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Abstract: We consider a periodic review model over a finite horizon for a perishable product with fixed lifetime equal to two
review periods. The excess demand in a period is backlogged. The optimal replenishment and demand management (using price)
decisions for such a product depend on the relative order of consumption of fresh and old units. We obtain insights on the structure of
these decisions when the order of consumption is first-in, first-out and last-in, first-out. For the FIFO system, we also obtain bounds
on both the optimal replenishment quantity as well as expected demand. We compare the FIFO system to two widely analyzed
inventory systems that correspond to nonperishable and one-period lifetime products to understand if demand management would
modify our understanding of the relationship among the three systems. In a counterintuitive result, we find that it is more likely that
bigger orders are placed in the FIFO system than for a nonperishable product when demand is managed. © 2013 Wiley Periodicals,
Inc. Naval Research Logistics 60: 343–366, 2013
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1. INTRODUCTION

In this article, we examine the joint replenishment and
demand management decisions for a perishable product with
fixed lifetime equal to two review periods. A perishable prod-
uct is characterized by its usefulness over a limited period of
time. Once its lifetime is over, the usefulness of the product
declines rapidly. The cost impact of spoilage due to per-
ishability is massive. For example, the $1.7-billion apple
industry in the US loses as much as $300 million every year to
spoilage [24]. Similarly, it is estimated that the top 40 retail-
ers in the US dump as much as 500 million pounds of food
every year due to spoilage [13]. However, spoilage is not lim-
ited to produce or consumer goods alone; several industrial
products also have a limited lifetime. For example, Chen [7]
and Karaesmen et al. [15] mention that adhesive materials
used for plywood panels lose their strength within 7 days.

Obviously, spoilage is a loss, and the bottom line of a
firm can improve significantly if some of this spoilage is
prevented, that is, if the perishable nature of products is man-
aged properly. A mechanism by which this may be achieved
is demand management using price. (Throughout this article,
we consider only price as a lever to modulate demand. As a
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result, the terms “demand management” and “dynamic pric-
ing” mean the same in the context of this work.) Through
an appropriate selection of price, demand can be modu-
lated to improve profit. The modulation of demand can not
only increase revenue but also reduce shortage, holding, and
spoilage costs. Potential spoilage due to limited lifetime of
perishable products is the main reason demand management
for them is even more important than for nonperishable prod-
ucts. For nonperishable products, the only cost of unsold
inventory is the cost of holding inventory. For perishable
products, the unsold inventory not only incurs holding cost
but, in addition, with increasing age of the inventory, the risk
of it remaining unsold by the end of its lifetime increases.

For such a product, it is well-understood that the profit
during the planning horizon (and hence the optimal replen-
ishment policy) depends on the relative order in which units
arrive and are consumed [20]. In the existing literature on
perishable products with multiperiod lifetime, two scenar-
ios are commonly modeled. In the first scenario, inventory
is consumed in the order of first-in, first-out (FIFO). This
scenario is primarily realized when the manufacturer manip-
ulates or controls the order of inventory consumption so that
older units are consumed before new units. The condition
that the manufacturer determines the order of inventory con-
sumption may be satisfied in both business-to-business (B2B)
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as well as business-to-consumer (B2C) settings. This condi-
tion is satisfied in a B2B setting if the manufacturer selects
the units to ship to a customer. For example, in a vendor
managed inventory system, the manufacturer selects which
units to deliver to a customer. Similarly, an example of a B2C
setting is online grocery stores, such as NetGrocer.com and
bigbasket.com, where the grocer picks inventory and delivers
it to consumers’ homes.

The second scenario is the opposite of the first scenario.
In the second scenario, inventory is consumed in the order
of last-in, first-out (LIFO). This scenario occurs when cus-
tomers prefer (and are able to obtain) the freshest units
available. Customers may prefer to obtain the freshest unit
available because such a unit has the most time-to-expiry,
which reduces the risk of spoilage. The risk of spoilage before
sale, however, increases for the manufacturer in this scenario.
In a B2B setting, inventory may be consumed in the LIFO
order if customers pick up inventory from the manufacturer’s
warehouse themselves. The LIFO consumption order may be
realized even when the manufacturer is responsible for deliv-
ering inventory if the manufacturer is contractually required
to ship the freshest units available. Erhun et al. [10] gives
an example of such an arrangement. Stanford Blood Center,
which is a nonprofit organization, delivers only fresh platelet
inventory to four small hospital customers, even if it has older
inventory in stock.

In this article, we develop and analyze a periodic review
model over finite horizon with backlogging for both the FIFO
and LIFO scenarios to obtain insights on the nature of the
optimal replenishment and demand decisions. For both sce-
narios, we derive structural results on the optimal policy and
profit function and extend them to infinite horizon. For the
FIFO scenario, we also derive bounds on the optimal replen-
ishment quantity and expected demand when the planning
horizon is finite.

Our analysis reveals several interesting insights. In one
interesting result, we find that the likelihood of the optimal
order-quantity for a two-period lifetime product being greater
than that of a nonperishable product increases for the FIFO
scenario when demand is managed. When demand is not
managed, the risk of spoilage forces an inventory manager to
usually order in smaller quantity when the product has a two-
period lifetime compared to a nonperishable product. Our
analysis reveals that demand management causes this rela-
tionship to breakdown more often. On the other hand, demand
management does not change the relationship between the
optimal order-quantities for one-period and two-period life-
time products. With or without demand management, the
order quantity for the two-period lifetime product remains
greater than the one-period lifetime product.

The rest of this article is organized as follows. In Section
3, we discuss the basic assumptions and notation. In Sections
4 and 5, we develop and analyze periodic review models for

the FIFO and LIFO scenarios, respectively. For the FIFO
scenario, we compare the optimal policy for a two-period
lifetime system with that of a one-period lifetime system and
an infinite period lifetime system. For the same scenario, in
Subsection 4.2, we also develop upper and lower bounds on
the optimal order quantity and expected demand. In Section
6, we discuss computational experiments. Finally, we con-
clude in Section 7. We begin by positioning our work in the
existing literature in the following section.

2. LITERATURE REVIEW

Because this article looks at the joint replenishment and
pricing decisions for a perishable product, two streams of
literature are relevant. The first stream corresponds to inven-
tory control decisions for perishable products, and the second
stream consists of papers that examine joint replenishment
and pricing decisions.

The literature on the inventory control of perishable prod-
ucts can be classified into two categories depending on how
the perishability of a product is modeled. Papers in the first
category seek to model products with random lifetimes such
as meat and vegetable produce. On the other hand, papers in
the second category consider products whose lifetime is fixed
and completely known. Once the product reaches the end of
its usable lifetime, it becomes unfit for consumption and must
be discarded (perhaps for a cost) or salvaged. This approach
is motivated by products whose lifetime is predictable such
as packaged and processed food products.

Among the papers in the first category, a popular way to
model random lifetimes is by assuming that the lifetime of
each unit is an exponentially distributed random variable.
(This leads to the model being called an exponential decay
model.) Given this approach, numerous models have been
developed using an approach similar to the Economic Order
Quantity model; see Dave [9], Goyal and Giri [14], and
Raafat [22] for a review.

On the other hand, most of the papers in the second cat-
egory use periodic review models with random demand. As
we noted in the Introduction, the optimal replenishment pol-
icy depends on the relative order of inventory arrival and
consumption. Assuming that inventory is consumed in the
order of FIFO, Fries [12] and Nahmias [18] characterize the
form of the optimal policy for the lost-sales and backlogging
cases, respectively, with general lifetime. Using the special
characteristics of the optimal solution, many papers have
developed myopic or near-myopic policies that ignore the
age distribution of on-hand inventory (e.g., Nahmias [19]);
see review papers by Nahmias [20] and Karaesmen et al. [15]
for a summary of these papers. The analysis of the optimal
inventory policy for the LIFO rule is difficult using standard
techniques, so research on this topic is limited. As an example
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of research in this area, Cohen and Pekelman [8] develop age
distributions in a periodic review inventory system with lost
sales to determine the order policy. Once again, Nahmias [20]
and Karaesmen et al. [15] summarize many of these papers.
Research has also been conducted to compare a LIFO system
to a FIFO system. In a recent paper, Parler et al. [21] com-
pare the cost of a LIFO system to that of a FIFO system when
both supply and demand processes are independent Poisson
processes. See Parler et al. [21] for more information on this
topic.

Naturally, our work also contributes to the second cate-
gory of literature given our consideration of a product with
fixed and multiperiod lifetime. To the best of our knowledge,
only Li et al. [17] have analyzed a setting in which demand is
price dependent for a perishable product with fixed and multi-
period lifetime. They consider both two-period and arbitrary
lifetime systems in which the order of inventory consump-
tion is FIFO. For the two-period lifetime case, they derive the
structure of the optimal policy. With respect to their work,
we contribute in several ways. One, we present an alter-
native proof and additional results on the structure of the
optimal policy for a FIFO system. Two, we derive bounds on
the optimal demand and order quantity for the same system.
Three, we derive insights on whether demand management
alters our understanding of how the optimal order quantity
in a two-period lifetime FIFO system compares with two
other widely analyzed systems that correspond to nonperish-
able and one-period lifetime products. Four, we characterize
the structure of the optimal policy for a LIFO system. Five
and final, we computationally derive insights on the rela-
tive effect of demand management on the FIFO and LIFO
systems.

We would like to point out that Chande et al. [2, 3],
and Chandrashekar [4] also consider replenishment and
demand management decisions for perishable products, but
these papers model only a single promotion (the only
demand-related decision) during the horizon. Relative to
these papers, our contribution is to optimize demand dynam-
ically. We also develop analytical results to derive insights,
whereas these papers use a computational approach to obtain
insights.

We would also like to mention the stream of litera-
ture on the coordination of demand (or price) and pro-
duction/ordering decisions for nonperishable products. For
instance, Chen and Simchi-Levi [5] and Federgruen and
Heching [11] develop optimal policies using periodic review
models with backlogging with and without fixed cost, respec-
tively. On the other hand, Chen et al. [6] consider the problem
with fixed cost, but assume that excess demand is lost. Finally,
we note that excellent reviews of literature on the coor-
dination of price and inventory decisions are provided by
Federgruen and Heching [11], Chen et al. [6], and Yano and
Gilbert [25].

3. NOTATION AND COMMON ASSUMPTIONS

We consider a finite-horizon, periodic-review model for a
perishable product with a fixed lifetime equal to two periods
at a single manufacturer. At the beginning of each period,
the manufacturer inspects his net inventory, xt , which is one-
period old, and places an order for quantity, qt . For simplicity,
we assume that the lead time is equal to zero. The assumption
of zero lead times is a standard convention in both perish-
able inventory literature as well as in the literature on joint
replenishment and pricing decisions.

At the same time, the manufacturer determines the price
for that period. Similar to Li et al. [17], we assume that the
manufacturer charges the same price for all the units. This
assumption keeps the analysis simple. Let pt be the price in
period t . Let dt (pt ) be the expected demand corresponding to
pt . We assume that the function dt (·) is strictly decreasing.
As a result, there is a one-to-one correspondence between
price and expected demand. This also means that we can use
price and expected demand interchangeably in analysis. In
fact, the exposition is considerably simplified when expected
demand is used as a variable instead of price. Accordingly,
throughout the article, we use expected demand as a vari-
able to present results. In doing so, we omit the argument pt ,
unless necessary, for simplicity and use only dt to denote the
expected demand.

We assume that customers pay the price prevailing in the
period in which they arrive, even though the product may be
out of stock. Hence, expected revenue is equal to pt · dt (pt ).
We assume this expression to be strictly concave in pt . One
example of dt (pt ) for which the expected revenue is strictly
concave is dt (pt ) = a0 − b0pt , where a0, b0 > 0. Another
example of such a function is dt (pt ) = a0 exp(−b0pt), where
a0, b0 > 0, for pt ∈ [0, 2/b0].

The assumption of strict concavity of expected revenue is
standard in the literature on joint inventory-price decisions.
Although some papers make this assumption directly (e.g.,
Li and Zheng [16]), many others make assumptions that lead
expected revenue to be a strictly concave function of pt . For
example, Federgruen and Heching [11] and Chen et al. [6]
assume dt to be concave and strictly decreasing function of
pt , which implies that pt · dt (pt ) is strictly concave in pt .

Once the order is delivered, customer demand arrives
through the rest of the period. We assume that given expected
demand dt , the realized demand in period t is equal to
Dt = dt + ξt , where ξt is a random variable with support
[−a, ∞), where a > 0, such that E(ξt ) = 0. Bounding the
support of ξt at −a is necessary to ensure that demand Dt

remains non-negative. We assume that ξt is independently and
identically distributed over time. Let F and f be the cumu-
lative distribution function (CDF) and probability density
function (PDF) of ξt , respectively.

The above demand model is referred to as the additive
demand model in the existing literature. The word “additive”

Naval Research Logistics DOI 10.1002/nav



346 Naval Research Logistics, Vol. 60 (2013)

arises from the additive nature of the randomness (ξt ). A more
general model is the multiplicative model, which has the fol-
lowing form: Dt = dtζt +ξt . Thus, the randomness is present
in both additive and multiplicative forms. Although we will
use the multiplicative model in computational experiments,
our methodology is not useful in developing insights for this
demand model. The extension of our analytical results for
this model thus remains a topic for future work.

We let D be the set of all feasible values of expected
demand in a period. Two requirements for any d to be con-
tained in D are that (a) the realized demand Dt remains
non-negative for all ξt ∈ [−a, ∞) and (b) the correspond-
ing price be non-negative. Since ξt ≥ −a, requirement (a)
ensures that any d in D is greater than or equal to a. Further,
we assume D to be convex, which implies that the set is an
interval.

At the end of the period, once all the demand is realized,
holding cost is charged on any remaining inventory at rate
h per unit. On the other hand, if demand exceeds inventory,
the excess demand is backlogged, and backlogging cost is
charged at π per unit backlogged.

Given values of xt , qt , and dt , the revenue and holding and
shortage costs incurred in period t are equal to

L(xt , qt , dt ) = R(dt ) − hE[xt + qt − Dt ]+
− πE[Dt − xt − qt ]+,

where R(dt ) is the expected revenue, which is equal to the
product of expected demand and the corresponding price, and
[·]+ stands for max(·, 0).

Also, at the end of the period, the inventory that is two-
periods old is discarded. The amount of inventory discarded
depends on the relative order of consumption. Under the
FIFO scenario, the amount of inventory discarded is equal
to (xt − Dt)

+. On the other hand, the amount of inventory
discarded under the LIFO scenario is (xt − (Dt − qt )

+)+.
We let θ (possibly negative) be the unit cost of discarding old
inventory. The parameter θ can be both positive or negative
depending on whether old inventory incurs a cost while being
discarded or it is salvaged.

4. FIRST-IN, FIRST-OUT SCENARIO

In this section, we derive insights on the joint replen-
ishment and price decisions when the order of inventory
consumption is FIFO.

4.1. Analysis

We begin by formulating the model. For simplicity, we
omit the subscript t from all the variables through the rest
of this article unless necessary for exposition. The optimal
profit from period t through the end of horizon vt is equal to

vt (x) = max
d∈D,q≥0

L(x, q, d) − cq − θE(x − D)+

+ αEvt−1(q − (D − x)+), (1)

where α ∈ (0, 1) is the discount factor. We take the end
of horizon profit v0(x) to be equal to sx+ − cx−, where
s is the salvage value. Observe that the argument of vt−1,
(q − (D − x)+)+, is the amount of inventory that is one
period old at the beginning of period t − 1. Also, define

Gt(x, q, d) = L(x, q, d) − cq − θE(x − D)+

+ αEvt−1(q − (D − x)+), (2)

so that vt (x) = max
d∈D,q≥0

Gt(x, q, d).

We now state the structure of the optimal policy in the fol-
lowing theorem. We note that some (but not all) parts of the
theorem are also derived by Li et al. [17]. In particular, they
prove concavity of Gt(x, ·, ·) and vt (·); show the existence
of a threshold x̄t beyond which no order is placed; and show
that q∗(x) ∈ [−1, 0], d∗(x) ∈ [0, 1], where q∗(x) and d∗(x)

are the optimal order quantity and expected demand when
net inventory is equal to x. These results are proved under
the assumption that the salvage value at the end of horizon
is equal to the purchasing cost. (In comparison, we allow
the salvage value to be lower.) In spite of the similarity, we
state the result and proof in its entirety for two reasons. One,
our proof approach is different. Two, some of the arguments
and equations in the proof of the theorem are also used in
establishing other results in the paper.

The theorem is stated below. Note that in the theorem state-
ment and beyond, we have omitted to add subscript t to d∗(x)

and q∗(x) to keep notation simple, even though both of these
functions may vary with t .

THEOREM 1: Let R′′(d) ≤ −h and π > (1 − α)c. Also,
let arg max

d
{R(d) − cd} ∈ D, and 0 < f (ξ) ≤ 1 for all

ξ ∈ [−a, ∞).

1. For each t , Gt(x, q, d) is a jointly concave function
of q and d.

2. For each t , there exists a unique x̄t > 0 such that
x̄T = x̄T −1 = . . . = x̄2 ≥ x̄1. For x < x̄t ,

a. q∗(x) > 0.
b. q∗(x), d∗(x) are unique; q∗(x), d∗(x) ∈ C1;

0 ≤ d∗′(x) ≤ 1; and −1 ≤ q∗′(x) ≤ 0.
Further, 1 + q∗′(x) − d∗′(x) ≥ 0.

c. d∗(x) = max
d∈D

R(d) − cd for x ≤ 0.

d. c(1 − α) − θ ≤ v′
t (x) ≤ c and v′

t (x) = c for
x ≤ 0.

e. vt (x) is a concave function of x.
3. On the other hand, when x ≥ x̄t ,

a. q∗(x) = 0. Further, d∗(x) is unique; d∗(x) ∈
C1; and 0 ≤ d∗′(x) ≤ 1.
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b. −h − θ ≤ v′
t (x) ≤ c.

c. vt (x) is a concave function of x.

Because proof of the theorem is long, a brief sketch is as
follows. We first establish the concavity of Gt in q and d by
showing the Hessian matrix to be negative semidefinite. After
that, we characterize the threshold value of net inventory (x̄t )
beyond which optimal order quantity is zero. Because the
characterizing equation is identical for all t > 1, the value of
x̄t is also identical for such t .

After proving the existence of x̄t , we use the implicit func-
tion theorem [23] to obtain bounds on d∗′(x) and q∗′(x) when
x is less than x̄t . In particular, for x ≤ 0, we find that the
optimal d maximizes R(d) − cd. Subsequently, we use the
bounds on d∗′ and q∗′ to bound v′

t and to prove concavity of
vt . The bounds on v′

t also have an economic interpretation,
as we will see below. We use a similar approach to prove the
results when x ≥ x̄t .

A brief discussion on the four technical assumptions stated
in the theorem is as follows. The first assumption requires that
the second derivative of the expected revenue be less than −h.
One consequence of this assumption is that the set of feasi-
ble values for expected demand D has bounded support. To
see this, note that the left end-point of D, a, is finite. As
the slope of R(d) strictly decreases, there must exist some
finite d0 such that R(d) ≤ 0 for all d ≥ d0. A negative value
of R(d) is possible only if price is negative. Clearly, any
such values of d cannot be feasible, so the feasible interval
for expected demand will be [a, d0]. The second assumption,
which imposes a lower bound on π , simplifies analysis by
ensuring that backlogs are always satisfied in the next period.

The next assumption that the maximizer of R(d) − cd be
feasible makes analysis convenient. This assumption is not
used in most of the proofs. Finally, we assume that the magni-
tude of the density at each point be in (0, 1]. The assumption
that the density is bounded by 1 holds for a wide range of para-
meter values for several common distributions. For instance,
for the exponential distribution, the assumption is satisfied if
rate λ ≤ 1, which means that E(ξ) ≥ 1. Similarly, for the
uniform distribution, the assumption holds if the length of
the support is greater than 1.

We next discuss insights from the theorem. The result
shows that as net inventory x increases, the optimal order
quantity decreases though the rate of reduction is less than 1.
(The same relationship between order quantity and net inven-
tory was shown by Nahmias [18] for a pure inventory system
of a perishable product with general lifetime.) This means that
the order-up-to levelx+q∗(x) increases withx. This is in con-
trast with nonperishable products, for which the order-up-to
level is independent of x Federgruen and Heching [11]. This
difference in the structure of the optimal order-up-to level is
driven by the difference between new and old units for the two
types of products. Although new and old nonperishable units

are identical to each other for the inventory system, new and
old perishable units are not identical for the inventory sys-
tem because new perishable units last one period longer than
old perishable units. As a consequence, although additional
old units reduce requirement for new units, the reduction is
less than the increase in older units, which causes the order-
up-to level to rise with x. Once the level of old inventory
becomes high enough, the order quantity becomes equal to
0. The threshold at which the order quantity becomes 0, inter-
estingly, is the same for all t ≥ 2, but has a lower value for
period 1 due to the end-of-horizon effect.

We also note that the optimal expected demand for x ≤ 0
is a constant that maximizes R(d) − cd. This is equal to
the optimal demand for a nonperishable product if an order is
placed [11]. But, as Part 2(b) shows, the optimal demand rises
as the amount of old inventory increases, to reduce spoilage.
Therefore, the optimal demand for a perishable product is
greater than that of a nonperishable product whenever an
order is placed.

The result that v′
t (x) = c for x ≤ 0 is intuitive. This result

means that a unit reduction in backlogged quantity increases
profit by c. Because lead-time is 0 and π is large enough, all
the backlogged demand is satisfied in the following period.
To satisfy each unit of backlog costs c. This cost will be saved
if the amount of backlog decreases by one unit, resulting in
a profit increase of c.

However, the marginal worth of a unit on-hand (v′
t (x), x ≥

0) is less than c even when an order is placed. This is in
contrast to nonperishable products; for such products, the
marginal worth of a unit is equal to c when an order is
placed [11]. Because new and old units of a nonperishable
product have identical remaining lifetimes (infinite), an addi-
tional unit on hand reduces order quantity by one and saves
the manufacturer purchasing cost of one unit. But old and
new units of a perishable product have different remaining
lifetimes, so presence of an additional old unit reduces order
quantity by less than one and the manufacturer saves less
than c.

The slope of vt is bounded from the lower side by −θ −h.
This bound is realized if a unit that is one-period old is certain
not to be consumed. In that case, the unit does not contribute
to the revenue, but incurs both holding and salvage costs,
which add up to −θ − h. The bounds on the slope of vt are
useful not only in establishing other parts of the theorem, but
also in developing bounds on the optimal order quantity and
expected demand, as we show in Subsection 4.2.

4.2. Bounds on Optimal Replenishment Quantity
and Demand

In this subsection, we develop upper and lower bounds
on the order quantity and expected demand for the model
developed in the last subsection. We obtain these bounds by
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exploiting the structural properties of the profit function as
well as the optimal order quantity and expected demand stated
in Theorem 2. We briefly discuss the approach to obtain the
bounds following the theorem statement, which is as follows.

THEOREM 2:

1. Let y = F−1[ π−c+αc
π+h+θ+αc

]. When x ≥ x̄t , the expected
demand is bounded from above by max{0, x − y}
and when x ≤ x̄t , it is bounded from above by
max{0, x̄t − y}.

2. Let dc be the unique solution of R′(dc) = c. For any
value of x, the expected demand is bounded from
below by dc.

3. Let r̄ = F−1[π−c+αc
π+h

] and r = F−1[π−c−α(h+θ)]
π+h

].
When x ≤ x̄t , the order quantity is bounded from
above by max{0, r̄ + x̄t − y − x} and bounded from
below by max{0, r + dc − x}.

Our approach for computing the bounds is as follows. The
lower bound on the expected demand when x > x̄t is obtained
by using the upper bound on the marginal worth of an old
unit, which is c (using Theorem 1), in the expression for
v′

t (x). Because the optimal expected demand is increasing,
for x ≤ x̄t the optimal expected demand is bounded from
above by d∗(x̄t ). This explains Part 1. The increasing nature
of expected demand can also be used to obtain a lower bound
on optimal demand. Thus, the optimal expected demand for
any x is bounded from below by d∗(0) = dc, which explains
Part 2.

On the other hand, when x ≤ x̄t , using the same approach
as for Part 1, we obtain an upper bound on q∗(x)−d∗(x), that
is, we use the maximum marginal worth of an old unit, c, in the
expression for v′

t (x). Given the upper bound on q∗(x)−d∗(x),
we obtain an upper bound on q∗(x) by replacing d∗(x) by its
upper bound. The approach to compute the lower bound on
q∗(x) is similar but exactly opposite, so that we now use the
lower bound on the marginal worth of a unit, −θ − h, to
obtain a lower bound on q∗(x) − d∗(x). Subsequently, we
obtain a lower bound on q∗(x) by using the lower bound on
d∗(x) computed in Part 2.

4.3. Relationship with One-period and Infinite
Lifetime Systems

In this subsection, we compare the optimal policy for the
model defined in Subsection 4.1 to that of a system in which
the product has a single-period lifetime as well as another
system in which the product has an infinite-period lifetime
(or is nonperishable). When there is no demand management,
it is understood that the order quantity for a two-period life-
time system in any period is greater than the order quantity
for a one-period lifetime system [20]. The reason lies in the

reduced risk of spoilage for a two-period lifetime system.
The same reason also leads to the intuition of a usually larger
order quantity for a nonperishable product as compared to a
two-period lifetime system. Our objective is to explore if the
conventional intuition modifies in the presence of demand
management.

We begin by formulating the model for a system in which
the lifetime is equal to one period. All the modeling assump-
tions remain the same as in Subsection 4.1; the sole difference
is that any unsold units at the end of each period are discarded.
The optimal profit from period t through the end of horizon is

v1
t (x) = max

q1≥0,d1∈D
L(x, q1, d1) − cq1− θE(x + q1− d1− ξ)+

+ αEv1
t−1(−(d1 + ξ − x − q1)+), (3)

where v1
0(x) = cx. Observe that only backlogs are carried

from one period to the next period. As a result, x can only
take non-positive values.

Similarly, we can define a model for nonperishable prod-
ucts. The formulation is as follows:

v∞
t (x) = max

q∞≥0,d∞∈D
L(x, q∞, d∞) − cq∞

+ αEv∞
t−1(x + q∞ − d∞ − ξ), (4)

where v∞
0 (x) = sx+ − cx−. Because nothing ever perishes,

there is no term involving θ in the above formulation. As
noted before, the optimal demand when the product is non-
perishable maximizes R(d∞) − cd∞ whenever an order is
placed. The same can also be easily shown for a system in
which the product lifetime is equal to one period; we omit
the details. Coupling these observations with Theorem 2, in
which we show that the optimal demand for a two-period
lifetime system is bounded from below by the maximizer of
R(d) − cd, we obtain the following corollary.

COROLLARY 1: Assuming an order is placed in a period,
for given x the optimal demand for a two-period lifetime
system is bounded from below by the optimal demands for
one-period lifetime as well as infinite lifetime systems.

An intuitive explanation for the above result follows.
For the two-period lifetime system, the optimal demand is
selected not only to maximize the modified revenue (R(d)−
cd), but also to lower spoilage of the old inventory. This
results in the optimal demand being greater than the (modi-
fied) revenue maximizing demand. In the other two systems,
the objective to lower spoilage does not exist. This is obvious
in the case of infinite lifetime system. When lifetime is one
period, fresh inventory is ordered every period, and there is
no old inventory. As a consequence, the optimal demand is
determined so as to maximize the (modified) revenue.

Next, we compare the optimal order quantities. Because net
inventory at the beginning of a period in a one-period lifetime
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system is always non-positive, the comparison across the two
systems can only be carried out for such values of x. It can be
easily shown that for a one-period lifetime system the order-
ing policy is a basestock policy, so we omit the details. In the
following proposition, we show that the optimal order quan-
tity for a two-period lifetime system, q2∗(x), is bounded from
below by that for a one-period lifetime system, q1∗(x), for
all non-positive x. We also show that the threshold for order
placement in a two-period lifetime system, x̄t , is bounded
from below by the optimal basestock level, which is equal to
q1∗(0), of the one-period system.

PROPOSITION 1:

1. q2∗(x) ≥ q1∗(x) for all x ≤ 0.
2. x̄t ≥ q1∗

t (0).

The above proposition (Part 1) shows that a two-period
lifetime system continues to order more than a one-period
lifetime system even when demand is managed. Thus, the
relationship between the optimal order quantities of the two
systems stays preserved when price can be varied.

The comparison of a two-period lifetime system with that
of an infinite lifetime system, however, throws a different
result. For instance, we find that the order quantity for the
two-period lifetime system is larger than the infinite life-
time system for period 1 for any x. (When demand is not
managed, the two orders are equal in the optimal solution.)
Similarly, for any t , we find that the threshold for order place-
ment for the two-period lifetime system, x̄t , is greater than
the base-stock level, which is equal to q∞∗(0), for the infi-
nite lifetime system. This means that for some values of net
inventory x, the two-period lifetime system may place bigger
orders than the infinite lifetime system. Even in the absence
of demand management this result remains true, but demand
management induces a bigger order in the two-period lifetime
system. (See our arguments below.) However, there still exist
many instances in which the infinite lifetime system places
a bigger order. For instance, when s = c, so that the end-
of-horizon effect vanishes, the infinite lifetime system orders
more compared to a two-period lifetime system for x ≤ 0.

The result is formally stated below.

PROPOSITION 2:

1. q2∗(x) ≥ q∞∗(x) for all x when t = 1.
2. For any t and any s ≤ c, x̄t ≥ q∞∗(0).
3. If s = c, q2∗(x) ≤ q∞∗(x) for x ≤ 0.

Note that the end-of-horizon effect also vanishes when
t >> 1 even though s < c. Therefore, q2∗(x) will likely
be less than q∞∗(x) for x ≤ 0 for such t .

An intuitive explanation for the above result is as follows.
Part 1, which shows this result for t = 1, is driven by two

major factors. The first factor is that the optimal demand in
the two-period lifetime system is greater than the infinite life-
time system, due to risk of spoilage. Greater expected demand
induces the manufacturer to place a bigger order. The second
factor is that the marginal worth of an additional new unit
is the same in either system regardless of the amount of net
inventory. (This is not true for other periods.) The difference
in the marginal worths between the two systems occurs in the
future profit term (or the recursive term). But since 1 is the
last period, the perishability of a new unit does not influence
the future profit term in the two-period lifetime system. As
a consequence, in the optimal solution, the value of q − d is
equal in the two systems. Because the optimal demand in the
two-period lifetime system is greater, the order quantity also
is larger in this system.

Greater optimal demand in the two-period system is also a
factor for Part 2, and once again it propels the manufacturer
to place a bigger order. The other major factor that drives the
result is the difference between the two systems in how they
use the first few new units. In an infinite-lifetime system,
the time of consumptions of new units (q) depends on the
number of old units (x). (Without loss of generality, we can
assume FIFO order of inventory consumption.) This means
that larger the amount of older inventory, greater is the time
lag before it is consumed. As a result, the marginal worth of
the first few new units declines with x. On the other hand, in
a two-period lifetime system, the worth of the first few new
units is independent of the amount of old inventory. Because
old units perish in the current period, the first few new units
get used latest by the following period. This difference in the
two systems potentially leads to a set of inventory values in
which the marginal worth of a few new units is greater in
the two-period lifetime system. For such inventory states, a
bigger order is placed in the two-period lifetime system.

Observe that the second factor does not depend on the sen-
sitivity of demand to price, so Part 2 also holds when demand
is not managed. The modulation of demand, however, favors
bigger orders in the two-period lifetime system compared to
the infinite lifetime system due to the first factor.

Part 3 considers the case when there is nothing on-hand
(x ≤ 0). In this case, the optimal demand across the two sys-
tems is equal, so demand ceases to be a factor. The key driver
of the result is greater future worth of an ordered unit in the
infinite lifetime system due to nonperishability.

We end this subsection by noting that Proposition 1 can
also be used to obtain a lower bound on the order quantity
in a two-period lifetime system. (Proposition 2 can also be
used to obtain an upper bound, but the bound turns out to be
identical to Theorem 2, Part 3.) We state the lower bound in
the following corollary.

COROLLARY 2: The optimal order quantity for x ≤ 0
in a two-period lifetime system is bounded from below by
q1∗(x) = −x + F−1

(
π−c+αc

π+h+θ+αc

)
.
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4.4. Infinite-Horizon Model

In this subsection, we show that Theorem 1 extends to
the infinite horizon case. To prove the result, we transform
the dynamic program stated in Eqs. (1) and (2) so that the
expectation of one-period profit is negative. We ensure this
by subtracting M := max

d∈D
R(d) from the expectation of

one-period profit.
The formulation of the transformed model is

v̂t (x) = max
q≥0,d∈D

Ĝt (x, q, d) (5)

where

Ĝt (x, q, d) = L(x, q, d) − M − cq − θE(x − D)+

+ αEv̂t−1(q − (D − x)+) (6)

and

v̂0(x) = sx+ − cx−.

As M is a constant and is subtracted every period,

v̂t (x) = vt (x) − M(1 − αt)

1 − α

and

Ĝt (x, q, d) = Gt(x, q, d) − M(1 − αt)

1 − α
.

The infinite-horizon equations of the transformed model is

v̄(x) = max
q≥0,d∈D

Ḡ(x, q, d) (7)

where

Ḡ(x, q, d) = L(x, q, d) − M − cq − θE(x − D)+

+ αEv̄(q − (D − x)+) (8)

By removing—M from the above equation, we can define
the infinite-horizon equations of the original model.

Because the single-period expected profit is negative for
each period, it can be easily seen that v̂t (x) ≤ 0 and
Ĝt (x, q, d) ≤ 0. We state this result formally in the following
corollary.

COROLLARY 3: For all t ≥ 1, v̂t (x) ≤ 0 and
Ĝt (x, q, d) ≤ 0.

In the following proposition, we state the infinite-horizon
counterpart of Theorem 1.

PROPOSITION 3: Assuming model parameters satisfy
same relationships as in Theorem 1,

1. All of v := lim
t→∞ vt , v̂ := lim

t→∞ v̂t , G := lim
t→∞ Gt

and Ĝ := lim
t→∞ Ĝt exist. Further, v̂ = v − M

1−α
and

Ĝ = G − M
1−α

.

2. The functions, v̂ and Ĝ, (v and G) satisfy the infinite-
horizon optimality eq. (7) and (8), of the transformed
model (original model).

3. G(x, q, d) is jointly concave in q and d and so is v(x)

in x.
4. There exists a unique x̄, which is equal to x̄t , t > 1,

defined in Theorem 1, such that for x < x̄,
a. q∗(x) > 0.
b. q∗(x), d∗(x) are unique; q∗(x), d∗(x) ∈ C1;

0 ≤ d∗′(x) ≤ 1; and −1 ≤ q∗′(x) ≤ 0.
Further, 1 + q∗′(x) − d∗′(x) ≥ 0.

c. d∗(x) = max
d∈D

R(d) − cd for x ≤ 0.

d. c(1 − α) − θ ≤ v′(x) ≤ c and v′(x) = c for
x ≤ 0.

5. On the other hand, when x ≥ x̄,
a. q∗(x) = 0. Further, d∗(x) is unique; d∗(x) ∈

C1; and 0 ≤ d∗′(x) ≤ 1.
b. −h − θ ≤ v′(x) ≤ c.

5. LAST-IN, FIRST-OUT SCENARIO

In this section, we discuss the case in which the order of
inventory consumption is LIFO. We begin by developing a
dynamic programming formulation. The optimal profit from
period t to the end of horizon is equal to

vt (x) = max
q≥0,d∈D

L(x, q, d) − cq − θE(x − (D − q)+)+

+ αEvt−1(x + q − D − (x − (D − q)+)+), (9)

such that v0(x) = sx+ − cx−, where s is the salvage value of
any inventory left at the end of horizon. The argument to vt−1

appears complex, but it can be derived in a simple manner. It
is equal to net inventory at the end of period t (x+q−D) less
the amount of inventory spoiled ((x − (D − q)+)+). Similar
to the model in Section 4, we consider an additive demand
model, that is, D = d + ξ , where d takes values in D.

Recall that for the FIFO scenario, the optimal demand
depends on the value of net inventory. Fortunately, the
LIFO scenario behaves differently, and the optimal expected
demand can be obtained by maximizing R(d) − cd when-
ever an order is placed. This also ensures that the objective
function is separable in q and d. We state the result formally
in the following proposition.

PROPOSITION 4: If the unconstrained optimal order
quantity is non-negative in the optimal solution, the optimal
expected demand is equal to d∗(x) = max

d∈D
R(d) − cd.
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It is well-known that the optimal profit function corre-
sponding to the LIFO scenario lacks concavity (or any other
type of simple structure) even when demand is not managed
[20]. Naturally, the addition of another variable, expected
demand, can only complicate the analysis, so the profit func-
tion continues to lack a simple structure. For instance, the
optimal profit function defined in Eq. (9) is not necessarily
concave in net inventory. We state this observation formally
as follows.

OBSERVATION 1: The optimal profit function defined in
Eq. (9) is not necessarily concave in x.

It is sufficient to consider the dynamic program for Period
1 to establish this observation. We provide an argument in
Appendix.

The lack of concavity of the profit function makes it diffi-
cult to establish other properties of the optimal solution such
as bounds on the slope of the optimal order quantity. In spite
of this hardship, we are able to characterize a number of
properties of the optimal profit function and optimal deci-
sions by exploiting first-order conditions. The result is stated
as follows.

THEOREM 3: Let π > c(1 − α) and arg max
d

{R(d) −
cd} ∈ D.

1. There exists a unique x̄, which is independent of t ,
such that an order is placed if x < x̄. For all x ≥ x̄,
no order is placed.

2. d∗(x) ∈ C1. Further, d∗′(x) = 0 for x < x̄ and
0 ≤ d∗′(x) ≤ 1 for x ≥ x̄.

3. For x ≤ x̄ and t > 1, −θ − h ≤ v′
t (x) ≤

c + (αh − (1 − α)θ)+. For x ≤ x̄ and t = 1,
−θ − h ≤ v′

t (x) ≤ c. Further, for x ≤ 0, v′
t (x) = c.

4. For x ≥ x̄, v′
t (x) ≥ −θ − h.

5. For x ≥ x̄, vt (x) is concave in x. Further, Gt(x, 0, d)

is strictly concave in d .

Some remarks on the above theorem are as follows. One,
the above theorem can be extended to infinite horizon in
a manner similar to Theorem 1. Two, similar to the FIFO
scenario, there exists a unique threshold of net inventory
beyond which the order quantity is zero. Unlike the FIFO
scenario, however, this threshold is identical for all the peri-
ods, including period 1. Because of a lack of concavity of vt ,
we are unable to say anything about how the order quantity
changes with respect to net inventory. Extensive computa-
tional experiments, however, indicate that the optimal order
quantity decreases with net inventory.

Three, similar to the FIFO scenario, v′
t (x) = c for x ≤ 0.

The reason is also the same, and the details are omitted. Four,
the optimal demand for a given x is unique. For x ≤ x̄,

this follows from the strict concavity of R(d). For x > x̄,
the uniqueness of d∗(x) follows from the strict concavity of
Gt(x, 0, d) in d (Part 5 of the theorem). Five and final, the
above structural results, if suitable, can also be extended to
the case when demand is not managed, by taking D to be a
singleton. To the best of our knowledge, such results do not
exist in the literature. We state this observation more precisely
in the following corollary.

COROLLARY 4: Consider an inventory system in which
demand is exogenous, and let π > c(1 − α).

1. There exists a unique x̄, which is independent of t ,
such that an order is placed if x < x̄. For all x ≥ x̄,
no order is placed.

2. For x ≤ x̄ and t > 1, −θ − h ≤ v′
t (x) ≤

c + (αh − (1 − α)θ)+. For x ≤ x̄ and t = 1,
−θ − h ≤ v′

t (x) ≤ c. Further, for x ≤ 0, v′
t (x) = c.

3. For x ≥ x̄, v′
t (x) ≥ −θ − h.

4. For x ≥ x̄, vt (x) is concave in x.

6. COMPUTATIONAL EXPERIMENTS

The purpose of the computational experiments is to obtain
insights on how the optimal order quantity, demand, and
expected profit vary for both FIFO and LIFO scenarios as
a function of model parameters.

We consider both additive and multiplicative demand mod-
els. For the additive demand model, D = a − bp + ξ , and
for the multiplicative demand model, D = (a − bp)ζ + ξ .
Although ζ is beta distributed with parameters γ and β,
ξ is normally distributed with mean μ and standard devia-
tion σ and truncated at 0 and 20. The values of other model
parameters are as follows:

T t c h π s μ a β γ b θ

4 4 5 1 40 1.5 10 20 1.2 1.2 1 −1

A summary of interesting observations is as follows:

1. For all the four scenario-demand model combina-
tions, there appears to exist a threshold before which
the optimal order quantity is positive and beyond
which the optimal order quantity is 0. Further, on
the left of the threshold, the optimal order quan-
tity is decreasing in net inventory. (We have proved
this result analytically for FIFO under the additive
demand model.) On the other hand, the relationship
between optimal demand and net inventory does not
appear to be always monotone.
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Figure 1. Optimal order quantity and demand as a function of σ .

2. For the multiplicative demand model, there appears
to be little variation in optimal demand as a func-
tion of model parameters for both FIFO and LIFO
scenarios. On the other hand, optimal order quan-
tity appears to vary little with respect to b and θ ,
but increases with respect to π and σ , apparently to
maintain higher safety stock.

3. For both additive and multiplicative demand mod-
els, the gap in expected profit between FIFO and
LIFO widens as values of the model parameters (b, θ ,

σ , and π ) increase. Further, the expected profits for
both FIFO and LIFO scenarios decrease with model
parameters.

The first observation is particularly encouraging as it indi-
cates that it may be possible to extend Theorem 1, possibly
in a limited sense, for the multiplicative demand model.

For sample plots, see Figs. 1–3. The figures show optimal
order quantity, demand, and expected profit for FIFO and
LIFO scenarios under additive and multiplicative demands
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Figure 2. Optimal order quantity and demand as a function of backlogging cost (π ).

for different values of σ and π . Although the order quantity
and demand values correspond to t = 4, the expected profit
corresponds to the whole planning horizon.

7. CONCLUSIONS AND FUTURE RESEARCH

We explore a periodic review model to develop insights on
the optimal replenishment and pricing policies for a perish-
able product with a fixed lifetime of two periods. We consider

two common scenarios: FIFO and LIFO. For the FIFO sce-
nario, our analysis reveals that there exists a fixed threshold
of inventory, which is the same for all but the last period,
beyond which no order is placed. However, the order-up-to
level and demand vary with the amount of inventory.

Although the profit function is concave under the FIFO sce-
nario, this property is absent for the LIFO scenario. In spite of
this difference, the two scenarios have similar structures for
the optimal replenishment policy. In the optimal replenish-
ment policy, both scenarios have thresholds beyond which no

Naval Research Logistics DOI 10.1002/nav



354 Naval Research Logistics, Vol. 60 (2013)

Figure 3. Optimal expected profit as a function of σ and π (backlogging cost).

order is placed. On the other hand, the optimal pricing poli-
cies for the two scenarios are notably different. Specifically,
the pricing policy under the LIFO scenario is much simpler
compared to the FIFO scenario: the optimal price is constant
whenever an order is placed, unlike the FIFO scenario. These
results hold for both finite and infinite horizon models.

Our analysis reveals that some well-understood relation-
ships between inventory systems of perishable and nonper-
ishable products may change in the presence of demand
management. One such relationship is that the optimal order

quantity for a two-period lifetime product is usually less than
that of a nonperishable product due to the risk of spoilage.
We find that demand management increases the likelihood of
the optimal order quantity for the two-period lifetime product
being greater than that of the nonperishable product.

One potential future research direction is the extension of
our results to general lifetime. Given that the analysis of the
problem in which demand is not managed is fairly complex,
we believe that the extension will not be straightforward.
Another interesting future direction could arise by relaxing
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the assumption that units of different ages are priced equally
when customers choose units themselves, that is, the manager
prices older units differently from newer units to maximize
profit. We are currently working on this problem.

APPENDIX

Proof of Theorem 1

Before we begin the proof, three remarks are as follows. One, for brevity,
we omit the dependence of q∗(x) and d∗(x) on x unless necessary for exposi-
tion. Two, as v′

0(0) is not defined, we take it to be equal to its right derivative,
which is equal to s. Three, any derivative at an end-point is actually a left or
right derivative depending on the context.

PROOF OF PART 1

We prove all the results by induction. We first establish the result for period
1. Note that

G1(x, q, d) = R(d) − cq − h

∫ x+q−d

−a

(x + q − d − ξ)f (ξ)dξ

− π

∫ ∞

x+q−d

(ξ + d − x − q)f (ξ)dξ

− θ

∫ x−d

−a

(x − d − ξ)f (ξ)dξ + αs

∫ x−d

−a

qf (ξ)dξ

+ αs

∫ x+q−d

x−d

(x + q − d − ξ)f (ξ)dξ

− αc

∫ ∞

x+q−d

(d + ξ − x − q)f (ξ)dξ ,

where we use the definition of v0(x) = sx+ − cx−. We have represented
partial expectations in the integral form for ease of computation, and we will
pursue this approach throughout the proof. Now,

∂G1(x, q, d)

∂q
= −c(1 − α)

+ π − (h + π − αs + αc)F (x + q − d), (10)

∂G1(x, q, d)

∂d
= R′(d) − αc + (h + π − αs + αc)F (x + q − d)

− π + (θ + αs)F (x − d), (11)

and so

∂2G1(x, q, d)

∂q2
= −(h + π − αs + αc)f (x + q − d) ≤ 0.

∂2G1(x, q, d)

∂d2
= R′′(d) − (h + π − αs + αc)f (x + q − d)

− (θ + αs)f (x − d) ≤ 0.

∂2G1(x, q, d)

∂d∂q
= (h + π − αs + αc)f (x + q − d).

It can be easily shown that the determinant of the Hessian matrix
of G1(x, q, d) is non-negative; the details are omitted. Further, since
∂2G1(x,q,d)

∂d2 ≤ 0 and ∂2G1(x,q,d)

∂q2 ≤ 0, G1(x, q, d) is jointly concave in q

and d for q ≥ 0 and d ∈ D.

Suppose now that the result is true for periods t − 1, · · · , 1, and consider
period t . Then

∂Gt (x, q, d)

∂q
= −c − h[F(x + q − d)] + π [1 − F(x + q − d)]

+ α

∫ ∞

x−d

v′
t−1(x + q − d − ξ)f (ξ)dξ

+ α

∫ x−d

−a

v′
t−1(q)f (ξ)dξ (12)

∂2Gt(x, q, d)

∂q2
= −(h + π)f (x + q − d)

+ α

∫ ∞

x−d

v′′
t−1(x + q − d − ξ)f (ξ)dξ

+ αv′′
t−1(q)F (x − d),

which is non-positive as v′′
t−1 ≤ 0 by induction hypothesis. Also,

∂Gt (x, q, d)

∂d
= R′(d) + (h + π)F (x + q − d)

− π + θF (x − d)

− α

∫ ∞

x−d

v′
t−1(x + q − d − ξ)f (ξ)dξ (13)

∂2Gt(x, q, d)

∂d2
= R′′(d) − (h + π)f (x + q − d) − θf (x − d)

+ α

∫ ∞

x−d

v′′
t−1(x + q − d − ξ)f (ξ)dξ

− αv′
t−1(q)f (x − d)

≤ R′′(d) − θf (x − d) + α(θ + h)f (x − d), (14)

where the inequality follows as by induction hypothesis v′′
t−1(·) ≤ 0

and v′
t−1(·) ≥ −θ − h. The expression in (14) is clearly non-positive if

θ(1 − α) ≥ αh. When θ(1 − α) < hα, the non-positivity of the expression
in (14) can be easily established using f (·) ≤ 1 and R′′(d) ≤ −h. Now,

∂2Gt(x, q, d)

∂d∂q
= (h + π)f (x + q − d)

− α

∫ ∞

x−d

v′′
t−1(x + q − d − ξ)f (ξ)dξ .

Finally, we compute the determinant of the Hessian matrix as follows:

= [−(h + π)f (x + q − d)

+ α

∫ ∞

x−d

v′′
t−1(x + q − d − ξ)f (ξ)dξ ]

[R′′(d) − (θ + αv′
t−1(q))f (x − d)]

+ [R′′(d) − (h + π)f (x + q − d)

+ α

∫ ∞

x−d∗
v′′
t−1(x + q − d − ξ)f (ξ)dξ − (θ + αv′

t−1(q))f (x − d)]

[αv′′
t−1(q)F (x − d)].

Since vt−1 is concave, to show that the above expression is non-negative
it is sufficient to prove that R′′(d) − [θ + αv′

t−1(q)]f (x − d) ≤ 0. Since
v′
t−1(q) ≥ −θ − h,

R′′(d) − [θ + αv′
t−1(q)]f (x − d) ≤ R′′(d) − [θ + α(−h − θ)]f (x − d).

The RHS can be show to be non-positive using the same argument that was
used for proving that the RHS of (14) is non-positive. Therefore, Gt(x, q, d)

is a jointly concave function of d and q for q ≥ 0 and d ∈ D.
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PROOF OF PART 2

We first consider periods t ∈ {T , T −1, . . . , 2}. Given any x, suppose that
the order quantity is 0. To determine the optimal expected demand in this
scenario, note that

∂Gt (x, q, d)

∂d
|q=0 = R′(d) + hF(x − d) − π [1 − F(x − d)]

+ θF (x − d) − αc[1 − F(x − d)], (15)

where we use v′
t−1(x) = c for x ≤ 0 by induction hypothesis. If there exists

a d0 ∈ D for which the RHS is equal to 0, then d0 is the optimal demand. By
setting Eq. (15) equal to 0, we fine that d0 satisfies the following relation-

ship: F(x − d) = π+αc−R′(d)
π+h+θ+αc

. However, if the RHS of Eq. (15) is negative
(positive) for all d ∈ D, then the optimal demand is equal to min D (max D).

When the order quantity is 0, the values of net inventory x can be seg-
mented into three mutually disjoint (one or more of which could be possibly
empty) sets depending on the value of corresponding optimal expected
demand. Let the three sets be denoted by A, B, and C. The sets A and C

consist, of all the inventory values for which ∂Gt
∂d

|q=0 < 0 for all d ∈ D (so

d∗ = min D) and ∂Gt
∂d

|q=0 > 0 for all d ∈ D (so d∗ = max D), respectively.
On the other hand, the set B consists of all x such that the unconstrained
optimal value of d lies in D.

For each x ∈ B, d∗′(x) ∈ (0, 1). To see this, we use implicit function the-

orem [23] to obtain d∗′(x) = − ∂2Gt /∂x∂d

∂2Gt /∂d2 = (π+h+θ+αc)f (x−d∗)

(π+h+θ+αc)f (x−d∗)−R′′(d∗)
∈

(0, 1). As a result, x − d∗ (and hence F(x − d∗)) is strictly increasing in x.
On the other hand, for x ∈ A, C, d∗′ = 0. Once again, x − d∗ (and hence
F(x − d∗)) is strictly increasing in x for all x ∈ A, C.

Now, observe that any value of x for which the unconstrained optimal
order quantity is 0 must satisfy the following equation for given optimal
demand d∗:

∂Gt (x, q, d∗)
∂q

|q=0 = 0 = −c − h[F(x − d∗)]
+ π [1 − F(x − d∗)]

+ α

∫ x−d∗

−a

v′
t−1(0)f (ξ)dξ

+ α

∫ ∞

x−d∗
v′
t−1(x − d∗ − ξ)f (ξ)dξ

= π − c(1 − α) − (h + π)[F(x − d∗)], (16)

where we use v′
t−1(x) = c for x ≤ 0 by induction hypothesis. As F(x −d∗)

increases with x (as we proved above), there exists a unique value of x for
which the RHS is equal to 0. This value is denoted by x̄t . Further, since
d∗(x̄t ) is independent of t , it is obvious that x̄t is also independent of t .

For period 1, the analysis is same as above except that

∂G1(x, q, d∗)
∂q

|q=0

= π − c(1 − α) − (h + π − αs + αc)F (x − d∗). (17)

As a consequence, ∂G1(x,q,d)
∂q

|q=0 ≤ ∂Gt (x,q,d)
∂q

|q=0, t > 1. Further,
∂G1(x,q,d)

∂d
|q=0 is identical to ∂Gt (x,q,d)

∂d
|q=0, t > 1. As a consequence, the

optimal expected demand when q = 0 is the same for all t , including period
1. Therefore, x̄1 ≤ x̄t .

PROOF OF PART 2(A)

The uniqueness of q∗(x) and d∗(x) follows from the strict concavity of
Gt in q and d .

Consider some x < x̄t and by way of contradiction, let q∗(x) = 0. We
argued in the proof of Part 2 that F(x − d∗(x)) is increasing in x if the
order quantity is zero. As a consequence, F(x − d∗(x)) < F(x̄t − d∗(x̄t )).
Using Eq. (16), this means that ∂Gt (x,q,d∗)

∂q
|q=0 > 0 implying that the opti-

mal profit will increase if q is increased, which contradicts the assumption
that q∗(x) = 0.

PROOF OF PART 2(B)

First consider period 1. Suppose thatq∗ andd∗ satisfy ∂G1(x,q,d)
∂q

|q=q∗ ,d=d∗

= ∂G1(x,q,d)
∂d

|q=q∗ ,d=d∗ = 0. As a consequence, we can add Eqs. (10) and
(11) to obtain

R′(d∗) − c + (θ + αs)F (x − d∗) = 0.

Using the implicit function theorem [23], d∗(x) is unique and continuously
differentiable. Further, using the same theorem,

d∗′(x) = −(θ + αs)f (x − d∗)
R′′(d∗) − (θ + αs)f (x − d∗)

∈ (0, 1).

Similarly, q∗(x) is unique and continuously differentiable. Further,

q∗′(x) = −R′′(d∗)
R′′(d∗) − (θ + αs)f (x − d∗)

∈ (−1, 0). (18)

Consider now the case in which ∂G1
∂d

|d=d∗ ,q=q∗ 	= 0. Since q∗(x) > 0,

we still have ∂G1
∂q

|d=d∗ ,q=q∗ = 0. If we substitute Eq. (10), which is equal
to 0, in Eq. (11) for any given d, we get

∂G1(x, q, d)

∂d
|q=q∗ = R′(d) − c + (θ + αs)F (x − d).

Given the concavity of G1 in d for any x, if no d satisfies ∂G1(x,q,d)
∂d

|q=q∗ = 0,
the optimal value of d must lie at one of the boundary points of D. Therefore,
d∗′(x) = 0. Further, a straightforward application of the implicit function
theorem implies that q∗(x) is unique and continuously differentiable and
that q∗′(x) = −1.

Next, we consider a generic period t > 1. Suppose that q∗ and d∗ are such
that ∂Gt (x,q,d)

∂q
|q=q∗ ,d=d∗ = ∂Gt (x,q,d)

∂d
|q=q∗ ,d=d∗ = 0. Let H1(x, q, d) :=

∂Gt (x,q,d)
∂q

and H2(x, q, d) := ∂Gt (x,q,d)
∂q

+ ∂Gt (x,q,d)
∂d

. That is,

H2(x, q, d) = R′(d) − c + [θ + αv′
t−1(q)]F(x − d).

Note that H1(x, q∗, d∗) = H2(x, q∗, d∗) = 0. Also, H1, H2 ∈ C1. Let

A =
[

∂H1(x,q,d)
∂q

∂H1(x,q,d)
∂d

∂H2(x,q,d)
∂q

∂H2(x,q,d)
∂d

]
|q=q∗ ,d=d∗ .

Using the implicit function theorem [23], q∗(x), d∗(x) ∈ C1 provided A−1

exists. Further, q∗(x) and d∗(x) are unique and

[
q∗′(x)

d∗′(x)

]
= A−1 ×

[
∂H1(x,q,d)

∂x
∂H2(x,q,d)

∂x

]
|q=q∗ ,d=d∗ ,
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Now,

∂H1(x, q, d)

∂q
= −(h + π)f (x + q − d)

+ α

∫ ∞

x−d

v′′
t−1(x + q − d − ξ)f (ξ)dξ

+ αv′′
t−1(q)F (x − d)

∂H2(x, q, d)

∂d
= R′′(d) − (θ + αv′

t−1(q))f (x − d)

∂H1(x, q, d)

∂d
= (h + π)f (x + q − d)

− α

∫ ∞

x−d

v′′
t−1(x + q − d − ξ)f (ξ)dξ

∂H2(x, q, d)

∂q
= αv′′

t−1(q)F (x − d).

Similarly,

∂H1(x, q, d)

∂x
= −(h + π)f (x + q − d)

+ α

∫ ∞

x−d

v′′
t−1(x + q − d − ξ)f (ξ)dξ

∂H2(x, q, d)

∂x
= (θ + αv′

t−1(q))f (x − d).

Using the above expressions,

Det(A) = [R′′(d) − (θ + αv′
t−1(q))f (x − d)]

· [−(h + π)f (x + q − d) + α

∫ ∞

x−d

v′′
t−1(x + q − d − ξ)

+ αv′′
t−1(q)F (x − d)] − [(h + π)f (x + q − d)

− α

∫ ∞

x−d

v′′
t−1(x + q − d − ξ)f (ξ)dξ ]

· [αv′′
t−1(q)F (x − d)],

which is strictly positive for any q and d due to concavity of vt−1 and R(d);
since f > 0; and since R′′(d) − (θ + αv′

t−1(q))f (x − d) < 0. To see this
inequality, recall that v′

t−1 ≥ −θ − h, f ≤ 1, α < 1, and R′′ ≤ −h. As a
result,

R′′(d) − (θ + αv′
t−1(q))f (x − d)

≤ R′′(d) − (θ − α(θ + h))f (x − d)

≤ R′′(d) + αh < 0.

Now,

q∗′(x) =
R′′(d∗)((h + π)f (x + q∗ − d∗)

−α
∫ ∞
x−d∗ v′′

t−1(x + q∗ − d∗ − ξ)f (ξ)dξ)

Det(A)
< 0. (19)

We next show that q∗′(x) ≥ −1. It is sufficient to show that the denominator
(Det(A)) is greater than the numerator in (19). Rearranging terms in the
denominator, it can be written as

− R′′(d∗)[(h + π)f (x + q∗ − d∗)

− α

∫ ∞

x−d∗
v′′
t−1(x + q∗ − d∗ − ξ)f (ξ)dξ

+ R′′(d∗) · [αv′′
t−1(q

∗)F (x − d∗)]
− (θ + αv′

t−1(q
∗))f (x − d∗) · [−(h + π)f (x + q∗ − d∗)

+ α

∫ ∞

x−d∗
v′′
t−1(x + q∗ − d∗ − ξ)f (ξ)dξ + αv′′

t−1(q
∗)F (x − d∗)]

− [(h + π)f (x + q∗ − d∗)

− α

∫ ∞

x−d∗
v′′
t−1(x + q∗ − d∗ − ξ)f (ξ)dξ ] · [αv′′

t−1(q
∗)F (x − d∗)],

The first line is identical to the numerator in (19). The terms in the second
and fifth lines are non-negative. Thus, it is sufficient to show that the terms
in third and fourth lines are non-negative. In particular, it is enough to show
that (θ + αv′

t−1(q
∗)) ≥ 0. The following lemma, in fact, shows the same,

but it is only valid for q ≤ x̄t−1. We will prove shortly that this restriction
would not matter as q∗(x) ≤ x̄t−1 for all x ≤ x̄t anyway.

LEMMA 1: If z ≤ x̄t−1, then θ + αv′
t−1(z) ≥ 0.

PROOF: Note that using the induction hypothesis, v′
k(·) ≤ c, k ≤ t − 1.

Let t − 1 ≥ 2. Then,

θ + αv′
t−1(z) = θ + αc − α[θ + αv′

t+2(q
∗(z))]F(z − d∗(z))

≥ θ + αc − α(θ + αc)F (z − d∗(z))
= (θ + αc)[1 − αF(z − d∗(z))] ≥ 0.

where we have used the following expression for v′
t−1(z):

v′
t−1(z) = c − [θ + αv′

t−2(q
∗(z))F (z − d∗(z))], z ≤ x̄t−1,

which we formally derive later in the proof of Part 2(d). [See Eq. (24).] A
similar argument can be developed when t−1 = 1 using Eq. (23); the details
are omitted. �

For t > 2, since q∗′(x) ≤ 0 for all x ≤ x̄t and x̄t = x̄t−1, q∗(x) ≤ x̄t−1

if q∗(0) ≤ x̄t . Accordingly, we next show that q∗(0) ≤ x̄t .
If q∗(0) = 0, then we have nothing to prove since x̄t ≥ 0 by Part 2(a). So

assume that q∗(0) > 0. Then, it must satisfy the following equation obtained
by setting ∂Gt (0,q,d∗)

∂q
|q=q∗(0) = 0:

F(q∗(0) − d∗(0))

= π − c + α
∫ ∞
−a

v′
t−1(q

∗(0) − d∗(0) − ξ)f (ξ)dξ

π + h
. (20)

Since v′
t−1(·) ≤ c, F(q∗(0) − d∗(0)) ≤ π−c+αc

π+h
. On the other hand, from

the proof of Part 2, we know that F(x̄t − d∗(x̄t )) = π−c+αc
π+h

. Clearly,
q∗(0) − d∗(0) ≤ x̄t − d∗(x̄t ). Thus, it suffices to show that d∗(0) ≤ d∗(x̄t )

to show that q∗(0) ≤ x̄t .
By substituting ∂Gt (0,q,d∗(0))

∂q
|q=q∗(0), which is equal to 0, into

∂Gt (0,q∗(0),d)
∂d

, we get ∂Gt (0,q∗(0),d)
∂d

= R′(d) − c. By assumption, the value
of d at which R′(d)− c = 0 is feasible. Hence d∗(0) is equal to the solution
of R′(d) = c.

Now, at x = x̄t , if we substitute ∂Gt
∂q

, which is equal to 0 by definition of

x̄t , into ∂Gt
∂d

, we get

∂Gt

∂d
= R′(d) − c + [θ + αc]F(x̄t − d).
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If there exists a d0 ∈ D at which the above equation is equal to 0, then
R′(d0) ≤ c, implying that d0 ≥ d∗(0). If however d0 is not feasible, then the
optimal solution should be max D. (Note that the optimal solution cannot
be at min D since that would imply R′(d) < c for all d ∈ D, which violates
the assumption that the value of that d satisfies R′(d) = c is feasible.) Since
arg max

d
(R(d) − cd) ∈ D, R′(max D) ≤ c, implying that max D ≥ d∗(0).

Consequently, d∗(0) ≤ d∗(x̄t ). Hence, q∗(0) ≤ x̄t .
The above argument requires that x̄t be equal to x̄t−1. As a result, it does

not hold for t = 2 since x̄1 may be less than x̄2. Fortunately, it is sufficient
to show that θ + αv′

1(z) ≥ 0 for z ≤ x̄2.
To show that θ + αv′

1(z) ≥ 0 for z ≤ x̄2, observe that since v′
1(·)

decreases due to the hypothesized concavity of v1, it is enough to establish
that θ + αv′

1(z) ≥ 0 for z = x̄2. Using Eq. (16), we get

F(x̄2 − d∗(x̄2)) = π − c + αc

π + h
.

However, the proof of Part 2 argues that whenever q = 0, the optimal value
of d is the same for all periods for any given x. Therefore, the above equation
continues to hold for Period 1 as well. Now, since x̄2 ≥ x̄1,

v′
1(x̄2) = −(h + π + θ + αc)F (x̄2 − d∗(x̄2)) + π + αc,

where we use Eq. (25), which is derived in the proof of Part 3(b). Substituting

for F(x̄2 −d∗(x̄2)), we get v′
1(x̄2) = −(h+π +θ +αc)

(
π−c+αc

π+h

)
+π +αc.

On simplification, we find that θ + αv′
1(x̄2) ≥ (θ + αc)h > 0.

We now consider d∗′(x), which is equal to

([αv′′
t−1(q

∗)F (x − d∗)] · [−(h + π)f (x + q∗ − d∗)

+ α

∫ ∞

x−d∗
v′′
t−1(x + q∗ − d∗ − ξ)f (ξ)dξ ]

+ [(h + π)f (x + q∗ − d∗)

− α

∫ ∞

x−d∗
v′′
t−1(x + q∗ − d∗ − ξ)f (ξ)dξ

− αv′′
t−1(q

∗)F (x − d∗)]
× [θ + αv′

t−1(q
∗)f (x − d∗)]) / (Det(A))

Since Det(A) > 0, d∗′(x) ≥ 0. Further, the numerator in the above
expression is less than Det(A), so d∗′(x) < 1.

Finally, we consider the case in which ∂Gt (x,q,d)
∂d

|q=q∗ ,d=d∗ is not neces-
sarily equal to 0 for all x ≤ x̄t . Recall from our argument above that d∗(0)

is in the interior of D. Thus, ∂Gt (x,q,d)
∂d

|q=q∗ ,d=d∗ is equal to 0 at x = 0.
As x increases, d∗(x) also increases because its slope is non-negative. Sup-
pose now that there exists a xt < x̄t such that the unconstrained optimal
value of d at x = xt is equal to max(D). We claim that for all x ∈ (xt , x̄t ],
d∗(x) = max(D). To see this, observe that for x > xt ,

∂Gt (x, q, d)

∂q
|q=q∗(xt ),d=max D <

∂Gt (xt , q, d)

∂q
|q=q∗(xt ),d=max D = 0,

and

∂Gt (x, q, d)

∂d
|q=q∗(xt ),d=max D >

∂Gt (xt , q, d)

∂d
|q=q∗(xt ),d=max D = 0.

Both of these inequalities can be proved by showing that the derivatives of
∂Gt (x,q,d)

∂q
|q=q∗(xt ),d=max D , and ∂Gt (x,q,d)

∂d
|q=q∗(xt ),d=max D with respect to x

increase and decrease, respectively. As a consequence of above inequalities,
profit at x can be improved in only one way: decrease q. (Increasing d will
also increase profit but that is not possible.)

Suppose now that we gradually decrease the value of q to q0

such that ∂Gt (x,q,d)
∂q

|q=q0,d=max D becomes equal to 0. If for q = q0,

∂Gt (x,q,d)
∂d

|q=q0,d=max D is still non-negative, then that would imply that
(q0, max D) is optimal at x since profit can only be further increased by
increasing d, but that is not possible. Now, adding Eq. (12), which is equal
to 0, to Eq. (13), we get

∂Gt (x, q, d)

∂d
|q=q0,d=max D

= R′(max D) − c + [θ + αv′
t−1(q0)]F(x − max D).

Recall that θ + αv′
t−1(q

∗(xt )) ≥ 0 from above, since q∗(xt ) ≤ xt−1. This
combined with the concavity of vt−1 and q0 ≤ q∗(xt ) implies that θ +
αv′

t−1(q0) ≥ θ +αv′
t−1(q

∗(xt )). Finally, F(x −max D) > F(xt −max D).
As a result,

∂Gt (x, q, d)

∂d
|q=q0,d=max D >

∂Gt (xt , q, d)

∂d
|q=q∗(xt ),d=max D = 0.

As a consequence, d∗(x) = max D and so d∗′(x) = 0. Since Eq. 12 is
equal to 0 for x ≤ x̄t , we can apply the implicit function theorem to obtain

q∗′(x) =
(h + π)f (x + q∗ − d∗)

−α
∫ ∞
x−d∗ v′′

t−1(x + q∗ − d∗ − ξ)f (ξ)dξ

−(h + π)f (x + q∗ − d∗) + α
∫ ∞
x−d∗ v′′

t−1(x + q∗ − d∗ − ξ)

×f (ξ)dξ + αv′′
t−1(q

∗)F (x − d∗)

∈ (−1, 0).

PROOF OF PART 2(C)

For any t , when x ≤ 0,

∂Gt (x, q, d)

∂d
|q=q∗ = R′(d) − c + ∂Gt (x, q, d)

∂q
|q=q∗ .

Since x̄t ≥ 0, ∂Gt (x,q,d)
∂q

|q=q∗ = 0 for x ≤ 0. Therefore,

∂Gt (x, q, d)

∂d
|q=q∗ = R′(d) − c,

which when set to zero yields R′(d∗) = c. Hence, the optimal expected
demand for x ≤ 0 maximizes R(d) − cd .

PROOF OF PART 2(D)

Using the implicit differentiation rule,

∂v1(x)

∂x
= ∂G1(x, q, d)

∂x
|q=q∗ ,d=d∗ + ∂G1(x, q, d)

∂q
|q=q∗ ,d=d∗ · q∗′(x)

+ ∂G1(x, q, d)

∂d
|q=q∗ ,d=d∗ · d∗′(x), (21)

where the second term is equal to zero at q = q∗ since
∂G1(x,q,d)

∂q
|q=q∗ ,d=d∗ = 0 for x ≤ x̄t . The third term is also 0 as either

d∗ satisfies ∂G1(x,q,d)
∂d

|q=q∗ ,d=d∗ = 0 or d∗ is equal to max D. Recall that

we showed in the proof of Part 2(b) that if ∂G1(x,q,d)
∂d

|q=q∗ ,d=d∗ 	= 0 for all
x ≤ x̄t , then there exists xt such that d∗(x) = max D for x ∈ (xt , x̄t ] and
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d∗(x) satisfies ∂G1(x,q,d)
∂d

|q=q∗ ,d=d∗ = 0 for x ≤ xt . Clearly, d∗′(x) = 0 for
x > xt . Therefore,

v′
1(x) = ∂G1(x, q, d)

∂x
|q=q∗ ,d=d∗ (22)

= αc − (h + π − αs + αc)F (x + q∗ − d∗)
+ π − (θ + αs)F (x − d∗)

= c − (θ + αs)F (x − d∗) + ∂G1(x, q, d)

∂q
|q=q∗ ,d=d∗ (23)

where ∂G1(x,q,d)
∂q

|q=q∗ ,d=d∗ = 0. In a similar manner,

v′
t (x) = −(h + π)F (x + q∗ − d∗) + π − θF (x − d∗)

+ α

∫ ∞

x−d∗(x)

v′
t−1(x + q∗ − d∗ − ξ)f (ξ)dξ

= c − α

∫ x−d∗

−a

v′
t−1(q

∗)f (ξ)dξ − θF (x − d∗)

+ ∂Gt (x, q, d)

∂q
|q=q∗ ,d=d∗

= c − [θ + αv′
t−1(q

∗)]F(x − d∗). (24)

Now, from Eq. (23),

c ≥ v′
1(x) ≥ c − (θ + αs).

On the other hand, using Eq. (24),

v′
t (x) ≥ c − (θ + αc)F (x − d∗) ≥ c(1 − α) − θ ,

where the inequality holds by using the induction hypothesis, v′
t−1(·) ≤ c.

Further, since θ + αvt−1(q
∗(x)) ≥ 0 for x ≤ x̄t , as we proved in the proof

of Part 2(b), v′
t (x) ≤ c.

Now, when x ≤ 0 v′
1(x) = c since F(x − d∗) = 0 for x ≤ 0. Using the

same argument, v′
t (x) = c. for x ≤ 0.

PROOF OF PART 2(E)

Using Eq. (24),

v′′
t (x) = −αv′′

t−1(q
∗)q∗′(x)F (x − d∗)

− (θ + αv′
t−1(q

∗))f (x − d∗)(1 − d∗′(x)) ≤ 0,

where we use the concavity of vt−1, the non-positivity of q∗′(x), the non-
negativity of (θ + αv′

t−1(q
∗)), as proved in the Proof of Part 2(b), and

d∗′(x) ∈ [0, 1]. The proof for period 1 is similar, and the details are omitted.

PROOF OF PART 3(A)

Consider the following for x > x̄t :

∂Gt (x, q, d)

∂q
|q=0,d=d∗(x̄t ) = −c − (h + π)F (x − d∗(x̄t )) + π + αc,

and

∂Gt (x, q, d)

∂d
|q=0,d=d∗(x̄t )

= R′(d∗(x̄t )) + (h + π + θ + αc)F (x − d∗(x̄t )) − π − αc.

Clearly, ∂Gt (x,q,d)
∂q

|q=0,d=d∗(x̄t ) <
∂Gt (x̄t ,q,d)

∂q
|q=0,d=d∗(x̄t ) = 0 and

∂Gt (x̄t ,q,d)
∂d

|q=0,d=d∗(x̄t ) <
∂Gt (x,q,d)

∂d
|q=0,d=d∗(x̄t ). At x, we can increase

profit in the following three ways: (i) Increase q by δ > 0, (ii) Increase
or decrease d from d∗(x̄t ) by δ > 0, and (iii) A combination of (i) and
(ii). Implementing (i) will reduce profit as ∂Gt (x,q,d)

∂q
|q=0,d=d∗(x̄t ) < 0, so

we ignore it. To consider (ii), assume first that d∗(x̄t ) < max D. Thus,
∂Gt (x̄t ,q,d)

∂d
|q=0,d=d∗(x̄t ) = 0. In this case, increasing d by δ increases profit

at x. On the other hand, if d∗(x̄t ) = max D, then ∂Gt (x̄t ,q,d)
∂d

|q=0,d=d∗(x̄t ) > 0,

implying that ∂Gt (x,q,d)
∂d

|q=0,d=d∗(x̄t ) > 0. Although the profit will improve
if we increase d, but that is not possible as d is already at the upper bound.
Decreasing the value of d will definitely not increase the profit. Finally, using
a similar argument as above, we can show that the profit improvement by
(iii) cannot be more than that by (ii). Hence, we can ignore it.

Suppose now that we are able to increase the value of d by δ. Although this
will increase the value of ∂Gt (x,q,d)

∂q
and decrease the value of ∂Gt (x,q,d)

∂d
, their

signs, however, remain unchanged. As a result, once again, the profit can only
be improved by increasing the value of d from d∗(x̄t ) + δ to d∗(x̄t ) + 2δ,
provided the new value of d remains feasible. We can keep repeating this
procedure until one of ∂Gt (x,q,d)

∂q
and ∂Gt (x,q,d)

∂d
hits zero or d reaches the

upper bound. If d reaches the upper bound before either of the two partial
derivatives hits zero, the optimal solution will be q∗ = 0 and d∗ = max D.

Suppose now that the either of the two derivatives hits zero before d

reaches the upper bound. We claim that the partial derivative of Gt with
respect to d will hit zero before the partial derivative of Gt with respect to q

does. To see this, suppose on the contrary that as we are increasing the value of
d, there exists a d0 such that ∂Gt (x,q,d)

∂q
|q=0,d=d0 = 0 <

∂Gt (x,q,d)
∂d

|q=0,d=d0 .
This implies that x − d0 = x̄t − d∗(x̄t ). Therefore,

∂Gt (x, q, d)

∂d
|q=0,d=d0

= R′(d0) + (h + π + θ + αc)F (x̄t − d∗(x̄t )) − π − αc.

Since ∂Gt (x̄t ,q,d)
∂d

|q=0,d=d∗(x̄t ) = 0, ∂Gt (x,q,d)
∂d

|q=0,d=d0 = R′(d0) −
R′(d∗(x̄t )) < 0 as d0 < d∗(x̄t ). This is a contradiction.

Thus, ∂Gt (x,q,d)
∂q

|q=0,d=d∗ < 0, and it is optimal to not order. Further,

in this case, using the Implicit Function Theorem [23], d∗(x) ∈ C1 (since
∂Gt (x,q,d)

∂d
∈ C1) and

d∗′(x) = (h + π + θ + αc)f (x − d∗)
R′′(d∗) + (h + π + θ + αc)f (x − d∗)

∈ (0, 1),

if ∂Gt (x,q,d)
∂d

|q=0,d=d∗(x) = 0. Otherwise, d∗′(x) = 0.

PROOF OF PART 3(B)

First, we consider Period 1.

v1(x) = G1(x, 0, d∗)

= R(d∗) − (h + θ)

∫ x−d∗

−a

(x − d∗ − ξ)f (ξ)dξ

− (π + αc)

∫ ∞

x−d∗
(d∗ + ξ − x)f (ξ)dξ

v′
1(x) = R′(d∗)d∗′(x) − (h + θ)(1 − d∗′(x))F (x − d∗)

+ (π + αc)(1 − d∗′(x))[1 − F(x − d∗)]
= d∗′(x){R′(d∗) + (h + θ)F (x − d∗)

− (π + αc)[1 − F(x − d∗)]}
− (h + θ)F (x − d∗) + (π + αc)[1 − F(x − d∗)]
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= d∗′(x)[ ∂G1(x, q, d)

∂d
|d=d∗(x),q=0] − (h + θ)F (x − d∗)

+ (π + αc)[1 − F(x − d∗(x))]
= −(h + θ + π + αc)F (x − d∗) + π + αc (25)

where either ∂G1(x,q,d)
∂d

|d=d∗(x),q=0 or d∗′ = 0; the reason is similar to the
one given in the proof of Part 2(c) following Eq. (21), and the details are
omitted. Next, we consider a period t > 1.

vt (x) = Gt(x, 0, d∗)

= R(d∗) − (h + θ)

∫ x−d∗

−a

(x − d∗ − ξ)f (ξ)dξ

− π

∫ ∞

x−d∗
(d∗ + ξ − x)f (ξ)dξ

+ α

∫ ∞

x−d∗
vt−1(x − d∗ − ξ)f (ξ)dξ + αvt−1(0)F (x − d∗)

v′
t (x) = R′(d∗)d∗′(x) − (h + θ)(1 − d∗′(x))F (x − d∗)

+ π(1 − d∗′(x))[1 − F(x − d∗)]
+ α

∫ ∞

x−d∗
v′
t−1(x − d∗ − ξ)f (ξ)dξ(1 − d∗′(x))

= d∗′(x)[ ∂Gt (x, q, d)

∂d
|d=d∗ ,q=0] − (h + θ)F (x − d∗)

+ (π + αc)[1 − F(x − d∗)]
where we use v′

t−1(x) = c for x ≤ 0. Because either d∗′(x) = 0 or
∂Gt (x,q,d)

∂d
|d=d∗ ,q=0 = 0, the rationale for which can be explained in the

same manner as in the proof of Part 2(c) following Eq. (21), we get

v′
t (x) = −(h + θ + π + αc)F (x − d∗) + π + αc. (26)

From Eqs. (25) and (26) for any given period t ,

v′
t (x) ≥ −(h + θ + π + αc) + π + αc ≥ −(h + θ)

which provides a lower bound. Also,

∂G1(x, q, d)

∂q
|q=0,d=d∗ = −c(1 − α) + π

− (h + π − αs + αc)[F(x − d∗)] ≤ 0, (27)

∂Gt (x, q, d)

∂q
|q=0,d=d∗ = −c − h[F(x − d∗)] + π [1 − F(x − d∗)

+ αc ≤ 0, t > 1, (28)

where the inequalities follow from the proof of Part 3(a). Using (27) and
(28), F(x − d∗) ≥ π−c+αc

π+h−αs+αc
for t = 1, and F(x − d∗) ≥ π−c+αc

π+h
for

t > 1. Substituting these lower bound on F(x − d∗) in Eqs. (25) and (26),
we get

v′
1(x) − c ≤ (π − c + αc)(−θ − αs)

π + h − αs + αc
≤ 0,

≤ (π − c + αc)(−θ − αc)

π + h
≤ 0, t > 1,

implying that v′
t (x) ≤ c.

PROOF OF PART 3(C)

Using Eqs. (25) and (26),

v′′
t (x) = −(h + θ + π + αc)f (x − d∗(x))[1 − d∗′(x)]

in any given period t . Since d∗′(x) ∈ [0, 1], v′′
t (x) ≤ 0.

Proof of Theorem 2

PROOF OF PART 1

We first derive the upper bound on the optimal expected demand. When
x > x̄ and t ≥ 1, using Eqs. (25) and (26),

v′
t (x) = −(h + θ + π + αc)F (x − d∗(x)) + π + αc ≤ c,

where the inequality follows from Theorem 1 Part 3(b). Therefore,

d∗(x) ≤ x − F−1[ π − c + αc

h + θ + π + αc
] = x − y,

where we define y = F−1[ π−c+αc
h+θ+π+αc

]. Thus, the expected demand
corresponding to net inventory x is bounded from above by x − y.

On the other hand, when x ≤ x̄t , d∗(x) ≤ d∗(x̄t ) ≤ x̄t − y, since d∗(x)

is increasing in x.

PROOF OF PART 2

Let dc be defined such that ∂[R(d)]
∂d

|d=dc = c. Recall from the proof of
Theorem 1 Part 2(a), d∗(x) = dc , x ≤ 0. Further, Theorem 1 shows that
d∗′(x) ≥ 0 for all x. As a consequence, d∗(x) ≥ dc for all x.

PROOF OF PART 3

When x ≤ x̄t ,

∂Gt (x, q, d)

∂q
|q=q∗ ,d=d∗ = 0

= −c − (h + π)F (x + q∗ − d∗) + π + α[v′
t−1(q

∗)F (x − d∗)

+ α

∫ ∞

x−d∗
v′
t−1(x + q∗ − d∗ − ξ)f (ξ)dξ ]

≤ (−c + π + αc) − (h + π)F (x + q∗ − d∗),

where the inequality follows since v′
t−1(x) ≤ c using Theorem 1. Therefore,

x + q∗ − d∗ ≤ F−1
[−c + π + αc

h + π

]
=: r̄ .

Consequently,

x + q∗ ≤ F−1
[−c + π + αc

h + π

]
+ d∗ ≤ r̄ + x̄t − y,

where the second inequality follows since d∗(x) ≤ x̄t −y from Part 1 above.
Thus, the order quantity is bounded from above by r̄ + x̄t − y − x when
x ≤ x̄t .

The lower bound on order quantity is obtained by using v′
t−1(x) ≥ −h−θ .

As a consequence,

x + q∗ − d∗ ≥ F−1
[

π − c − α(h + θ)]
h + π

]
= r ,

which implies q∗ ≥ r + (d∗ − x) ≥ r + dc − x, where dc is the maximizer
of (R(d) − cd).
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PROOF OF PROPOSITION 1

Recall from Eq. (20) that

F(q2(0) − d2(0)) = π − c + α
∫ ∞
−a

v′
t−1(q

2(0) − d2(0) − ξ)f (ξ)dξ

h + π
.

Further, since x̄t ≥ 0, using Lemma 1, θ + αv′
t−1(q

2(0) − d2(0) − ξ) ≥ 0.

By substituting v′
t−1(q

2(0) − d2(0) − ξ) ≥ − θ
α

and v′
t−1(z) = c for z ≤ 0

in the above equation, we get

F(q2(0) − d2(0)) ≥ π + αc − c

h + θ + π + αc
. (29)

On the other hand, let G1
t (x, q, d) be the maximand in Eq. (3). Now,

∂G1
t (x, q1, d1)

∂q1
= −c − (h + θ + π)F (x + q1 − d1) + π ]

+ α

∫ ∞

x+q1−d1
v′
t−1(x + q1 − d1 − ξ)f (ξ)dξ

= c(−1 + α) + π − (h + θ + π + αc)F (x + q1 − d1)

(30)

where we use v′
t−1(z) = c (without proof) for z ≤ 0. Thus, the optimal value

of q1 satisfies

F(x + q1∗ − d1∗) = π − c + αc

π + h + θ + αc
. (31)

Comparing Eqs. (31) and (29), q1∗(0) ≤ q2∗(0) where we use d1∗(0) =
d2∗(0).

Next, using Eq. (15),

F(x̄2
t − d2(x̄2

t )) = π + αc − c

h + π
.

Comparing the above equation with Eq. (31),

q1
t (0) − d1

t (0) ≤ x̄2
t − d2(x̄2

t ).

Because the optimal value of d2(x) is increasing in x, d2∗(x̄2
t ) ≥ d2∗(0) =

d1∗(0). Therefore, q1
t (0) ≤ x̄2

t .

Proof of Proposition 2

PROOF OF PART 1

Let G∞(x, q∞, d∞) be used to denote the maximand in Eq. (4). For t = 1,

∂G∞
1 (x, q∞, d∞)

∂q∞

= −c(1 − α) + π − (h + π − αs + αc)F (x + q∞ − d∞),

which is identical to Eq. (10). Hence for any x, q∞∗(x) − d∞∗(x) =
q2∗(x) − d2∗(x). Since d2∗(x) ≥ d2∗(0) = d∞∗(x), q∞∗(x) ≤ q2∗(x).

PROOF OF PART 2

Recall from the proof of Proposition 1 that x̄t satisfies

F(x̄t − d2(x̄t )) = π + αc − c

h + π
.

On the other hand,

∂G∞
t (x, q∞, d∞)

∂q∞ = −c − h[F(x + q∞ − d∞)]
+ π [1 − F(x + q∞ − d∞)]
+ αEv′

t−1(x + q∞ − d∞ − ξ)f (ξ)dξ

≤ −c − h[F(x + q∞ − d∞)]
+ π [1 − F(x + q∞ − d)] + αc,

where we use v′
t−1(·) ≤ c. Since ∂G∞

t (x,q∞ ,d∞)

∂q∞ |q=q∞∗ ,d=d∞∗ = 0,

F(x + q∞∗ − d∞∗) ≤ π − c + αc

π + h
.

Setting x = 0,

F(q∞∗(0) − d∞∗(0)) ≤ π − c + αc

π + h
.

Therefore,

q∞∗(0) − d∞∗(0) ≤ x̄t − d2(x̄t ).

Since d2(x̄t )) ≥ d2(0) = d∞∗(0), q∞∗(0) ≤ x̄t .

PROOF OF PART 3

When s = c, v′
t (x) = v′

t−1(x) for t ≥ 2. (This result can be easily
established, but we omit the details.) Essentially, the system becomes sta-
tionary. As a result, the optimal base-stock level, q∞∗(0), is independent of
t . Another fact that we omit to prove but can be easily established is that
v′
t (x) = c for x ≤ q∗∞(0). Using this fact, for x ≤ 0,

∂G∞
t (x, q∞, d∞)

∂q∞ = −c − h[F(x + q∞ − d∞)]
+ π [1 − F(x + q∞ − d∞)]
+ αEv′

t−1(x + q∞ − d∞ − ξ)f (ξ)dξ

= −c − h[F(x + q∞ − d∞)]
+ π [1 − F(x + q∞ − d)] + αc.

By setting the above equation to 0, we find that the optimal value of q∞(x)

must satisfy the following equation:

F(x + q∞∗ − d∞∗) = π − c + αc

π + h
. (32)

On the other hand, using Eq. (20), which is also valid for x ≤ 0,

F(x + q2∗(x) − d2∗(x)) ≤ π − c + αc

π + h
,

where we use the upper bound on v′
t−1(·), which is equal to c, to obtain the

upper bound. Comparing the above equation with Eq. (32),

q2∗(x) − d2∗(x) ≤ q∞∗(x) − d∞∗(x).

Since d2∗(x) = d∞∗(x), q2∗(x) ≤ q∞∗(x).
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Proof of Proposition 3

PROOF OF PART 1

Because one-period expected profits are negative, it is enough to show
that for all λ, the sets

Ut (x, λ) = {(q, d) : q ≥ 0, d ∈ D and Ĝt (x, q, d) ≥ −λ}, t = 1, 2, . . .

are compact subsets of 
2 (Proposition 9.17 in [1]).
Consider any sequence {qn, dn} ∈ Ut (x, λ). For all n, Ĝt (x, qn, dn) ≥ −λ.

Let {qn, dn} → {q̄, d̄}. As Ĝt (x, q, d) is continuous in (q, d), Ĝt (x, q̄, d̄) ≥
−λ. Hence, {q̄, d̄} ∈ Ut , which proves that Ut is a closed set.

To show that Ut is bounded, observe that

Ĝt (x, q, d)

≤ −cq − hE(x + q − d − ξ)+ − πE(d + ξ − x − q)+ := UB.

Let z = q − d . Then,

UB = −cq − hE(x + z − ξ)+ − πE(ξ − z − x)+.

Note that UB is separable in q and z. As −hE(x+z−ξ)+−πE(ξ −z−x)+
is concave in z, there exist z1, z2 such that UB ≥ −λ for z ∈ [z1, z2] and
for any q ≥ 0. Similarly, for any z, UB ≥ −λ for q ∈ [0, λ

c
].

The values of d for which z ∈ [z1, z2] such that q ∈ [0, λ
c
] are

[−z2, c
λ

− z1]. Hence, Ut (x, λ) ⊂ [0, λ
c
] × [−z2, c

λ
− z1], so it is bounded.

PROOF OF PART 2

Using Proposition 9.8 in Bertsekas and Shreve [1], v̂ and Ĝ satisfy the
infinite-horizon optimality Eqs. (7–8) for the transformed model. That is,

v̂(x) = max
q≥0,d∈D

Ĝ(x, q, d)

where

Ĝ(x, q, d) = −L(x, q, d) − M − cq − θE(x − D)+

+ αEv̂(q − (D − x)+)

Substituting v = v̂ + M
1−α

and G = Ĝ+ M
1−α

in the above equations, we get

v(x) − M

1 − α
= max

q≥0,d∈D
G(x, q, d) − M

1 − α

and

G(x, q, d) − M

1 − α
= −L(x, q, d) − M − cq − θE(x − D)+

+ αEv(q − (D − x)+) − αM

1 − α
.

All the terms involving M cancel out, and the resulting equations are the
infinite horizon equations for the original model.

PROOF OF PART 3

The concavity of G in q and d and v in x follows from Part 1 and from
concavity of Gt and vt .

PROOF OF PARTS 4 AND 5

We first prove v′(x) = c for x ≤ 0. We will also show that for such x the
optimal demand is the maximizer of R(d) − cd .

The infinite-horizon equation of the original model is

v(x) = max
q≥0,d∈D

L(x, q, d) − cq

− θE(x − D)+ + αEv(q − (D − x)+).

For x ≤ 0, the equation becomes

v(x) = max
q≥0,d∈D

R(d) − hE(x + q − D)+

− πE(D − x − q)+ − cq + αEv(x + q − D).

Let y = x + q and replace D by d + ξ .

v(x) = cx + max
y≥x,d∈D

R(d) − hE(y − d − ξ)+

− πE(d + ξ − y)+ − cy + αEv(y − d − ξ).

Define z = y − d. The above formulation may be written as

v(x) = cx + max
d∈D

(R(d) − cd + max
z≥x−d

(−hE(z − ξ)+

− πE(ξ − z)+ − cz + αEv(z − ξ))).

For a given d, consider the optimization problem for z:

max
z≥x−d

(−πE(ξ − z) − cz + αEv(z − ξ)) .

Let z∗ be the unconstrained optimal value of z. Using Karush’s lemma, the
above function can be written as A+F(x −d), where A is a constant and F

is a decreasing, concave function, which is zero if z∗ ≥ x −d or d ≥ x −z∗.
Using A and F , the optimization problem for d may be stated as

max
d∈D

R(d) − cd + A + F(x − d).

The maximand is a concave function of d. Further, while F is a decreasing
function, as a function of d, it is an increasing function.

Define d0 := arg max R(d) − cd . If x − z∗ ≤ d0, the optimal value
of d is d0. Otherwise, it is greater than d0. If x − z∗ ≤ d0, v(x) =
cx + a constant independent of x and v′(x) = c.

To prove the result, it is sufficient to show that x−z∗ > d0 (or z∗ < x−d0)
is not possible for any x ≤ 0. Suppose, on the contrary, this is not so and the
optimal value of z∗ = x − d0 for some x = x̂ < 0. As a result, z∗ < x − d0

for all x > x̂. Now, by definition of z∗,

∂

∂z
(−πE(ξ − z) − cz + αEv(z − ξ)) |z=x̂−d0

= π − c + αEv′(x̂ − d0 − ξ) = 0.

For any given ξ , since x̂ − d0 − ξ ≤ x̂, v′(x̂ − d0 − ξ) = c. As a result,

π − c + αEv′(x̂ − d0 − ξ) = π − c + αc,

which is strictly positive. But this is a contradiction. Hence, z∗ cannot be
less than x − d0 for any x ≤ 0. This also means that the optimal value of d

is d0. Finally, as v is concave, v′(x) ≤ c for all x ≥ 0.
The remaining results can be proved in the same manner as Theorem 1

by using the concavity of v and G and v′(x) = c, x ≤ 0. The details are
omitted.
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Proof of Proposition 4

vt (x) = max
q≥0,d∈D

L(x, q, d) − cq − θE(x − (D − q)+)+ + αEvt−1(x +
q − D − (x − (D − q)+)+).

Let Gt(x, q, d) be the maximand on the RHS of Eq. (9). That is,

Gt(x, q, d) = R(d) − cq − hE[x + q − d − ξ ]+
− πE[d + ξ − x − q]+ − θE[x − [d + ξ − q]+]+
+ αEvt−1(x + q − d − ξ − (x − (d + ξ − q)+)+).

Let z = q − d . Then, the optimization problem in any period t becomes

Gt(x, q, d) = max
d∈D,z≥−d

R(d) − c(z + d) − hE[x + z − ξ ]+

− πE[ξ − x − z]+ − θE[x − [ξ − z]+]+
+ αEvt−1(x + z − ξ − (x − (ξ − z)+)+).

Consider some x such that q∗(x) > 0. In that case, the constraint z ≥ −d

becomes redundant. Thus, the above optimization problem becomes

Gt(x, q, d) = max
d∈D

{R(d) − cd} + max
z

{−cz − hE[x + z − ξ ]+

− πE[ξ − x − z]+ − θE[x − [ξ − z]+]+
+ αEvt−1(x + z − ξ − (x − (ξ − z)+)+)}.

Clearly, the optimal value of d is the maximizer of R(d) − cd.

Justification Behind Observation 1

As noted in the main body of the paper, it is sufficient to demonstrate this
observation for period

1. Define

v1(x) = max
d∈D,q≥0

R(d) − cq − hE[x + q − d − ξ ]+

− πE[d + ξ − x − q]+ − θE[x − (d + ξ − q)+]+
+ αsE[q − d − ξ ]+ − αc[d + ξ − x − q]+.

Consider some x such that q∗ > 0 so that ∂G1(x,q,d)
∂q

= 0 = ∂G1(x,q,d)
∂d

.
(From Proposition 4, d∗ maximizes R(d) − cd and thus lies in the interior
of D.) Now,

∂v1(x)

∂x
= ∂G1(x, q∗, d∗)

∂x
+ ∂G1(x, q, d)

∂q
|q=q∗ ,d=d∗︸ ︷︷ ︸

=0

· ∂q∗(x)

∂x

+ ∂G1(x, q, d)

∂d
|q=q∗ ,d=d∗︸ ︷︷ ︸

=0

· ∂d∗(x)

∂x

= −(π + h + θ + αc)F (x + q∗ − d∗) + π + αc.

Therefore,

∂2v1(x)

∂x2
= −(π + h + θ + αc)f (x + q∗ − d∗)(1 + q∗′ − d∗′), (33)

where d∗′ = 0 since d∗ is a constant. To show that v1 is not necessarily
concave in x, it suffices to show that 1 + q∗′ is not necessarily non-negative.
Using the implicit function theorem,

q∗′(x) = (π + αc + h + θ)f (x + q∗ − d∗)
(αs + θ)f (q∗ − d∗) − (π + αc + h + θ)f (x + q∗ − d∗)

,

which is not necessarily greater than -1 if s or θ are strictly positive.

Proof of Theorem 3

PROOF OF PART 1

In Period 1,

∂G1(x, q, d)

∂q
= −c + π + αc − (h + π + αc + θ)

F (x + q − d) + (θ + αs)F (q − d), (34)

∂G1(x, q, d)

∂d
= R′(d) − π − αc + (h + π + αc + θ)

F (x + q − d) − (θ + αs)F (q − d). (35)

Define x = x̄ such that the constrained optimal value of q, q∗(x̄) = 0. If
there exist multiple such values of x, then we take the maximum of those
values. It can be easily shown, however, that there exists at least one such
value. Therefore,

∂G1(x, q, d)

∂q
|q=0 = −c + π + αc − (h + π + αc + θ)F (x − d),

∂G1(x, q, d)

∂d
|q=0 = R′(d) − π − αc + (h + π + αc + θ)F (x − d),

where we take F(−d) = 0 since d + ξ ≥ 0. Since ∂G1(x̄,q,d)
∂q

|q=0 = 0,
∂G1(x̄,q,d)

∂d
|q=0 = R′(d) − c. Thus, d∗(x̄) satisfies the equation R′(d) = c.

Now, for x < x̄,

∂G1(x, q, d)

∂q
|q=0,d=d∗(x̄) >

∂G1(x̄, q, d)

∂q
|q=0,d=d∗(x̄) = 0, and

∂G1(x, q, d)

∂d
|q=0,d=d∗(x̄) <

∂G1(x̄, q, d)

∂d
|q=0,d=d∗(x̄) = 0.

Given the signs of the slopes of G1, there are three ways to improve the
profit at x: (i) increase q by δ or (ii) decrease d by δ or (iii) increase q by
δ
2 and decrease d by δ

2 where δ > 0 and sufficiently small. In Case (i), the
profit increases by

G1(x, δ, d∗(x̄)) − G1(x, 0, d∗(x̄)) = −cδ + A,

where

A = −hE[x + δ − d∗(x̄) − ξ ]+ + hE[x − d∗(x̄) − ξ ]+
− πE[d∗(x̄) + ξ − x − δ]+ + πE[d∗(x̄) + ξ − x]+
− θE[x − (d∗(x̄) + ξ − δ)+]+ + θE[x − (d∗(x̄) + ξ)+]+
+ αsE[δ − d∗(x̄) − ξ ]+ − αsE[−d∗(x̄) − ξ ]+.

In Case (ii), the profit improves by

G1(x, 0, d∗(x̄) − δ) − G1(x, 0, d∗(x̄))

= [R(d∗(x̄) − δ) − R(d∗(x̄))] + A < −cδ + A,

where the inequality follows as R′(d∗(x̄)) = c and R(d) is a strictly concave
function of d. Consequently, [R(d∗(x̄)− δ)−R(d∗(x̄))] < −cδ. Finally, in
case (iii), the profit improves by

G1

(
x,

δ

2
, d∗(x̄

)
− δ

2
) − G1(x, 0, d∗(x̄))

=
[
R

(
d∗(x̄) − δ

2

)
− R(d∗(x̄))

]

− c

[
δ

2

]
+ A < −c

δ

2
− c

δ

2
+ A.
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The reason for the inequality remains the same as for Case (ii). From the
above analysis, Case (i) produces the best profit improvement.

Suppose now that q = δ, d = d∗(x̄), ∂G1(x,q,d)
∂q

|q=δ,d=d∗(x̄) > 0, and
∂G1(x,q,d)

∂d
|q=δ,d=d∗(x̄) < 0. Once again, we repeat the same argument

as above, and find that increasing q by δ will improve profit the most.
We keep increasing q by δ until ∂G1(x,q,d)

∂q
|q,d=d∗(x̄) = 0. Observe that

the value of q that results in ∂G1(x,q,d)
∂q

|q,d=d∗(x̄) = 0 will also result in
∂G1(x,q,d)

∂d
|q,d=d∗(x̄) = 0. Therefore, q∗(x) > 0 and d∗(x) = d∗(x̄) for

x < x̄.
On the other hand, for x > x̄,

∂G1(x, q, d)

∂q
|q=0,d=d∗(x̄) <

∂G1(x̄, q, d)

∂q
|q=0,d=d∗(x̄) = 0

= ∂G1(x̄, q, d)

∂d
|q=0,d=d∗(x̄) <

∂G1(x, q, d)

∂d
|q=0,d=d∗(x̄).

Given the signs of the slopes of G1, to increase profit, we must either decrease
q or increase d (or do both). Given that q must remain non-negative, we
cannot decrease q. Therefore, our only option is to increase d. Suppose we
increase d by δ where δ > 0 and sufficiently small. Then,

∂G1(x, q, d)

∂q
|q=0,d=d∗(x̄)+δ − ∂G1(x, q, d)

∂q
|q=0,d=d∗(x̄) = B,

where B = −(h + π + θ + αc)(F (x − d∗(x̄) − δ) − F(x − d∗(x̄))).
Furthermore,

∂G1(x, q, d)

∂d
|q=0,d=d∗(x̄)+δ − ∂G1(x, q, d)

∂d
|q=0,d=d∗(x̄)

= [R′(d∗(x̄) + δ) − R′(d∗(x̄))] − B.

As R(·) is strictly concave, R′(d∗(x̄) + δ) − R′(d∗(x̄)) < 0 and so

∣∣∣∣ ∂G1(x, q, d)

∂d
|q=0,d=d∗(x̄)+δ − ∂G1(x, q, d)

∂d
|q=0,d=d∗(x̄)

∣∣∣∣
>

∣∣∣∣ ∂G1(x, q, d)

∂q
|q=0,d=d∗(x̄)+δ − ∂G1(x, q, d)

∂q
|q=0,d=d∗(x̄)

∣∣∣∣ .

This means that the slope of G1 with respect to q increases less in magnitude
than the amount by which the slope of G1 with respect to d decreases. Now,
if we repeat the same procedure of increasing expected demand by a small
amount δ > 0 over and over again, the above inequality continues to hold.
As a result, either we will reach the upper bound of D or the slope of G1

with respect to d will become 0 before the slope of G1 with respect to q

does. Thus, the optimal value of q will remain equal to 0.
Now, consider period t > 1.

∂Gt (x, q, d)

∂q
= −c + π − (h + π + θ)F (x + q − d) + θF (q − d)

+ α

∫ q−d

−a

v′
t−1(q − d − ξ)f (ξ)dξ

+ α

∫ ∞

x+q−d

v′
t−1(x + q − d − ξ)f (ξ)dξ (36)

∂Gt (x, q, d)

∂d
= R′(d) − π + (h + π + θ)F (x + q − d) − θF (q − d)

− α

∫ q−d

−a

v′
t−1(q − d − ξ)f (ξ)dξ

− α

∫ ∞

x+q−d

v′
t−1(x + q − d − ξ)f (ξ)dξ (37)

Once again, set x = x̄ such that the unconstrained optimal value of
q∗(x̄) = 0. In case of multiple such values, choose the highest one. Using
the induction hypothesis, v′

t−1(x) = c for x ≤ 0 and for any given d,

∂Gt (x̄, q, d)

∂q
|q=0 = −c + π + αc − (h + π + θ + αc)F (x̄ − d) (38)

∂Gt (x̄, y, d)

∂d
|q=0 = R′(d) − π − αc + (h + π + θ + αc)F (x̄ − d)

(39)

Following the same argument as for Period 1, we can show that R′(d∗(x̄)) =
c. Now, for x < x̄,

∂Gt (x, q, d)

∂q
|q=0,d=d∗(x̄) >

∂Gt (x̄, q, d)

∂q
|q=0,d=d∗(x̄) = 0

= ∂Gt (x̄, q, d)

∂d
|q=0,d=d∗(x̄) >

∂Gt (x, q, d)

∂d
|q=0,d=d∗(x̄).

Using the same argument as for Period 1, we can show that q∗ is strictly
positive and the optimal demand satisfies R′(d∗(x̄)) = c. For x > x̄,

∂Gt (x, q, d)

∂q
|q=0,d=d∗(x̄) <

∂Gt (x̄, q, d)

∂q
|q=0,d=d∗(x̄) = 0

= ∂Gt (x̄, q, d)

∂d
|q=0,d=d∗(x̄) <

∂Gt (x, q, d)

∂d
|q=0,d=d∗(x̄).

Given the signs of the slopes of Gt , we must either decrease q or increase
d to improve profit. However, as q is constrained to be non-negative, we
cannot decrease q. Our only option is to increase d. Suppose we increase d

by δ where δ > 0 and is sufficiently small. Then

∂Gt (x, q, d)

∂q
|q=0,d=d∗(x̄)+δ − ∂Gt (x, q, d)

∂q
|q=0,d=d∗(x̄) = B,

where B = −(h+π +θ +αc)(F (x−d∗(x̄)−δ)−F(x−d∗(x̄))). Similarly,

∂Gt (x, q, d)

∂d
|q=0,d=d∗(x̄)+δ − ∂Gt (x, q, d)

∂d
|q=0,d=d∗(x̄)

= [R′(d∗(x̄) + δ) − R′(d∗(x̄))] − B.

Observe that the value of B is the same as for t = 1. Hence, we can easily
replicate the argument for t = 1; the details are omitted.

PROOF OF PART 2

When x ≥ x̄, q∗(x) = 0. As a result,

∂G1(x, 0, d)

∂d
= R′(d) − π − αc + (h + π + αc + θ)F (x − d). (40)

Now, when there exists a feasible d at which the above equation is 0, then
we can use the implicit function theorem [23] to obtain

d∗′(x) = − ∂2Gt(x, 0, d)/∂x∂d

∂2Gt(x, 0, d)/∂d2
|d=d∗

= (h + π + θ + αc)f (x − d∗)
−R′′(d∗) + (h + π + θ + αc)f (x − d∗)

∈ (0, 1).

Otherwise, if no d feasible exists at which ∂G1(x,0,d)
∂d

= 0, then as we argued
in the proof of Part 1, d∗ = max D and so d∗′(x) = 0.

Using the same theorem, d∗(x) ∈ C1 as G1(x, 0, d) is continuously
differentiable in (x, d).

For x ≤ x̄, d∗(x) satisfies R′(d) − c = 0. Clearly, d∗(x) ∈ C1.
The argument for any other period t > 1 is identical as the expression for

∂Gt
∂d

is same as for ∂G1
∂d

, and the details are omitted. For x < x̄, d∗′(x) = 0
as the optimal order quantity is a constant.
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PROOF OF PART 3

First, consider x ≤ 0. For such x,

vt (x) = max
d∈D,q≥0

R(d) − cq − hE[x + q − d − ξ ]+

− πE[d + ξ − x − q]+ + αEvt−1(x + q − d − ξ).

Let y = x + q. Then, the above formulation becomes

vt (x) = cx + max
d∈D,y≥x

R(d) − cy − hE[y − d − ξ ]+

− πE[d + ξ − y]+ + αEvt−1(y − d − ξ). (41)

Similar to Proposition 4, it can be easily shown that the optimal value of d

satisfies R′(d) = c for all such x. Now, we claim that there exists a value
of y > x that produces strictly greater profit than y = x. To see this, we
compute the derivative of the maximand with respect to y at y = x as
follows:

−c − (h + π)F (x − d∗) + π + αc,

where we use v′
t−1(x) = c for x ≤ 0 by induction hypothesis. Since

x−d∗ ≤ −a, F(x−d∗) = 0. Thus, the derivative becomes π −c+αc > 0.
Hence, increasing y from x to x + δ will increase profit, so y∗ > x. With
this observation, we can now drop the constraint y ≥ x from the RHS in
Eq. (41). It can now be easily seen that v′

t (x) = c.
Suppose now that 0 < x < x̄. Using the implicit differentiation rule,

v′
1(x) = ∂G1(x, q, d)

∂x
|q=q∗ ,d=d∗ + ∂G1(x, q, d)

∂q
|q=q∗ ,d=d∗ · q∗′

+ ∂G1(x, q, d)

∂d
|q=q∗ ,d=d∗ · d∗′

Because we know that d∗ is a constant when x ≤ x̄, the third term is equal
to zero. Also, G1(x,q,d)

∂q
|q=q∗ ,d=d∗ = 0. Therefore,

v′
1(x) = ∂G1(x, q, d)

∂x
|q=q∗ ,d=d∗

= π + αc − (h + π + αc + θ)F (x + q∗ − d∗)

= c − (θ + αs)F (q∗ − d∗) + G1(x, q, d)

∂q
|q=q∗ ,d=d∗︸ ︷︷ ︸

=0

.

Although the first equation shows that v′
1(x) ≥ −h− θ , the second equation

establishes that v′
1(x) is bounded from above by c. Similarly, for period t ,

v′
t (x) = ∂Gt (x, q, d)

∂x
|q=q∗ ,d=d∗

= π − (h + π + θ)F (x + q∗ − d∗)

+ α

∫ ∞

x+q∗−d∗
v′
t−1(x + q∗ − d∗ − ξ)f (ξ)dξ (42)

= π + αc − (h + π + θ + αc)F (x + q∗ − d∗),

where we use v′
t−1(x) = c for x ≤ 0. It can be easily seen that v′

t (x) ≥
−θ − h. Now, using Eqs. (36) and (42) can also be written as

v′
t (x) = c − θF (q∗ − d∗) − α

∫ q∗−d∗

−a

v′
t−1(q

∗ − d∗ − ξ)f (ξ)dξ

+ Gt(x, q, d)

∂q
|q=q∗ ,d=d∗︸ ︷︷ ︸

=0

.

Using the induction hypothesis, v′
t−1(x) ≥ −θ − h. Therefore, v′

t (x) ≤
c + (αh − (1 − α)θ)F (q∗ − d∗) ≤ c + (αh − (1 − α)θ)+.

PROOF OF PARTS 4 AND 5

For x ≥ x̄, q∗(x) = 0.

∂v1(x)

∂x
= ∂G1(x, q∗, d∗)

∂x
+ ∂G1(x, q, d)

∂d
|q=q∗ ,d=d∗ · d∗′(x)︸ ︷︷ ︸

=0

= −(π + h + θ + αc)F (x − d∗) + π + αc.

where ∂G1(x,q,d)
∂d

|q=q∗ ,d=d∗ · d∗′(x) = 0 as either d∗′(x) or
∂G1(x,q,d)

∂d
|q=0,d=d∗(x) = 0. Clearly, v′

1(x) ≥ −h − θ , and

v′′
1 (x) = −(h + π + θ + αc)f (x − d∗(x))[1 − d∗′(x)] ≤ 0

as d∗′(x) < 1, as shown in Part 4 above. Similarly, in period t ,

v′
t (x) = ∂Gt (x, q, d)

∂x
|q=0,d=d∗

= π − (h + π + θ)F (x − d∗)

+ α

∫ ∞

x−d∗
v′
t−1(x − d∗ − ξ)f (ξ)dξ

= π + αc − (h + π + θ + αc)F (x − d∗),

where we use v′
t−1(x) = c for x ≤ 0. It can be easily seen that v′

t (x) ≥
−h − θ . Further,

v′′
t (x) = −(h + π + θ + αc)F (x − d∗(x))(1 − d∗′(x)) ≤ 0

as d∗′(x) < 1.
The strict concavity of G1(x, 0, d) in d is clear from Eq. (40), as R(d) is

strictly concave in d.
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