing to r ¼ 0:5; 0:4; 0:33; 0:25; 0:2, or 0.1). We can see from
the power curves in Figure 1 that, as the size of the first-
stage case sample increases, the proposed two-stage
analysis adaptively incorporates the information wherein
and increases its power to detect the G-E interaction.
The results highlight the fact that the proposed two-stage
analysis, not only can be as robust as the family-based
analysis, but also can borrow efficiency from the
case-only analysis.

DISCUSSION

We have proposed a two-stage study design for
detecting gene-environment interactions, which consists
of a larger-scale first-stage case-only study and a smaller-
scale second-stage case-parent/case-sibling study. The
motivation is based on the consideration that the case-
only design is usually convenient and efficient but
vulnerable to bias due to gene-environment dependencies
in the study population, while the case-parent/case-
sibling deign is more robust to such bias but less efficient.
The proposed two-stage analysis for G-E interactions is
intended to utilize the strengths from the two different
type of studies: it always yields asymptotically unbiased
parameter estimate and test size, while also gaining
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Fig. 1. Power (for detecting gene-environment interaction at 5%

significance level) of the proposed two-stage analysis using

case-parent (upper panel) and case-sibling design (lower panel)
at stage two. The number of trios (upper panel) or sibships

(lower panel) is 200. The number of cases at stage one increases

from 400 to 2,000. Data were simulated under the dominant

model with the value of the interaction parameter fixed at 1.
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efficiency from the case-only analysis, even in presence of
population-level gene-environment dependencies. The
proposed estimator �b and its variance estimator are very
easy to implement, involving only quantities that are
available from existing approaches such as the conditional
and unconditional logistic regressions.

Since a case-only study may be biased under G-E
dependencies, a prudent strategy would be to perform a
case-only design as a main study, subsequently followed
by an independent family-based study as a confirmatory
study. When results from the two independent studies are
consistent, the case-only analysis may be reported as the
final analysis. When results from the two studies are
inconsistent, suggesting that the G-E independence may
fail so that the case-only analysis may be subject to bias,
one may base the final analysis only on the family-based
study, which is less likely to be biased but may be of
limited power due to its limited sample size. Alternatively,
by regarding the cases (affected offspring/sibling) in the
family-based sample as a subsample of the pooled case
sample combining all the cases in case-only and family-
based samples, the proposed joint analysis can then be
applied to yield the refined analysis utilizing both the
case-only and family-based information on the G-E
interaction, provided that the case-only and the family-
based samples are essentially from the same underlying
population.

An assumption required for the proposed approach is
that the stage-two sample is a random subsample of the
stage-one (case-only) sample. This assumption may be
violated when the participation of the parents/siblings for
a second-stage study depends on a variety of selection
factors. The mechanism of selecting the parents/siblings at
stage two can be equivalently regarded as a missing data
mechanism (the family member not participating the
second-stage study is ‘‘missing’’). Recall that the case-
parent trio analysis (and also the case-parent trio and dyad
analysis we proposed above) is in fact valid under the
missing data mechanism expressed in (A.2), which is a
type of ‘‘informative missing’’ mechanism [Allen et al.,
2003; Chen, 2004]. Hence, if the case-parent design is used
at stage two, the proposed analysis is valid even under a
non-random selection mechanism, so long as such a
mechanism satisfies (A.2). On the other hand, when the
case-sibling design is adopted at stage two, our proposal
does rely on the randomness assumption. When this
assumption fails, techniques for allowing non-random

missing-data mechanism in conditional logistic regression
analysis may be applied, e.g., Sinha and Maiti [2008]; this
is an issue deserving further investigation.

To examine the potential bias caused by the non-random
selection of the stage-two sample, we conducted a small
simulation study with the same setting as in Table II
(n=N ¼ 200=800) except that here the selection of stage-two
unaffected siblings depends on the subpopulation mem-
bership: the siblings in one subpopulation have a lower
likelihood of participating the second-stage study than the
siblings in the other subpopulation. When the likelihood of
participating the second-stage study in the two subpopu-
lations is 20 and 30%, the type-I error rates for testing
bge ¼ 0, evaluated by 1,000 simulations, are 5.4, 5.0, and
5.6% under the multiplicative, recessive, and dominant
models, respectively. It is seen that under the mild
deviation from random selection, the bias of the proposed
two-stage analysis is ignorable. In the setting with more
severe deviation from random selection, i.e., the likelihood
of participating the second-stage study in the two
subpopulations is 15 and 35%, the type-I error rates under
the multiplicative, recessive, and dominant models are,
respectively, 8.8, 6.0, and 6.2%, which are still acceptable
except for the result under the multiplicative model.

When the population G-E independence assumption
does hold, our proposal may be less powerful than the
case-only analysis since the proposed two-stage analysis,
to achieve robustness in general, does not exploit this
assumption while the the case-only analysis does and
achieves full efficiency [Umbach and Weinberg, 1997]. To
assess the potential loss of efficiency for the proposed two-
stage analysis as compared to the case-only analysis when
the G-E independence holds, we performed a simulation
study with the same setting as in Table I (using the case-
parent design at stage two and assuming all parents are
available), but with all the data collected from the first
subpopulation, i.e., the study population is homogeneous
and has no substructure, and hence the G-E independence
holds. Table III demonstrates the results on testing power
based on 500 replications. The proposed two-stage
analysis, though more powerful than the second-stage
family-based (case-parent) analysis, is less powerful than
the first-stage case-only analysis. We note that the loss of
power for the two-stage analysis relative to the case-only
analysis can be substantial or modest, depending on the
second-stage subsampling fraction (n=N) is smaller or
larger. Given these results and the fact that the case-only

TABLE III. Power of the Wald tests for testing bge ¼ 0 at 5% significance level based on the first-stage case-only
estimator �c, the second-stage case-parent estimator bb, and the two-stage estimator �b under the setting where the G-E
independence holds

Multiplicative model Recessive model Dominant model

bge 0.5 0.8 0.8 1 0.8 1

n=N ¼ 200=800
b̂ge 0.318 0.531 0.361 0.545 0.370 0.468
�bge 0.452 0.697 0.563 0.749 0.587 0.690
�g 0.990 1 0.997 1 0.984 1
n=N ¼ 400=800
b̂ge 0.490 0.730 0.602 0.808 0.572 0.734
�bge 0.606 0.824 0.762 0.909 0.732 0.850
�g 0.984 1 0.992 1 0.982 0.992
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analysis may result in substantial bias even under mild
G-E dependencies [Albert et al., 2001], the proposed two-
stage analysis for G-E interactions is thus best suited for
the setting when there is some concern that the G-E
independence may not hold in the study population,
e.g., when there has been substantial evidence that the
population stratification exists.
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APPENDIX

SANDWICH ESTIMATORS FOR THE
VARIANCE-COVARIANCE

MATRICES USED IN (8)

We first consider the setting where the case-parent study
is performed at stage two and all parents are available. For
the second-stage case i (i 2V), let SiðbÞ ¼
@ log PrðGijGpi;Ei;Di ¼ 1Þ=@b and IðbÞ ¼ �

P
i2V @SiðbÞ=@b

be the score function and observed information matrix for
the CPG likelihood (5). Also, let PðG;E; gÞ be a model
specified for PrðGjE;D ¼ 1Þ, UiðgÞ ¼ @ logPðGi;Ei; gÞ=@g
and JðgÞ ¼ �

P
i2V @UiðgÞ=@g be the score function and

information matrix for the case-only analysis based on the
second-stage case sample. Then the sandwich estimators
for VðbgÞ and Cðbb;bgÞ are given as

VðbgÞ ¼ JðbgÞ�1
X
i2V

UiðbgÞUT
i ðbgÞ

( )
JðbgÞ�1;

Cðbb;bgÞ ¼ IðbbÞ�1
X
i2V

Sið
bbÞUT

i ðbgÞ
( )

JðbgÞ�1: ðA:1Þ

Note that we use a sandwich-type robust estimate, rather
than the inverse of information matrix, for estimating the
variance of bg since we allow the model used in case-only
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analysis to be misspecified. The variance matrix of bb, VðbbÞ,
can be obtained as IðbbÞ�1 or the sandwich-type estimate. If
the case-sibling study is performed at stage two, SiðbÞ and
IðbÞ are, respectively, replaced by the score function and
information matrix from the conditional likelihood (7).

Now consider the setting where the case-parent study is
performed at stage two and there are missing parents.
Recall that the proposed conditional likelihood, consisting
of both trios and dyads with one heterozygous observed
parent, involves b and a set of exposure-specific nuisance
parameters. Denote the set of nuisance parameters as Z
and the proposed conditional likelihood by Lðb;ZÞ. If both
parents of the second-stage case i are available (i.e. the
family is a trio), then SiðbbÞ is still given by the score
function of the CPG likelihood (5). If only one of the
parents of the second-stage case i is available and is
heterozygous, the conditional likelihood for this family,
whose form is given in Equation (A.4), involves b and an
exposure-specific nuisance parameter, say Ze. For this
family, Sið

bbÞ in (A.1) is replaced by

Sb;ið
bb; bZÞ � IbZe

I�1
ZeZe

SZe ;ið
bb; bZÞ;

where Sb;iðb;ZÞ and SZe ;iðb;ZÞ are the score functions of
family i’s likelihood with respect to b and Ze, respectively,
and IbZe

¼ �@2 log Lðb;ZÞ=@b@Ze and IZeZe
¼

�@2 log Lðb;ZÞ=@Z2
e are submatrices from the full informa-

tion matrix. Also, in this setting, the matrix IðbÞ in (A.1) is
replaced by Ibb ¼ �@2 log Lðb;ZÞ=@b2, and the variance
matrix VðbbÞ is replaced by ðIbb � IbZI�1

ZZIT
bZÞ
�1. All these

matrices are evaluated at ðbb; bZÞ, the parameter estimates
obtained by maximizing Lðb;ZÞ.

CONDITIONAL LIKELIHOODS FOR
FAMILIES WITH MISSING PARENTS

Without loss of generality, we assume that the gene
locus under study has two alleles, and the associated
genotypes are labeled by G ¼ 0, 1, and 2. Let Z index the
subpopulations. Let R ¼ ðRf ;RmÞ denote the parental
missing pattern, where Rf (Rm ) equals one if the father
(mother) is observed, and equals zero if the father (mother)
is missing. Similar to Allen et al. [2003] and Chen [2004],
we make the following probabilistic assumption on the
parental missingness:

PrðRjGp;G;E;D ¼ 1;ZÞ

¼ PrðRjGp;E;D ¼ 1;ZÞ;
ðA:2Þ

that is, given the subpopulation Z, the offspring’s
environmental exposure E and disease status D ¼ 1, and
the parental genotypes Gp, the parental missingness R is
independent of offspring’s genotype G.

The likelihood proposed for each family is based on the
conditional distribution of the offspring’s genotype G
given the number of observed parents R (R ¼ 0; 1; 2), the
genotypes of the observed parents Gop, if any, and the
offspring’s exposure E and disease status (D ¼ 1). In
particular, we consider this conditional probability for
families with R ¼ 1 (‘‘dyad’’) and R ¼ 2 (‘‘trio’’), since,
based on arguments in Chen [2004], families with R ¼ 0
(‘‘monad’’) contain no information on the association
parameter b if we do not impose any assumptions on
the mating-type distribution. By assumption (A.2) we
immediately have PrðGjR ¼ 2;Gop;E;D ¼ 1Þ

¼ PrðGjGp;E;D ¼ 1Þ, which has been given in (5). Let Gp ¼

ðGf ;GmÞ be the complete parental genotypes including the
paternal (Gf ) and maternal (Gm) genotypes. For dyad
families with one heterozygous observed parent, using the
penetrance model PrðD ¼ 1jG;E;ZÞ ¼ KZ expfbTmðG;EÞg
where KZ ¼ PrðD ¼ 1jG ¼ 0;E ¼ 0;ZÞ, and the assumption
(A.2) we have

PrðG;Gop ¼ 1;R ¼ 1;E;D ¼ 1Þ

¼ expfbTmðG;EÞgKGE; G ¼ 0; 1; 2;

where

KGE ¼
X
Gm

qEðGf ¼ 1;GmÞPrðGjGf ¼ 1;Gm;E;ZÞ

þ
X
Gf

q0EðGf ;Gm ¼ 1ÞPrðGjGf ;Gm ¼ 1;E;ZÞ;
ðA:3Þ

qEðGf ;GmÞ ¼
X

Z

Pr½R ¼ ð1; 0ÞjGf ;Gm;D ¼ 1;E;Z�

� KZ PrðGf ;GmjE;ZÞPrðEjZÞPrðZÞ;

and q0EðGf ;GmÞ is defined as qEðGf ;GmÞ with the first term
replaced by the probability for R ¼ ð0; 1Þ. Therefore,

PrðGjGop ¼ 1;R ¼ 1;E;D ¼ 1Þ

¼
expfbTmðG;EÞgKGEP

g¼0;1;2 expfbTmðg;EÞgKgE

; G ¼ 0; 1; 2:

In (A.3), if we further assume that G and E are
independent given parental genotypes, and the Mendelian
proportions hold in each subpopulation, we have, similar
to Chen [2004], the identity K0E þ K2E ¼ K1E for each
exposure level E. This identify then leads to

PrðGjGop ¼ 1;R ¼ 1;E;D ¼ 1Þ

¼
expfbTmðG;EÞgyðG;EÞP

g¼0;1;2 expfbTmðg;EÞgyðg;EÞ
; G ¼ 0; 1; 2;

ðA:4Þ

where

yðG;EÞ ¼

expðZEÞ for G ¼ 0

1 for G ¼ 1

1� expðZEÞ for G ¼ 2

8><>:
and ZEð¼ logfK0E=K1EgÞ is an exposure-specific nuisance
parameter depending on the off-springs exposure level E.
The conditional probabilities for dyad families with one
homozygous observed parent (R ¼ 1 and Gop ¼ 0 or 2) can
be derived in a similar way and they would involve two
nuisance parameters for a given value of E. Recall that the
genotype G is trinomial and hence the degrees of freedom
is 2. Thus, after accounting for the nuisance parameters,
the dyad families with one homozygous observed parent
cannot provide additional information on b and hence can
be excluded from analysis. The proposed conditional
likelihood for case-parent analysis with incomplete par-
ental genotypes is then obtained as the product of all
individual likelihoods (5) from trios and all individual
likelihoods (A.4) from dyads with one heterozygous
observed parent. This conditional likelihood generalizes
that proposed in Chen [2004] to incorporate inference on
the G-E interaction.
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