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Second-harmonic generation with
magnetic-field controllability
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Based on density functional theory with the generalized gradient approximation plus on-site Coulomb re-
pulsion method, we study the magnetic-ordering dependence of second-harmonic generation (SHG) in a po-
lar magnet BiCoO3. The large second-order optical susceptibility, which can reach 3.7�10−7 esu, exhibits a
strong magnetic-ordering dependence, giving rise to magnetic-field controllable SHG response in polar
magnets. © 2009 Optical Society of America
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Noncentrosymmetric polar materials are of great in-
terest in material science and engineering, because
their symmetry-dependent properties such as ferro-
electricity, piezoelectricity, and second-harmonic gen-
eration (SHG) are technologically important [1]. In
particular, the search for new SHG materials is of
current interest for their application in photonic
technologies. Generally speaking, in polar materials,
the larger spontaneous electric polarization, the
stronger the SHG susceptibility [2]. In polar mag-
nets, the magnetic degrees of freedom and its cou-
pling with electric order can lead to some interesting
nonlinear optical phenomena [3–7]. In this Letter, we
explore SHG in a polar magnet BiCoO3 from first
principles. BiCoO3 possesses PbTiO3-like perovskite
structure, but with a much larger tetragonality [8].
The electric polarization is predicted to be
150 �C/cm2, the largest value among the ever known
polar materials [9]. In addition, C-type antiferromag-
netic (AFM) ordering is observed in this almost-two-
dimensional layered structure. Based on density
functional theory, we find that owing to the extremely
large tetragonality as well as large electric polariza-
tion, BiCoO3 possesses very large SHG susceptibili-
ties. Furthermore, SHG changes dramatically be-
tween different magnetic orderings, giving rise to
magnetic-field controllable SHG response.

Our ab initio calculations are performed using the
accurate full-potential projector augmented wave
(PAW) method [10], as implemented in the Vienna ab
initio Simulation Package (VASP) [11–14]. They are
based on density functional theory with the general-
ized gradient approximation (GGA). The on-site Cou-
lomb interaction is included in the GGA+U approach
with effective U of 5 eV for Co 3d electrons [15]. A
large plane-wave cutoff of 500 eV is used throughout,
and the convergence criterion for energy is 10−6 eV.
PAW potentials are used to describe the electron–ion
interaction, with 15 valence electrons for Bi
�5d106s26p3�, 9 for Co �3d74s2�, and 6 for O �2s2p4�.
The fully relaxed crystal structure [a=3.75611 Å,

c=4.83398 Å, Bi (0,0,0), Co (0.5,0.5,0.5765),
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O� (0.5,0.5,0.2139) and O� (0, 0.5, 0.7288)], which
shows a P4mm tetragonal symmetry, is in good
agreement with experiment data [8]. In present cal-
culations, we consider four types of collinear spin
configurations, i.e., C-type AFM ordering (ground
state) with q= �0.5,0.5,0�, G-type AFM ordering with
q= �0.5,0.5,0.5�, A-type AFM ordering with q
= �0,0,0.5�, and ferromagnetic (FM) ordering [16].
Supercells of �2a��2a�c, �2a��2a�2c, and a�a
�2c are adopted for C-type, G-type, and A-type, re-
spectively. The Brillouin zone intergrations are per-
formed with the tetrahedron method in a
Monkhorst–Pack k-point mesh centered at the �
point [17]. Total energy indicates that C-type AFM
ordering is the ground state, which is consistent with
the experimental observation [8].

The optical properties are calculated based on the
independent-particle approximation [18–20]. The
imaginary part of the dielectric function due to direct
interband transitions is given by Fermi golden rule,
i.e., �aa� =4�2 /��2�i�VB,j�CB�kwk�pij

a �2���kj
−�ki

−��,
where � is the unit-cell volume and � is the photon
energy. VB and CB denote the conduction and va-
lence bands, respectively. The dipolar transition ma-
trix elements pij

a = �kj�pa�ki� are obtained from the
self-consistent band structures within the PAW for-
malism. Here �kn� is the nth Bloch-state wave func-
tion with crystal momentum k and a denotes the
Cartesian component. The real part of the dielectric
function is obtained from �� by a Kramers–Kronig
transformation �����=1+2/�P	0

	d��������� /��2−�2.
Here P is the principle value of the integral.

The imaginary part of the second-order optical
susceptibility due to direct interband transitions is
given by 
abc��2��−2� ,� ,��=
abc,VE��2� �−2� ,� ,��+
abc,VH��2�

��−2� ,� ,�� [21], where the contribution due to the
so-called virtual-electron process 
abc,VE��2� and that due
to the virtual-hole process 
abc,VH��2� are included [20].
The real part of the second-order optical susceptibil-
ity is then obtained from the imaginary part by a
2009 Optical Society of America
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Kramers–Kronig transformation 
��2��−2� ,� ,��
=2/�P	0

	d����
��2��2�� ,�� ,��� /��2−�2. In calcula-
tions, the � functions are approximated by a Gauss-
ian function with �=0.1 eV. We use a dense grid of k
points (e.g., 16�16�18 with 450 total irreducible k
points for C-type AFM BiCoO3), 20 bands per atom,
and the 50 eV of the maximum energy in the inte-
grals of real part of � and 
�2� to guarantee the accu-
racy of the present optical calculations.

For the P4mm crystal symmetry and collinear
magnetic ordering of BiCoO3, there are three compo-
nents of linear dielectric function: �xx, �yy, and �zz,
with �xx=�yy [22]. For the SHG susceptibilities, there
are five nonvanishing components, with 
xxz

�2� =
yyz
�2� ;


zxx
�2� =
zyy

�2� ; and 
zzz
�2� [22]. As shown in Fig. 1, there is a

little difference in � among four types of magnetic or-
derings. In particular, at low frequency, linear optical
response is almost identical with each other. How-
ever, SHG coefficients display great contrast between
each other in the whole frequency range we demon-
strated. As indicated in Table 1, the change in the low

Fig. 1. (Color online) Magnetic-ordering dependence of
linear dielectric function and SHG �10−6 esu� in BiCoO3
(real part). For xx component, the sequence at low fre-
quency (in the ascending sort) is FM, A-type AFM, G-type
AFM, and C-type AFM. For zz component, the sequence is
G-type AFM, FM, C-type AFM, and A-type AFM. For xxz
component, the sequence is A-type AFM, FM, C-type AFM,
and G-type AFM. For zxx component, the sequence is
A-type AFM, FM, C-type AFM, and G-type AFM. For zzz
component, the sequence is A-type AFM, C-type AFM, FM,

and G-type AFM.
frequency SHG is more obvious. In particular, there
is a more than 50% change in 
xxz

�2� and 
zxx
�2� between

C-type AFM state and FM state. Such a large change
in SHG can be observed directly by the application of
external magnetic field when the system transforms
from C-AFM ground state to FM state or the suppres-
sion of spin fluctuation at finite temperature. The
magnetic field needed for the zero-temperature
C-AFM ground state to FM state transition is very
large, around 60 T. However, the magnetic ordering
and spin-pair correlation are also affected by tem-
perature. In particular, near Neel temperature, the
spin-pair correlation shows the strongest magnetic-
field dependence, and therefore SHG can exhibit ob-
vious magnetic-field dependence near Neel tempera-
ture. In addition, SHG susceptibility itself is large.
For example, the low-frequency 
zzz

�2� reaches as high
as 3.7�10−7 esu, almost five times larger than SHG
in LiNbO3, which is a typical nonlinear optical mate-
rial. The large SHG is consistent with the large polar
distortion and electric polarization in BiCoO3.

To understand the above large change of SHG mi-
croscopically, in Fig. 2 we plot the absolute value of
imaginary part of 
�2� in contrast with ����� and
���� /2�. First, we can find that SHG spectrum can be
divided into three regions: the regime within ��

Table 1. Magnetic-Ordering Dependence of Linear
Dielectric Constant „��… and Low-Frequency

Second-Order Susceptibility „�„2…
… „10−8 esu… in

BiCoO3

C-Type AFM G-Type AFM A-Type AFM FM

�xx 6.55 6.54 6.38 6.24
�zz 6.93 6.76 7.05 6.79


xxz
�2� 6.9 9.05 0.29 2.57


zxx
�2� 2.19 4.56 −7.36 −5.65


zzz
�2� −36.86 −22.59 −39.69 −36.24

Fig. 2. (Color online) Magnetic-ordering dependence of
linear dielectric function and SHG �10−6 esu� in BiCoO3
(imaginary part). From the top to the bottom are the com-
ponents of 
xxz

�2� , 
zxx
�2� , 
zzz

�2� , �xx, and �zz. The dotted line is for

���� /2�, and solid line is for �����.
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�2 eV, corresponding the double-photon resonance;
the regime within 2 eV����3 eV, corresponding
the joint double-photon and single-photon reso-
nances; and the regime beyond, corresponding to the
single-photon resonance. Second, it is noted that
C-type AFM state and A-type AFM state resemble
each other in linear optical absorption peaks, while
G-type AFM state and FM fall into the same group.
Between C-type AFM state and FM state, both �����
and ���� /2� differ greatly. The difference is further
amplified in double-photon resonance region of SHG
spectrum ����2 eV�, where 
��2� differs significantly
in the absorption peaks’ height between four different
magnetic orderings. Therefore, the large change in
SHG arises mainly from enhanced contrast in the
double-photon resonance absorption.

In applications, such an obvious change in SHG is
useful. The conventional electro-optic effect, which is
related to the magnitude of low-frequency second-
order optical susceptibility and measures the change
of linear optical response under external electric
field, will also be magnetic-field (or magnetic-
ordering) dependent. Therefore a novel magneto-
electro-optic effect can be observed in polar magnets.

From the above calculations, strong magnetic-
ordering dependence of SHG is well established in
the polar magnet BiCoO3. Magnetic-ordering-
dependent SHG similar to those described above
should be general in all the polar magnets. In fact,
consistent with the suggestion by Tokura [7], these
conventional polar magnets can show very interest-
ing linear and nonlinear optical properties arising
from the magnetoelectric response in the optical-
frequency region, yet the coupling between electric
polarization and magnetization at their electronic
ground state appears to remain very small. On the
other hand, complex modification of SHG (both the
magnitude and the number of components) in the im-
proper ferroelectric materials is possible [4], since the
spontaneous electric polarization in these improper
ferroelectric materials is associated with the particu-
lar noncollinear magnetic ordering. In these materi-
als, the spontaneous electric polarization itself is
magnetic-ordering dependent, so 
�2� will change
strongly with external magnetic field. It is noted that
the magnetic-field controllable SHG is intrinsic in
these polar magnets. This is different with the ex-
trinsic effects in the composite materials, where the
composite microstructure is magnetic-field depen-
dent [23].

In summary, by examining the magnetic-ordering

dependence of nonlinear optical response, we have
revealed the magnetic-field controllable SHG in a
layered polar magnet BiCoO3. Large SHG suscepti-
bility, which can reach 3.7�10−7 esu, undergoes a
substantial change between different magnetic order-
ings. Novel optical phenomena of magnetic-field con-
trollable SHG and magneto-electro-optic effect are
therefore realized in polar magnets.
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