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Ab initio studies of spin-spiral waves and exchange interactions in 3d transition metal atomic chains
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The total energy of the transverse spin-spiral wave as a function of the wave vector for all 3d transition
metal atomic chains has been calculated within ab initio density functional theory with the generalized gradient
approximation. It is predicted that at the equilibrium bond length, the V, Mn, and Fe chains have a stable spin-spiral
structure, while the magnetic ground state of the Cr, Co, and Ni chains remains collinear. Furthermore, all the
exchange interaction parameters of the 3d transition metal chains are evaluated by using the calculated energy
dispersion relations of the spin-spiral waves. Interestingly, it is found that the magnetic couplings in the V, Mn,
and Cr chains are frustrated (i.e., the second near-neighbor exchange interaction is antiferromagnetic), and this
leads to the formation of the stable spin-spiral structure in these chains. The spin-wave stiffness constant of these
3d metal chains is also evaluated and is found to be smaller than its counterpart in bulk systems. The upper limit
(on the order of 100 Kelvins) of the possible magnetic phase transition temperature in these atomic chains is also
estimated within the mean-field approximation. The electronic band structure of the spin-spiral structures have
also been calculated. It is hoped that the interesting findings here of the stable spin-spiral structure and frustrated
magnetic interaction in the 3d transition metal chains will stimulate further theoretical and experimental research
in this field.
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I. INTRODUCTION

Noncollinear magnetism, especially spin-spiral structures,
has received much attention in recent decades, not only
for possible magnetism-based technological applications1–3

but also for fundamental physics.4–13 In particular, it was
recently reported that spin chirality in geometrically frustrated
pyrochlore compounds could generate magnetic monopoles4,5

and also a large anomalous Hall effect.10 It was also proposed
recently that the spin-spiral structure could be the main source
of the magnetoelectric effect observed recently in multiferroic
oxides.2,3 The spin-spiral structure, in which the magnetization
rotates along a certain direction in a bulk material, was
observed two decades ago in neutron-diffraction experiments
on fcc Fe and Fe100−xCox alloy precipitates in Cu.13 This
experimental finding has since stimulated many ab initio
studies of the spin-spiral structures in bulk magnets.12,14–20

Indeed, ab initio calculations12,17,19 corroborated that stable
spin-spiral states exist in fcc Fe. Furthermore, ab initio total
energy calculations for the spin-spiral structures also helped
to formulate an explanation of the anomalous magnetovolume
properties of the Invar alloys (the Invar effect).14

Noncollinear magnetism in low-dimensional systems has
also been studied both theoretically and experimentally in
recent years.7,21–23 For example, the Mn monolayer on the
W(001) surface was recently investigated7 jointly by spin-
polarized scanning tunneling microscopy and also ab initio
calculations, and it was concluded that a spin-spiral structure
along the (110) direction exists in this monolayer system.
A stable spin-spiral structure with propagation vector q =
(0,0,0.15)(2π/a) was also predicted to exist in the unsupported
free-standing Fe(110) monolayer with the lattice constant
of 3.16Å.21,22 Co/CoPt bilayers were also found to support
noncollinear spiral structures by Brillouin light scattering.23

Interestingly, very recent ab initio calculations show that in
Mn chains on Ni(001), the magnetic structure could change

from noncollinear to collinear ferrimagnetic, depending on
whether the number of Mn atoms is even or odd.6

Stimulated by possible unusual magnetism in one-
dimensional (1D) systems, we have recently carried out
systematic ab initio studies of the collinear magnetic properties
of linear and zigzag atomic chains of all 3d,24 4d, and
5d (Ref. 25) transition metals. Although the ideal infinite
free-standing 3d transition metal atomic chain is unstable and
cannot be prepared experimentally, short suspended monos-
trand metal nanowires and atomic chains have been prepared
in mechanical break junctions.26–28 Furthermore, structurally
stable Co atomic chains have recently been prepared on a
vicinal Pt(997) surface29 or inside nanotubes.30 Therefore, we
have also performed ab initio calculations for the 3d transition
metal linear atomic chains on the Cu(001) surface31,32 to
understand how the substrates would affect the magnetic
properties of the nanowires.

The purpose of the present work is to study possible spin-
spiral structures in all 3d transition metal atomic chains by ab
initio calculation of the total energy of the spin-spiral state as
a function of propagation wave vector q. Indeed, we find that
the magnetic ground state in the V, Mn, and Fe chains would
be a spin-spiral state. Furthermore, we evaluate the exchange-
interaction parameters between the atoms and also spin-wave
stiffness constants of all the atomic chains considered here
from the calculated energy dispersion relations of the spin-
spiral waves. The obtained exchange-interaction parameters
allow us to understand why the spin-spiral state is stable in
the V, Mn, and Fe chains but is not stable in the Cr, Co,
and Ni chains. Finally, we also estimate the upper limits of
the magnetic phase transition temperature for all the atomic
chains.

This paper is organized as follows. After a brief description
of the computational details in Sec. II, we present all the
calculated energy dispersion relations of the spin-spiral waves
of the 3d atomic chains in Sec. III. These results show that
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a stable spin-spiral state exists in the V, Mn, and Fe chains.
Reported in Sec. IV are the obtained exchange-interaction
parameters, which enable us to understand the stability of
the obtained magnetic ground state in each atomic chain
considered. In Sec. V, we present the calculated spin-wave
stiffness constant and also the estimated magnetic phase
transition temperatures for the 3d atomic chains. Finally, the
band structures of the spin-spiral state of the V and Mn chains
are displayed in Sec. VI, and a summary of this work is given
in Sec. VII.

II. THEORY AND COMPUTATIONAL METHOD

In the present first-principles calculations, we use the
accurate frozen-core full-potential projector augmented-wave
(PAW) method,33 as implemented in the Vienna Ab initio
Simulation Package (VASP).34,35 The calculations are based
on density functional theory, with the exchange and correlation
effects being described by the generalized gradient approxi-
mation (GGA).36 A very large plane-wave cutoff energy of
500 eV is used. The shallow core 3p electrons of the 3d

transition metals are treated as valence electrons. We adopt
the standard supercell approach to model an isolated atomic
chain. The nearest wire and wire distance adopted here is
20 Å. We start with the theoretical equilibrium bond lengths
for collinear magnetic states from our previous study of 3d

transition metal (TM) nanowires.24 However, in the fully
unconstrained noncollinear magnetic calculations37 for the
spin spiral structures, we vary the bond length to study the
bond length dependence of the stability of the spin spiral
state. The �-centered Monkhorst-Pack scheme with a k mesh
of 1 × 1 × n (n = 100) in the full Brillouin zone (BZ),
in conjunction with the Fermi-Dirac-smearing method with
σ = 0.02 eV, is used for the BZ integration.

We consider the transverse spin-spiral states where all the
spins rotate in a plane perpendicular to the spiral propagation
vector q. The total energies of the transverse spin spirals
as a function of the magnitude of spin-spiral wave vector
q are calculated self-consistently by using the generalized
Bloch condition approach.38,39 To study the exchange inter-
actions, we apply the frozen-magnon approach and obtain the
exchange-interaction parameters by a Fourier transformation
of the energy spectra of the spin-spiral waves.

III. STABILITY OF SPIN-SPIRAL STATES

The calculated total energies [E(q,θ )] as a function of
the spin-spiral propagation vector q of the 3d transition
metal chains at several different bond lengths d are plotted
in Fig. 1. Since we consider here the transverse spin-spiral
waves only, the angle between the chain axis (i.e., z axis) and
the magnetization direction θ = π/2, and hence we simply
write E(q,θ = π/2) = E(q). The spin-spiral structure at wave
vector q = 0 corresponds to the collinear ferromagnetic (FM)
state, while the state at q = 0.5 (2π/d) corresponds to the
antiferromagnetic (AF) state. Therefore, as shown in Fig. 1, at
q = 0 the lowest total energy state of the Cr (Mn) chain occurs
at 2.80 (2.60)Å, but it appears at 2.32 (2.29) Å at q = 0.5
(2π /d), being in good agreement with our previous collinear
magnetic calculations.24 Interestingly, Fig. 1 shows that both
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FIG. 1. (Color online) Total energy E(q) vs spin-spiral wave
vector q of the 3d transition metal chains at several different bond
lengths d .

the FM and AF states in the V, Mn, and Fe chains become
unstable against the formation of a spin-spiral structure.
Furthermore, the lowest total energy of the spin-spiral state
occurs at the bond length that is generally different from that
of the collinear magnetic states. For example, the ground state
of the Mn chain is the spin-spiral state with the equilibrium
bond length of 2.40 Å instead of 2.60 (the FM state) and
2.29 Å (the AF state).24

Nonetheless, there is no stable spin-spiral state in the Cr, Co,
and Ni chains. In the Cr chain, therefore, the AF state remains
the stable state. In the Co and Ni chains, the FM state still has
the lowest total energy (see Fig. 1). In fact, we could not even
obtain a spin-spiral solution for the Ni chain at the wave vector
q being larger than 0.3 (2π/d). This is because, as shown in
Fig. 1, an increase in the number of valence electrons leads to
an increased stabilization of the FM state, while a decrease in
the number of valence electrons tends to stabilize the AF state.
This observation is further corroborated by the fact that in the
Cr chain of bond length d = 2.32 Å, the total energy decreases
steeply as the spin-spiral wave vector increases [Fig. 1(b)]. For
comparison, we notice that in previous GGA calculations,40

the FM state could not be stabilized in bulk Cr metal, while
the magnetization energy of the AF state is rather small
(∼ 0.016 eV/at).
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TABLE I. Calculated equilibrium bond length d , ground-state
spin-spiral wave vector (q), and total energy [E(q)] [relative to that of
the FM state (q = 0)] as well as spin magnetic moment (ms) at q = 0
in the 3d transition metal chains. Note that the magnetic moment
ms and total energy E(q) listed for the Cr chain are for the bond
length d = 2.80 Å, since there is no stable FM state at d = 2.32 Å
[see Fig. 1(b)].

ms d q E(q)
(μB/at) (Å) (2π/d) (meV/at)

V 1.47 2.05 0.25 −166.4
Cr 4.18 2.32 0.50 −155.2
Mn 4.43 2.40 0.33 −113.3
Fe 3.30 2.25 0.10 −15.5
Co 2.18 2.15 0.00
Ni 1.14 2.18 0.00

The calculated equilibrium bond length (d), ground-state
wave vector (q), and total energy [E(q)] as well as spin
magnetic moment per unit cell (ms) at q = 0 of all the 3d

transition metal chains considered here are listed in Table I.
We notice that the spin magnetic moment of the spin-spiral
state of the V chain is significantly reduced, in comparison
with the FM state (see Ref. 24), but is close to that of the AF
state. Interestingly, Table I shows that the stable spin-spiral
wavelength λ of the Fe chain is nearly exactly ten bond
lengths (or lattice constant), while, in contrast, that for the V
and Mn chains is much shorter, being four and three bond
lengths, respectively. However, the spin-spiral wavelength
λ can depend on the bond length, and this dependence is
especially pronounced for the V chain, as demonstrated in
Fig. 1(a). When the V chain is stretched to the bond length
of 2.40 Å, the spiral propagation vector q becomes ∼0.35
(2π/d), but when it is further stretched to d = 2.55 Å, q is
reduced to ∼0.20 (2π/d). A similar behavior of the spin-spiral
wave vector can be found for the Fe chain, as shown Fig. 1(d).

The energy of a spin-wave excitation (i.e., the magnon
dispersion relation) is given as the derivative of the total energy
of the spin-spiral state with respect to the magnon number,16,41

ε(q) = h̄ω(q) = 2μB

	E(q,θ )

	M
= 4μB

ms0
[E(q) − E(0)],

(1)
where 	E(q,θ ) = E(q,θ ) − E(0,θ ) = E(q) − E(0) is the
energy of a spin spiral of wave vector q relative to
the ferromagnetic state (q = 0), 	M is the decrease of the
magnetization per site projected onto the z axis, and ms0 is
the spin magnetic moment per site at q = 0. The calculated
magnon dispersion relations for the V, Cr, Mn, Fe, Co, and Ni
chains at the minimal energy bond length are plotted in Fig. 2.

Ab initio calculations of the excitation energy of the
spin-spiral wave along some high-symmetry lines in the
Brillouin zone in bulk bcc Cr,20 fcc Mn,20 bcc Fe,16–18,20 fcc
Co,16–18,20 and fcc Ni metals16–18,20 have been reported before,
and the stable spin-spiral structures were found in bcc Cr
and fcc Mn. The stable spin-spiral wave with a wavelength
of approximately seven lattice constants was also found in
a free-standing bcc Fe(110) monolayer with lattice constant
of 3.16 Å in two previous ab initio studies.21,22 Here, we
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FIG. 2. (Color online) Calculated spin-wave energy spectra ε(q)
[i.e., magnon dispersion relations h̄ω(q)] of the 3d transition metal
atomic chains at the ground-state bond length except the Cr chain
where the bond length d = 2.80 Å is used.

predict the existence of the stable spin-spiral structures in 1D
free-standing transition metal (V, Mn ,and Fe) atomic chains.

IV. EXCHANGE INTERACTIONS

To a rather good approximation, we can map a metallic
magnet onto an effective Heisenberg Hamiltonian with classi-
cal spins,17,18

Heff = −1

2

∑

i,j

Jij σi · σj , (2)

where Jij is an exchange interaction parameter between atomic
site i and site j , and σi (σj ) is the unit vector representing
the direction of the local magnetic moment at site i (j ). In the
frozen magnon approach, the exchange-interaction parameters
Jij are related to the magnon excitation energy ε(q) by a
Fourier transformation,

J0j = 1

Nq

∑

q

e−iq·RJ (q), (3)

where Nq is the number of q points in the Brillouin zone
included in the summation, and

ε(q) = 4μB

ms0
[E(q) − E(0)]

= −2μB

ms0
sin(θ )2J (q) = −2μB

ms0
J (q). (4)

Here, θ is fixed to π/2 for all the spin-spiral states and
J (q) is the Fourier transform of the exchange parameters. We
therefore evaluate the exchange interactions in the 3d transition
metal chains via Eqs. (3) and (4) by using the calculated
magnon dispersion relations, as shown in Fig. 2.
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The obtained exchange interaction parameters as a function
of the interatomic distance are plotted in Fig. 3 and also
listed in Table II. In the minimum energy bond lengths, as
shown in Fig. 3(a), the magnetic coupling between the two
first nearest neighbors in the V, Fe, Co, and Ni chains is
ferromagnetic (J01 > 0), while it is antiferromagnetic (J01 <

0) in the Cr and Mn chains. In the Co and Ni chains, the
magnetic coupling between the second nearest neighbors
remain ferromagnetic (J02 > 0), and this explains why the
ground state of these chains is ferromagnetic. In contrast, the
magnetic coupling between the second nearest neighbors in
the V, Mn, and Fe chains is antiferromagnetic (J02 < 0), i.e.,
the exchange interactions in these chains would be frustrated.
As a result, noncollinear spin-spiral states in these chains may
become energetically more favorable than either a collinear
ferromagnetic or antiferromagnetic state. Let us take the Mn
chain as an example, and consider the atomic spin at the origin.
This spin tends to couple antiferromagnetically both with its
two nearest neighbors and also with its two second nearest
neighbors, because the first- and second-nearest-neighbor

TABLE II. Calculated exchange-interaction parameters (J0j )
(meV) between two j th near neighbors (j = 1,2,3,4,5) in the V,
Cr, Mn, Fe, Co, and Ni atomic chains.

J01 J02 J03 J04 J05

V 4.2 −22.8 −0.2 2.6 −2.4
Cr −65.0 17.6 −7.2 4.0 −2.6
Mn −78.4 −43.2 9.8 −3.0 1.2
Fe 158.2 −57.8 4.4 2.6 −3.2
Co 156.4 13.0 −22.8 16.6 −11.8
Ni 109.0 6.6 20.0 −24.6 7.4

exchange parameters J01 and J02 are negative [see Fig. 3(a)
and Table II]. However, this would make its two nearest-
neighbor spins “frustrated” because they would have to couple
ferromagnetically with one nearest neighbor on one side
and antiferromagnetically with the other nearest neighbor
on the opposite side. This frustrated magnetic coupling,
therefore, would energetically favor a spin-spiral state. In
fact, according to the mean-field theory for a 1D classical
Heisenberg spin chain with negligibly small magnetic coupling
between third nearest neighbors and beyond (see, e.g., Ref. 42),
in the frustrated magnetic coupling situation (J02 < 0), the
system would be ferromagnetic (q = 0) if J01 > 4|J02| and
antiferromagnetic (q = π/2) if J01 < −4|J02|. Table II shows
clearly that the condition J01 > 4|J02| is fulfilled for the
Co and Ni chains, giving rise to the ferromagnetic ground
state. Interestingly, a stable spin-spiral structure with the
spiral propagation vector q given by cos(qd) = −J1/4J2

would occur if J02 < 0 and 4J02 < J01 < 4|J02|.42 Using the
exchange coupling parameters listed in Table II, we would
obtain the spiral propagation vector q = 0.24,0.32, and 0.13
(2π/d), respectively, for the V, Mn, and Fe chains. These
estimated q values agree very well with that obtained by the
fully self-consistent total energy calculations (Table I).

Figure 1 shows that the stability of the spin-spiral state
in the V, Mn, and Fe chains depends pronouncedly on bond
length d. Therefore, we also calculate the exchange-interaction
parameters for these chains with several other bond lengths,
and the results are plotted in Fig. 3(b). The equilibrium bond
length for the FM V and Mn chains is 2.60 Å. The equilibrium
bond lengths for the AF Mn and Fe chains are 2.29 and
2.15 Å, respectively. It is clear from Fig. 3 that the calculated
exchange-interaction parameters can be sensitive to the bond
length. For example, the magnitude of the nearest-neighbor
exchange interaction J01 in the V atomic chain is dramatically
increased from 2.1 to 40 meV as the bond length is increased
from 2.05 to 2.60 Å. A similar behavior is found for the
Fe chain (Fig. 3). Interestingly, in contrast, the magnitude
of the nearest-neighbor exchange interaction J01 in the Mn
chain is significantly reduced as the bond length is increased.
Nevertheless, the exchange-interaction parameters for the
second nearest neighbor and beyond are less affected by the
bond length (see Fig. 3).

Ab initio evaluation of the exchange-interaction parameters
in bulk ferromagnets Fe, Co, and Ni have been reported many
times before. For example, the nearest-neighbor exchange in-
teraction J01 in bcc Fe was determined to be 39.0 meV (Ref. 18)
and 57.3 meV,43 respectively. The nearest-neighbor exchange
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interaction J01 in fcc Co was estimated to be 29.5 meV.18 In
bulk fcc Ni, the J01 was calculated to be 5.6 meV.18 In the
free-standing square Fe and Co monolayers with the Cu(001)
lattice constant, the nearest-neighbor exchange interaction J01

is 92.5 and 77.6 meV,11 respectively. These indicate that in 2D
systems, in general, the exchange interactions are significantly
enhanced as compared with their bulk counterparts, mainly
because of reduced coordination numbers. Table II show that
the nearest-neighbor exchange parameters J01 in the Fe, Co,
and Ni chains are much larger than in their bulk counterparts.
This may be attributed, at least partially, to the fact that
the nearest bond length in the atomic chains is significantly
shorter than in their bulk counterparts.24 Our calculated J01

values in the Fe and Co chains are also significantly larger
than the corresponding J01 values in the free-standing Fe
and Co monolayers.11 Interestingly, in the Fe atomic chains
deposited on the Cu(117) surface, the effective exchange
interaction parameter Jeff was determined to be around
136 meV,44 being comparable with the corresponding J01 value
of the free-standing Fe chain listed in Table II.

V. SPIN-WAVE STIFFNESS AND CRITICAL
TEMPERATURE

The calculated energy dispersion relations of the spin-spiral
waves ε(q) for the 3d transition metal chains at the ground-
state bond length are displayed in Fig. 2. In the range of
small q, ε(q) = Dq2, where the spin-wave stiffness constant
D relates the spin-wave energy h̄ω(q) to the wave vector q in
the long-wavelength limit. The spin-wave stiffness constant D

of an atomic chain can be estimated by fitting an even-order
polynomial to the corresponding spin-wave spectrum shown
in Fig. 2. The spin-wave stiffness constant D obtained in this
way for the 3d metal chains is listed in Table III. A negative
value of D means that the FM state is not stable against a
spin-spiral wave excitation. Table III shows that the spin-wave
stiffness constant D in the V, Cr, Mn, and Fe chains is negative.
Only in the Co and Ni chains is D positive.

TABLE III. Calculated spin-wave stiffness constant D (meVÅ2)
and magnetic transition temperature TC of the 3d metal chains. Also
listed are the D’s and TC’s for the 3D and 2D metal systems from
previous ab initio calculations and experimental measurements for
comparison.

Stiffness D TC (K)

3D 2D 1D 3D 2D 1D

V −424 94
Cr −106 311g 414
Mn −504 274
Fe 250,a 330b 164c −78 1414,a 1043d 1265c 410
Co 663,a 510b 570c, 427e 616 1645,a 1388d 1300c 606
Ni 756,a 555f 656 397,a 627d 458

aTheoretical calculations (Ref. 18).
bNeutron-scattering measurement extrapolated to 0 K (Ref. 45).
cTheoretical calculations (Ref. 11).
dExperimental measurements (Ref. 46).
eBrillouin light-scattering measurement (Ref. 47).
fNeutron-scattering measurement (Ref. 48).
gNeutron-scattering measurement (Ref. 49).

In principle, one can also calculate the spin-wave stiffness
constant D via16

D = 2μB

ms0

d2E(q)

dq2
= μB

3ms0

∑

j

J0jR
2
0j , (5)

where J0j are the exchange-interaction parameters and R0j =
|R0 − Rj | is the distance between site 0 and site j . In practice,
Eq. (5) cannot be used directly to obtain reliable values
for the spin-wave stiffness constant because the numerical
uncertainties at the long distances are amplified by the factor
R2

0j .18 Here we use this expression to understand the calculated
D’s listed in Table III. For example, the magnitude of the
spin-stiffness constant D of the V chain is much larger than that
of the Cr chain because the V chain has a much smaller spin
magnetic moment (see Table I) and also a negative second-
nearest-neighbor antiferromagnetic exchange parameter (see
Table III). Furthermore, even though J01 is positive in the V
and Fe chains, the D is negative, because the V and Fe chains
have J02 < 0 and J01 < 4|J02|.

For comparison, the spin-wave stiffness constants D’s
for the three-dimensional (3D) and two-dimensional (2D)
Fe, Co, and Ni systems from previous ab initio calcu-
lations and experimental measurements are also listed in
Table III. It is clear from Table III that the spin-wave stiffness
constant tends to become smaller as the dimensionality of
the system gets reduced. This may be expected [see Eq. (5)]
because the number of near neighbors becomes smaller as
the dimensionality of the system gets reduced. Among the
three bulk 3d elemental ferromagnets, Fe has the smallest
spin-wave stiffness, and, interestingly, the stiffness of Fe
becomes negative when its dimensionality is decreased to 1
(Table III).

Within the mean-field (MF) approximation, the critical
temperature (TC) of the magnetic phase transition for the
effective Heisenberg Hamiltonian can be estimated via the
approximate expression50,51

kBT MF
C = 1

3J (q), (6)

where q is the spin-spiral wave vector and J (q) is the Fourier
transform of the interatomic exchange parameters,

J (q) =
∑

j

J0j e
iq·R0j . (7)

In the ferromagnetic case (q = 0),50

kBT MF
C = ms0

6μBNq

∑

q

ε(q). (8)

Using the calculated exchange-interaction parameters J0j

[Table III and Fig. 3(a)], and Eqs. (6) and (7), we estimate
the transition temperatures T MF

C for the 3d transition metal
chains, as listed in Table III. Encouragingly, the ferromagnetic
transition temperatures evaluated using Eq. (8) for the Co and
Ni chains are 622 and 444 K, respectively, being in good
agreement with that obtained using Eqs. (6) and (7) (Table III).
Table III indicates that the critical temperature for the consid-
ered 3d atomic linear chains varies from several tens to a
few hundreds of Kelvins. The critical temperatures for the 3d

atomic chains are much smaller than the corresponding ones
for the bulk metals and their monolayers (Table III). This is
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due to the much reduced coordination numbers in these 1D
systems, although the exchange interaction parameters in the
atomic chains are generally larger than their counterparts in
the bulks and monolayers.

The more accurate expression for the critical temperature
within the random phase approximation (RPA) also exists,11,50

1

kBT RPA
C

= 6μB

M

1

Nq

∑

q

1

ε(q) + 	
, (9)

where 	 is the magnetic anisotropy energy. The RPA
expression generally gives the critical temperatures for bulk
ferromagnets Fe, Co, and Ni being in better agreement
with experiments than the MF expression.18 Furthermore, the
critical temperatures with the MF approximation are usually
significantly higher than that from the RPA calculations.11,18

Using our calculated spin-wave dispersion relations (Fig. 2)
and also the 	 values from Ref. 24, we obtain T RPA

C = 230 K
for the Co chain and T RPA

C = 229 for the Ni chain. Therefore,
the estimated critical temperatures listed in Table III should
be considered only as the upper limits. Finally, we note that in
the 1D isotropic Heisenberg model with finite-range exchange
interactions, there is no spontaneous magnetization at any
nonzero temperature because fluctuations become important.52

Nonetheless, this discouraging conclusion has to be revised
in the presence of a magnetic anisotropy and long-range
interactions. Indeed, ferromagnetism in a 1D monatomic Co
metal chain on a Pt substrate has been recently reported.29 A
detailed discussion on possible finite temperature spontaneous
magnetization in 1D systems has been given in Ref. 53.

VI. ELECTRONIC BAND STRUCTURE

To study how the spin-spiral structure affects the electronic
band structure39 and also to help gain further insight into
the spin-spiral instability at the microscopic level,9,15 the
electronic band structures of the V and Mn chains at several
spin-spiral wave vectors q are displayed in Figs. 4 and 5,
respectively. The ferromagnetic (q = 0) band structures are
presented in Figs. 4 and 5(a). Because of the linear chain
symmetry, the bands may be grouped into three sets, namely
nondegenerate s- and dz2 -dominant bands, doubly degener-
ate (dxz, dyz) bands, and (dx2−y2 ,dxy) dominant bands; see
Figs. 4(a) and 5(a). The (dx2−y2 , dxy) bands are narrow because
the dx2−y2 and dxy orbitals are perpendicular to the chain, thus
forming weak γ bonds. The dxz and dyz bands, on the other
hand, are more dispersive due to the stronger overlap of the
dxz and dyz orbitals along the chain, which gives rise to the
π bonds. The s- and dz2 -dominant bands are most dispersive
since these orbitals form strong σ bonds along the chain.

Two main changes could appear in a ferromagnetic band
structure when a spin-spiral wave is introduced, namely, the
lifting of the accidental degeneracy at the cross-point of spin-
up and spin-down bands and the “repulsion” of opposite-spin
bands.39 These changes can be clearly seen in Figs. 4(b) and
5(b). For example, in Fig. 4(b), the spin-up and spin-down
dxz and dyz bands clearly move away from each other. Of
course, these changes due to the noncollinear spin-spiral wave
become more pronounced as q increases (Figs. 4 and 5). In the
V chain, the repulsion of opposite-spin bands appears to lower
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FIG. 4. (Color online) Band structures of the V chain in a different
spiral propagation vector q along � to Z direction. In part (a), q = 0
(2π/d) indicates a spin-polarized ferromagnetic band structure, while
in part (f), q = 0.5 (2π/d) indicates an AF band structure.

the spin-up dxz-dyz band considerably while at the same time
raising the spin-down dxz and dyz bands significantly [see, e.g.,
Figs. 4(b) and 4(c)]. This could be the reason why the spin-
spiral structure is energetically favored over the ferromagnetic
state. In the Mn chain, on the other hand, as the wave vector
q becomes nonzero, the fully occupied spin-up dxz-dyz band
near the � point is pushed down substantially (see Fig. 5). This
change could lead to a lowering of the total energy, thereby
stabilizing the spin-spiral structure in the Mn chain. Figures 4
and 5 also show, in contrast, that as the spiral wave vector q

becomes nonzero, the dispersive s- and dz2 -dominant valence
bands near the � point are pushed up in energy, and these shifts
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FIG. 5. (Color online) Band structures of Mn in a different spiral
propagation vector q along � to Z direction. In part (a), q = 0 (2π/d)
indicates a spin-polarized ferromagnetic band structure, while in
part (f), q = 0.5 (2π/d) indicates an AF band structure.
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are more or less proportional to the modulus of spin-spiral
vector q. This upward movement of the s- and dz2 -dominant
bands might raise the total band energy. Therefore, the final
equilibrium spiral wave vector q would be determined by a
tradeoff of these two contrasting changes in the electronic
band structure of the atomic chain.

VII. CONCLUSIONS

We have calculated the total energy of the transverse spin-
spiral wave as a function of the wave vector for all 3d transition
metal atomic chains within ab initio density functional theory
with the generalized gradient approximation. As a result, we
predict that at the equilibrium bond length, the V, Mn, and
Fe chains have a stable spin-spiral structure. Furthermore,
all the exchange interaction parameters of the 3d transition
metal chains are evaluated by using the calculated energy
dispersion relations of the spin-spiral waves. Interestingly, we
find that the magnetic couplings in the V, Mn, and Cr chains are
frustrated (i.e., the second near-neighbor exchange interaction
is antiferromagnetic), and this leads to the formation of the
stable spin-spiral structure in these chains. The spin-wave
stiffness constant of these 3d chains is also evaluated and
compared with its counterpart in bulk and monolayer systems.
We have also estimated the upper limit of the possible magnetic

phase transition temperature in these atomic chains within
the mean-field approximation. The electronic band structure
of the spin-spiral structures has also been calculated. We
hope that our findings of the stable spin-spiral structure and
frustrated magnetic interaction in the 3d transition metal
chains will stimulate further theoretical and experimental
research in this field. Indeed, after learning our ab initio
results, Sandvik recently studied a spin-1/2 Heisenberg chain
with both frustration and long-range interactions by exact
diagonalization.54 He found a first-order transition between
a Néel state and a valence-bond solid with coexisting critical
k = π/2 spin correlations.54

Note added in proof. Recently, we became aware of a
recent theoretical work by Saubanere et al.55 also studying
the stability of spiral magnetic order in V nanowires.

ACKNOWLEDGMENTS

The authors thank A. W. Sandvik and Z. R. Xiao for
stimulating discussions. The authors acknowledge support
from the National Science Council and the NCTS of Taiwan.
They also thank the National Center for High-performance
Computing of Taiwan and the NTU Computer and Information
Networking Center for providing CPU time.

*gyguo@phys.ntu.edu.tw
1Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida,
M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi,
S. Maekawa, and E. Saitoh, Nature (London) 464, 262 (2010).

2T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer, and
M. Fiebig, Nature (London) 430, 541 (2004).

3T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and
Y. Tokura, Nature (London) 426, 55 (2003).

4S. T. Bramwell, S. R. Giblin, S. Calder, R. Aldus, D. Prabhakaran,
and T. Fennell, Nature (London) 461, 956 (2009).

5D. J. P. Morris, D. A. Tennant, S. A. Grigera, B. Klemke,
C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K. C.
Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, and
R. S. Perry, Science 326, 411 (2009).

6S. Lounis, P. H. Dederichs, and S. Blügel, Phys. Rev. Lett. 101,
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