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We investigate possible phase transitions among the different quantum anomalous Hall (QAH) phases in
single-layer graphene under the influence of the exchange field. The effective tight-binding Hamiltonian for
graphene is made up of the hopping term, the Kane-Mele and Rashba spin-orbit couplings as well as the Haldane
orbital term. We find that the variation of the exchange field results in bulk gap-closing phenomena and phase
transitions occur in the graphene system. If the Haldane orbital coupling is absent, the phase transition between
the chiral (antichiral) edge state ν = +2 (ν = −2) and the pseudoquantum spin Hall state (ν = 0) takes place.
Surprisingly, when the Haldane orbital coupling is taken into account, an intermediate QSH phase with two
additional edge modes appears in between phases ν = +2 and ν = −2. This intermediate phase is therefore
either the hyperchiral edge state of high Chern number ν = +4 or antihyperchiral edge state of ν = −4 when
the direction of exchange field is reversed. We present the band structures, edge state wave functions, and current
distributions of the different QAH phases in the system. We also report the critical exchange field values for the
QAH phase transitions.
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I. INTRODUCTION

The anomalous integer quantum Hall effect observed in
monolayer graphene subjected to an external magnetic field1,2

has recently attracted considerable attention. A theoretical
investigation3 showed that plateaus located at the half-odd-
integer position originate from an additional Landau level at
zero energy,4,5 which is unlike the behavior of the conven-
tional quantum Hall effect observed in two-dimensional (2D)
heterostructure semiconductors.6 The quantum Hall effect
has also been experimentally observed in AB-stacked bilayer
graphene,7 and this has been studied theoretically as well.8,9

Furthermore, much experimental evidence is available for
the existence of AA-stacked bilayer graphene.10 Interestingly,
AA-stacked bilayer graphene has been shown to exhibit zero
transverse conductivity.11

According to Laughlin’s gauge invariance argument, the
sample edges are essential in generating the localized current-
carrying states (edge states).12,13 The edge states on the sample
boundary are protected by the bulk band structure topology,
which is a manifestation of the Chern number, as elucidated
by Thouless et al. (TKNN).14 The TKNN integer ν (or
Chern number) relates the topological class of the bulk band
structure to the number of chiral edge states on the sample
boundary (bulk-boundary correspondence) and hence gives
rise to the quantized Hall conductivity σxy = ν e2/h. The
precise quantization of the Hall conductivity arises in the 2D
electron system with an integer filling of the Landau levels.
The Chern number corresponding to the number of the chiral
edge currents equals to the number of Landau levels below the
Fermi level. When the system undergoes a phase transition
from one chiral edge state to another, the corresponding
Chern number varies discontinuously from one integer ν

to ν ± 1.

The Chern number must vanish in a system with time
reversal symmetry (TRS). A TRS breaking mechanism is thus
required for a 2D system to achieve a nonzero Chern number,
either with or without the Landau levels. It has been shown
that the chiral edge state in the quantum Hall phase is related
to the parity anomaly of 2D Dirac fermions.15,16 Therefore,
in a remarkable paper,17 Haldane constructed a tight-binding
Hamiltonian in the 2D honeycomb lattice with a staggered
magnetic field that produces zero average magnetic flux per
unit cell (i.e., no Landau levels), and showed that the gapped
state exhibits the quantum Hall phase with ν = ±1. In this
sense, the Haldane model is the prototype for the quantum
anomalous Hall (QAH) effect. The relationship between the
Chern number and the winding number of the edge state was
investigated in Ref. 18.

On the other hand, when the bulk band gap of a system
having a spin degree of freedom is opened due to the spin-orbit
interaction, the system might be in the quantum spin Hall
(QSH) state where the gapless edge states appearing on the
sample boundary are protected by the TRS.19 The quantization
of the spin Hall conductivity has been predicted in a graphene
system with the Kane-Mele spin-orbit interaction as well as
in a semiconductor superlattice.20–22 The quantization of the
spin Hall conductivity, however, may be destroyed by the
parity-breaking perturbations via spin nonconserving term or
disorder. The associated topological invariant classifying the
band structure topology of the time-reversal invariant systems
is a Z2 topological index.20,21 The connection between the
Chern number and the Z2 topological index is explained in
Ref. 23. The Z2 topological number represents the number of
the Kramer pairs of the gapless edge modes. An important re-
sult of this classification is that these gapless edge modes with
an odd number of the Kramer pairs in the 2D systems20–22 and
an odd number of surface Dirac cones in the three-dimensional
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(3D) systems24,25 are robust to impurity scattering; the other
systems are just a conventional band insulator.

Recently, another topological invariant (i.e., the spin Chern
number) has been proposed by Sheng et al.,26 and it can
be evaluated by imposing twisted boundary conditions on a
finite sample. In Ref. 27, it has been shown that the spin
Chern number and Z2 topological orders would yield the same
classification by investigating the bulk gap-closing phenomena
in the time-reversal invariant systems. The phase diagram of
the 3D QSH systems has been investigated systematically.28

The topological winding number related to the spin edge states
of graphene with the Kane-Mele Hamiltonian has also been
studied.29 Furthermore, the bulk-boundary correspondence is
generalized to classify topological defects in insulators and
superconductors, where the gapless boundary excitations are
Majorana fermions.30

In this paper, we first model the bulk graphene and also
a zigzag graphene ribbon in the presence of the exchange
field31 by using the Kane-Mele-Rashba Hamiltonian [see
Eq. (1)]. Here, the spin degeneracy is lifted by the TRS
breaking term (i.e., the exchange field) and the z → −z mirror
symmetry is broken by the Rashba term. We calculate the
Chern number of the bulk system as a function of the exchange
field strength. Furthermore, we study how the edge current
in the corresponding graphene ribbon varies during a phase
transition induced by the exchange field.

The quantum anomalous Hall effect in Hg1−yMnyTe quan-
tum wells32 and tetradymite semiconductors (Bi2Te3, Bi2Se3,
and Sb2Te3)33 has been investigated. Graphene with the
Rashba spin-orbit coupling [α, see Eq. (2c)] and the exchange
field has also been studied before.34 However, in Ref. 34, the
Kane-Mele spin-orbit coupling [λ, see Eq. (2b)] was neglected
because it was thought to be weaker than the Rashba spin-orbit
interaction. In this paper, we find that, in the presence of both
the Rashba and Kane-Mele couplings, a phase transition from
either a chiral (ν = +2) or antichiral (ν = −2) edge state
(ν = ±2) to the pseudo-QSH state (ν = 0) would occur in
graphene, because of the change of the Chern number due
to the bulk gap-closing phenomena. This phase transition is
different from the transition between the QSH state and the
insulator state when the exchange field is absent.

We then add the Haldane orbital coupling term, which cou-
ples the electron orbital motion to the exchange field17 to the
Kane-Mele-Rashba Hamiltonian for graphene. Interestingly,
we find that this leads to an anomalous change in the Chern
number pattern. Note that the Haldane orbital term does not
lift the spin degeneracy. Furthermore, we find that the presence
of the Haldane orbital coupling would give rise to a new
intermediate phase between phases ν = +2 and ν = −2. This
intermediate phase has two new edge modes, and is thus either
a hyperchiral edge state with ν = +4 or an antihyper chiral
edge state with ν = −4 when the direction of the exchange
field is reversed.

The rest of this paper is organized as follows. In Sec. II, we
describe the effective tight-binding Hamiltonian for graphene
used in this work. In Sec. III, we report the energy bands
of a graphene ribbon in the presence of the exchange field.
In Sec. IV, we present the phase transition and the variation
of the Chern number with the exchange field in the Kane-
Mele-Rashba system. In particular, we show that graphene

undergoes a phase transition from the chiral (or antichiral)
state to the pseudo-QSH state. In Sec. V, we show that a
hyperchiral (or antihyperchiral) state would appear in between
the chiral and antichiral states in the Haldane-Rashba system.
The conclusions are given in Sec. VI. The pseudo-QSH state
is explained in Appendix A. The edge states and the variation
of Chern number for smaller values of Kane-Mele and Rashba
couplings are also discussed in Appendix B.

II. EFFECTIVE TIGHT-BINDING HAMILTONIAN
FOR GRAPHENE

We consider the effective tight-binding model for graphene
given by the Kane-Mele-Rashba Hamiltonian:20,21

HKMR = Ht + Hλ + Hα, (1)

with

Ht = t
∑
〈i,j〉

c
†
i cj , (2a)

Hλ = iλ
∑
〈〈i,j〉〉

c
†
i szν

z
ij cj , (2b)

Hα = iα
∑
〈i,j〉

c
†
i (s × dij )zcj . (2c)

The symbols 〈i,j 〉 and 〈〈i,j 〉〉 denote the nearest and the
next-nearest neighbors, respectively. The Hamiltonian Ht is
the tight-binding energy for the nearest-neighbor hopping. The
Kane-Mele Hamiltonian Hλ describes the intrinsic spin-orbit
interaction. The opened band gap via Kane-Mele coupling
determined by theoretical calculations ranges from 0.001 to
0.05 meV.35 However, the Kane-Mele coupling is theoretically
found to be significantly enhanced by impurity-induced sp3

distortion of the flat graphene36 and two mechanisms via
hydrogenated and fluorinated graphene.37 The site-dependent
Haldane phase factor17 νij is defined as

νij = d1 × d2

|d1 × d2| , (3)

where di denotes the vector from one carbon atom to one of
its nearest neighbors. Two vectors d1 and d2 are required to
represent the second neighbor hopping (see Fig. 1). In the
two-dimensional case, the nonzero component νz

ij becomes
a sign function, and we take the values of ±1 (i.e., coun-
terclockwise/clockwise). The extrinsic spin-orbit interaction
is described by the Rashba Hamiltonian Hα , which can be
produced by, e.g., applying an electric field E perpendicular to
the graphene sheet. Hα is proportional to E · (s × dij ), where
E = Ezêz and dij denotes the vector from site i to site j (see
Fig. 1). The Rashba coupling is experimentally proved to be
very large for graphene grown on the substrate.38,39 The largest
energy shift is 225 meV.39

Recently, it has been shown that graphene at low doping
can stabilize a ferromagnetic phase via exchange interactions
between Dirac fermions.40 Recent ab initio density functional
calculations also showed that intrinsic ferromagnetism in pure
and on-top-Fe-doped graphene monolayers may exist.34 Fur-
thermore, proximity-41 and defect-induced42 ferromagnetism
in graphene have also been reported.43 Therefore we consider
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FIG. 1. (Color online) (a) A segment of a zigzag graphene ribbon
with its unit cell marked by the red dashed lines. (b) Illustrations of
Haldane phase factors νz

ij , vectors dij , bulk basis vectors (a1,a2), and
bond length a. (c) The first Brillouin zones of bulk graphene (gray
region) and the zigzag graphene ribbon (red double arrow) in the 2D
k space.

the interaction of the 2D electrons in graphene with the
exchange field produced by the ferromagnetism.31

The coupling of the orbital motion and also spin of the
electrons on graphene to the exchange field would give rise to
an additional Hamiltonian:

Hex = Hγ + Hβ, (4)

with

Hγ = γ
∑

i

c
†
i szci, (5a)

Hβ = iβ̃(γ ′)
∑
〈〈i,j〉〉

c
†
i ν

z
ij cj , (5b)

where γ is the (rescaled) exchange-field strength. The coupling
γ is proportional to Jeffμ

′
z, where Jeff is the exchange

interaction and μ′
z is the effective magnetic moment associated

with the exchange field. The magnetic field generated by μ′
z is

denoted as γ ′. The Hamiltonian Hγ describes the response of
an electron spin magnetic moment to the exchange field à la
Zeeman effect.

In the meantime, the orbital angular momentum of an
electron in graphene would be coupled to the exchange
field because of its associated orbital magnetic moment. The
Haldane phase factor νij behaves like an effective orbital
angular momentum, and hence gives rise to the interaction
between the electron orbital motion and the magnetic field
γ ′, as described by Eq. (5b), where β̃(γ ′) is a function of γ ′.
Spatial parity symmetry requires β̃(γ ′) to be an odd function of
γ ′. Unlike the interaction between the spin and exchange field,

the energy of the Haldane orbital coupling cannot be linear in
the exchange filed γ ′. Instead, the response of Haldane orbital
motion would be saturated rapidly because the exchange field
γ ′ alters the orbital velocity of electrons and induces an orbital
magnetic moment against it. Phenomenologically, we can
adopt the simple yet sensible approximation:

β̃(γ ′) ≈ β sgn(γ ), (6)

where we use γ instead of γ ′ for simplicity since the sign
function is independent of the field strength but its direction.
In the present study, the sign of Jeff is fixed, and hence the sign
change of γ corresponds to the change in the direction of μ′

z,
which is experimentally possible. Accordingly, we choose the
constant β to be negative to have a diamagnetic response to
the magnetic field γ ′.

III. CHERN NUMBERS AND EDGE CURRENT CHIRALITY

The total Hamiltonian for graphene in the presence of
the exchange field is given by H = HKMR + Hex. For the
bulk graphene, the Hamiltonian H (k), which satisfies the
periodicity H (k) = H (k + G) (G stands for a 2D reciprocal-
lattice vector), is given by

H (k) =

⎛⎜⎝λ′Z + γ X + iY 0 iαM−
X − iY −λ′Z + γ −iαM∗

+ 0
0 iαM+ −λ′′Z − γ X + iY

−iαM∗
− 0 X − iY λ′′Z − γ

⎞⎟⎠ ,

(7)

where λ′ = λ + β sgn(γ ) and λ′′ = λ − β sgn(γ ). The
state vector is represented by ψ† = (c†kA↑,c

†
kB↑,c

†
kA↓,c

†
kB↓),

where A and B denote the two different sublattice points
in the unit cell, respectively, and the arrows represent
the spin directions. The matrix elements are given by
X = t[1 + 2 cos(k′

x) cos(3k′
y)], Y = t[2 cos(k′

x) sin(3k′
y)],

Z = 2 sin(2k′
x) − 4 sin(k′

x) cos(3k′
y), M+ = [−1 +

2 cos(k′
x − π

3 ) cos(3k′
y)] + i[2 cos(k′

x − π
3 ) sin(3k′

y)], and
M− = [−1 + 2 cos(k′

x + π
3 ) cos(3k′

y)] + i[2 cos(k′
x +

π
3 ) sin(3k′

y)], where the two variables k′
x and k′

y are

defined as k′
x ≡

√
3

2 kxa and k′
y ≡ ky

2 a, respectively. Note that
along the ky = 0 profile, the two points k′

x = ± 2π
3 are just

the K and K ′ points in the Brillouin zone of bulk graphene
[see Fig. 1(c)], respectively. After the eigenvalue equation
H (k)|ψnk〉 = Enk|ψnk〉 is solved, the Berry curvature (
(n)

xy )
of the nth band can be calculated using


(n)
xy (k) = −

∑
n′(�=n)

2 Im〈ψnk|vx |ψn′k〉〈ψn′k|vy |ψnk〉
(En′k − Enk)2

. (8)

The Chern number is then obtained by summing the Berry
curvatures 
(n)

xy for all the occupied states below the Fermi
level for each k and subsequently integrating over the entire
first Brillouin zone:

ν = 1

2π

∑
n

∫
BZ

dkxdky

(n)
xy (k). (9)

The bulk Hamiltonian (7) is simplified greatly if we
consider the following simple systems: (1) Kane-Mele system,
HKM = Ht + Hλ + Hγ , (2) Rashba system, HR = Ht + Hα +
Hγ , and (3) Haldane system, HH = Ht + Hβ + Hγ . The sign
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FIG. 2. (Color online) Calculated energy bands (left panels), edge
state probability (middle panels), and charge current (right panels)
distributions in the zigzag ribbon in the presence of the exchange
field. The Fermi level (the dashed line in the left panels) EF = 0.05t .
(a) Kane-Mele system (λ = 0.06t and γ = 0.2t). (b) Rashba system
(α = 0.2t and γ = 0.2t). (c) Haldane system (β = −0.07t and γ =
0.2t).

of Chern number indicates the chirality of the edge current.
To verify the occurrence of the edge currents, we compute
the energy band structure for a zigzag graphene ribbon. The
unit cell of the zigzag graphene ribbon is shown in Fig. 1(a),
where the ribbon direction is denoted by the x axis and the
transverse direction is along the y direction. The width of the
zigzag ribbon (W ) is 75 a, where a = 1.42 Å44 is the bond
length [see Fig. 1(b)], i.e., there are N + 1 = 101 C atoms in
the transverse direction [see Fig. 1(a)]. The nearest-neighbor
hopping integral t ≈ 2.5 eV.44

Figure 2 shows the ribbon band structure and the edge
state probability distribution in the Kane-Mele system (a),
the Rashba system (b), and the Haldane system (c). The
Fermi level is assumed to be above zero, as indicated by the
dashed horizontal line, and thus has four intersections with
the conduction bands, denoted as A, B, C, and D, in the
left panels in Fig. 2. This gives rise to four edge currents
on the ribbon edges, as indicated by the A, B, C, and D
arrows in the right panels in Fig. 2. The direction of an edge
current, denoted by an arrow, is given by I = −|e|vx where
the electron group velocity is determined using vx = ∂Ek/∂kx .
The A and B states have the same velocity direction, which
is opposite to that of the C and D states. Hereafter, we use
the notation (IL,IR) to express the charge current distributions
on the left-hand and right-hand side edges, respectively. In
terms of the bulk-boundary correspondence, for each of the
three systems, the pair A and D would form a single handed

loop (the turning point is at infinity in the x direction), and the
pair B and C would constitute the other loop of the opposite
handedness, as can be seen from the probability distribution
shown in the middle panels in Fig. 2.

In the Kane-Mele system HKM, the current distribution is
(IBD,IAC), as indicated in the right panel in Fig. 2(a). The two
edge states A and C are on the same edge, and so are the B and D
states. As mentioned above, the handedness of the current loop
due to the A and D edge states would produce a Chern number
of −1 while that of the pair B and C would give a Chern number
of +1. Therefore the Kane-Mele system is composed of two
integer quantum Hall subsystems, namely, (ν = +1) ⊕ (ν =
−1),20,45 and has ν = (+1) + (−1) = 0. Since this state has
the same distribution of the edge currents as that of the quantum
spin Hall case with the TRS,20 except that the TRS is broken
here, we call this state as the pseudoquantum spin Hall state
(see Appendix A).

In the Rashba system HR, the current distribution is
(IAB,ICD), as shown in Fig. 2(b), which constitute a para-
magnetic response to the exchange field. Both IA and IB

are located at the same edge, confirming that the Rashba
system has a Chern number of +2, since the two edge current
pairs have the same chirality.34 It is important to note that
both the Chern number and the current distribution (IAB,ICD)
in the Rashba system is invariant under the transformation
α → −α. On the other hand, the current distribution becomes
(ICD,IAB) when the direction of the exchange field is reversed.
Therefore, the Rashba system is equivalent to two integer
quantum Hall subsystems, namely, (ν = +1) ⊕ (ν = +1) for
γ > 0 or (ν = −1) ⊕ (ν = −1) for γ < 0.34

In the Haldane system HH, the current distribution is
(ICD,IAB), as shown in Fig. 2(c). Both IA and IB are also
located at the same edge, but the chirality of the edge current
is opposite to that of the Rashba system, as a result that the
Haldane system with β < 0 exhibits a diamagnetic response
to γ ′. The Chern number of this system is ν = −2. Therefore
the Haldane system, being diamagnetic, is equivalent to two
integer quantum Hall subsystems, namely, (ν = −1) ⊕ (ν =
−1) for γ > 0 or (ν = +1) ⊕ (ν = +1) for γ < 0.

In the next two sections, we will consider the following two
combinations of the three simple systems discussed in this
section: (1) Kane-Mele-Rashba system: H1 = HKMR + Hγ

and (2) Haldane-Rashba system: H2 = Ht + Hβ + Hα + Hγ .
We find that, because of the bulk gap-closing phenomena, both
systems will undergo a change of the edge current chirality
caused by varying the exchange field.

IV. PHASE TRANSITION IN THE KANE-MELE-RASHBA
SYSTEM

In this section, we will neglect the Haldane orbital coupling
term of Eq. (5b). We will find that the phase transition is
different from the QSH phase transition in the presence of
the exchange field. We consider the interplay between Hγ and
HKMR:

H1 = HKMR + Hγ = Ht + Hα + Hλ + Hγ . (10)

In the presence of both Kane-Mele and Rashba spin-orbit cou-
plings, the phase transition between the chiral (or antichiral)
state and the pseudo-QSH state must occur when the bulk
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gap-closing phenomena take place. On the other hand,
although the locations of four currents (IBD,IAC) become
(IAC,IBD) under the transformation λ → −λ, the phase
transition between (anti-) chiral and pseudo-QSH states still
applies because both IBD and IAC correspond to ν = 0.

In order to verify the phase transition in the finite system
(the graphene ribbon), we use the expectation value of
position y (i.e., 〈y〉) as a parameter for specifying the angular
momentum of the current in the system, and define 〈y〉 =
〈y〉A + 〈y〉B . When the Kane-Mele coupling λ is dominant
(|γ | < γ c, see below), 〈y〉A and 〈y〉B are on the opposite sides
of the ribbon, and thus 〈y〉/W = 0. When the Rashba coupling
is dominant (|γ | > γ c, see below), 〈y〉A and 〈y〉B are on the
same side of the ribbon. The quantity 〈y〉/W in the Rashba
dominant system, however, would not reach a saturated value
〈y〉/W = ±1 owing to the finite-size effect as the perfect edge
states are obtained only when the ribbon width W is infinite.
During the phase transition, the wave functions start to mix
with each other in the central region of the ribbon, and thus
〈y〉 is expected to deviate from either 0 or ±1.

In the Kane-Mele-Rashba system, the presence of λ and
α would result in the asymmetry of conduction and valance
bands. When we use the condition λ > α, the band-touching
point would be at zero energy. Furthermore, in order to
compare the Kane-Mele-Rashba with the Haldane-Rashba
system in the variation of Chern number, the order of
magnitude of λ is numerically chosen as the same as that
of α [see also Eq. (11) below]. Let us consider the case of
λ = 0.06t , α = 0.05t ,46 and γ ranging from −0.5t to 0.5t

in Eq. (10), as an example. (For the case of λ = 0.006t and
α = 0.005t , see Appendix B). For γ > 0, we find that 〈y〉
decreases to zero near some magnitude of γ (see below) and
does not change sign, as shown in Fig. 3(a). The pattern of 〈y〉
in the γ < 0 region is the parity symmetry of that in γ > 0.
We find that the expectation value 〈y〉 changes sign when the
direction of the chiral current is reversed.

Based on the bulk-boundary correspondence,14,19 the ex-
istence of the phase transition is supported by evaluating the
critical values of the exchange field. The critical value of the
exchange field (γ c) for the occurrence of the phase transition
is determined by the bulk gap-closing phenomena, where the
bottom of the bulk conduction band (Ec) and the top of the bulk
valence band (Ev) become degenerate, namely, Ec − Ev = 0
at γ c. It can be shown that the degenerate point is located at
k′
x = ± 2π

3 . The critical value for the exchange field is given
by

γ c = ±
(

−√
3α2 + 12

√
3λ2

4λ

)
, (11)

which is obtained for a nonzero Kane-Mele coupling that
satisfies α/λ <

√
3. The presence of λ causes the critical

value for the exchange field to shift from γ c = 0 (Rashba
system) to a nonzero value. The magnitude γ c corresponds
to the location where the bulk valence and conduction bands
become degenerate and the Chern number starts to jump from
one integer to another.

For a system with given α and λ, if γ > γ c (γ < γ c), the
system is in the chiral current state (pseudo-QSH state, see
Appendix A). When γ = +|γ c| (or γ = −|γ c|), the conduc-
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FIG. 3. (Color online) Expectation value 〈y〉 and Chern number as
a function of γ /t . (a) The Kane-Mele-Rashba system with λ = 0.06t ,
α = 0.05t , and γ ranging from −0.5t to 0.5t . (b) The Haldane-
Rashba system with β = −0.1t , α = 0.5t , and γ ranging from −t

to t .

tion and valance bands touch at k′
x = 2π/3 and k′

x = −2π/3
simultaneously. Because the IA current direction is opposite
to ID , the exchange of the locations of IA and ID results in a
change of chirality [see Fig. 3(a)]. The corresponding variation
of the Chern number is also shown in Fig. 3(a). Therefore we
find that the Chern number jumps from ν = 0 to ν = ±2. In
this case, the critical values γ c = ±0.293t are in agreement
with the numerical result.

V. PHASE TRANSITION IN THE HALDANE-RASHBA
SYSTEM

In this section, we will neglect the Kane-Mele coupling
λ. We will show that the presence of the Hamiltonian
Hβ creates two new edge modes between the two ν = ±2
phases. Interestingly, these intermediate states are either the
hyperchiral (ν = +4) or antihyperchiral (ν = −4) states. The
Hamiltonian is given by

H2 = Ht + Hα + Hβ + Hγ . (12)

As described in Sec. III, the Haldane system has ν = −2 and
the Rashba system has ν = +2 when the exchange field is
positive. If the phase transition occurs in this system, the bulk
gap-closing phenomena must take place. In the following, we
show that the Haldane-Rashba system has two critical values
of the exchange field.

For the sake of discussion, we consider the region with
γ > 0, and focus on the region k′

x > 0 because the behavior
of the corresponding degenerate points in k′

x < 0 is the mirror
symmetry of that in k′

x > 0. In the presence of α only, there
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are two degenerate points. One is at k′
x1 = 2π/3 (i.e., K point),

and the other is at

k′
x2 = cos−1

(
2α2 − 1

2α2 + 2

)
. (13)

Equation (13) shows that the degenerate point depends on the
strength of the coupling and thus varies with the magnitude of
α. However, the two degenerate points appear simultaneously,
namely, there is only one critical value for the exchange field,
γ c = 0, even when the coupling λ is considered [as shown in
Fig. 3(a)].

Unlike the Kane-Mele coupling λ, we find that the coupling
β will close the bulk gap twice at two different magnitudes
of the exchange field. Namely, there are two degenerate
points appearing at two different magnitudes of the exchange
field. Therefore the Chern number varies discontinuously from
ν = +2 to ν = −2 through an intermediate state. One of the
degenerate points is at the K point; the corresponding critical
value of the exchange field is

γ c
1 = −3

√
3β, kc′

x1 = 2π/3. (14)

However, the second degenerate point for the Hamiltonian
(12) is different from k′

x2 expressed in Eq. (13). The second
degenerate point is determined by the condition Ev − Ec = 0
and can be expressed as

γ c
2 = −4

√
3β(1 − F 2), kc′

x2 = cos−1(F ), (15)

where F satisfies the following equation:

−1+2α2+32β2(1−F 2+F 3)−2F (1 + α2 + 16β2) = 0.

(16)

Numerically, Eq. (16) can be solved for a given set of α and
β. When β = 0, Eq. (13) is the solution of Eq. (16), and the
critical value of the exchange field is γ c

1 = γ c
2 = 0, which

is in agreement with that in the case of the Rashba system.
For thevv present case, α = 0.5t and β = −0.1t . The two
critical points are γ c

1 = 0.5196t and γ c
2 = 0.68995t . Therefore

the conduction and valence bands first touch at γ = γ c
1 ,

and the bulk gap would reopen when γ c
1 < γ < γ c

2 (referred
to as the intermediate state). The two bands would touch the
second time at γ = γ c

2 . The bulk gap is open when γ > γ c
2 .

The calculated Chern number as a function of γ /t is shown in
Fig. 3(b).

Surprisingly, the intermediate state between the critical
values γ c

1 and γ c
2 shows ν = −4. The band structure and

current distribution of the intermediate state are shown in
Fig. 4. We find that in the presence of Haldane orbital effect,
the system establishes two new edge modes: one is the pair
A2 and D2, and the other is the pair C2 and B2. Furthermore,
the current distribution IL (and IR) also shows that the four
currents in IL have the same chirality. Importantly, we find
that unlike the quantum Hall plateau, the Chern number is not
restricted in changing from one integer ν to the next integer
ν ± 1. Instead, a higher Chern number can exist in a system
with a spin-orbit interaction if the orbital effect is also taken
into account.

The Chern number [see Eq. (9)] can be written as ν =∫
BZ

dk′
xdk′

y
̃xy . The bulk band structure and the correspond-
ing Berry curvature 
̃xy along the ky = 0 profile are shown
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FIG. 4. (Color online) The band structure (a), the edge state
probability and current distributions (b), bulk energy bands (c),
and Berry curvature (d) of the intermediate state in γ c

1 < γ < γ c
2

(α = 0.5t , β = −0.1t , and γ = 0.6t) (see text) in the graphene
ribbon. The Fermi level EF is at 0.01t [the red dashed line in (a)].
In (a), the eight edge states are marked as A, B, C, D, A2,B2,C2,
and D2, respectively. In (c) and (d), the bulk energy bands and Berry
curvature are plotted along the ky = 0 profile.

in Fig. 4(c) and 4(d), respectively, where we use α = 0.5t ,
β = 0.1t , and γ = 0.6t . It can be shown that if the linear term
β1γ

′ is taken into account, the Chern number is still −4. This
clearly shows that the anomalous Chern number ν = −4 is
due to the second nearest-neighbor hopping in graphene. We
believe that if the third nearest-neighbor hopping is considered
in Haldance orbital effect and spin-orbit interaction, a higher
Chern integer of, e.g., −6, may be obtained.

Let us define 〈y〉 = 〈y〉A1 + 〈y〉B1 + 〈y〉A2 + 〈y〉B2 for the
intermediate state. The calculated variation of 〈y〉 with γ

is shown in Fig. 3(b). Apart from the occurrence of the
intermediate state, the expectation value 〈y〉 = 〈y〉A + 〈y〉B
changes sign as the exchange field is swept through the phase
transition, and this is accompanied by a change of the Chern
number from ν = +2 to ν = −2, as shown in Fig. 3(b).

The Chern number obtained from the bulk Hamiltonian
represents the number of the perfect edge states. Note, how-
ever, that because of the finite-size effect, 〈y〉/W cannot reach
the saturated value 〈y〉/W = ±2 [see Fig. 3(b)]. Interestingly,
we find that it is not necessary to reverse the direction of the
exchange field in order to flip the current chirality in this
case. Therefore the graphene can be brought to either the
paramagnetic phase or the diamagnetic phase by adjusting
the magnitude of the exchange field.

Very recently, Tse et al.47 also proposed that the Hall
conductance can be quantized as σxy = 4e2/h, albeit , in
bilayer graphene with the Rahsba coupling under the influence
of an external gate voltage. In the present work, in contrast,
we show that in single-layer grapnene, the quantized Hall
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conductance can be σxy = 4e2/h when the Haldane orbital
effect is considered. Furthermore, we find that the change in
the quantized Hall conductance can be achieved by varying
the exchange field instead.

Equations (14), (15), and (16) indicate that even when
both α and β have very small but nonzero values, the bulk
gap can also close twice at two different magnitudes of the
exchange field. However, if they are order of 0.01t , the width
showing Chern number 4 would be 0.0003t and the energy
gap is about 0.0001t , which is very small in comparison with
room temperature (0.025 eV ∼ 0.011t). On the other hand,
if both the Rashba and Haldane orbital couplings can achieve
0.1t , the energy gap would be of the order 0.01t as shown in
Fig. 4(a), which is experimentally detectable. Hopefully, our
interesting prediction would stimulate measurements of the
Chern number in such spin-orbit coupled system in the near
future.

VI. CONCLUSIONS

In summary, we find that the edge current chirality in a
graphene ribbon can be flipped by varying the exchange field.
The resultant phase transition of the current chirality is caused
by the bulk gap-closing phenomena; that is, the phase transition
is due to the topological effect of the bulk band structure
of graphene. We show that the paramagnetic response in the
Rashba system can exhibit ether the chiral or antichiral state,
and thus the Hall conductance is quantized as σxy = ±2e2/h.
We find that the Kane-Mele system has the pseudo-QSH state.
For the Kane-Mele-Rashba system, the transition between the
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FIG. 5. (Color online) Calculated spin polarizations of edge
states B and D in a graphene ribbon with (a) the Kane-Mele
Hamiltonian (λ = 0.06t) and (b) the Kane-Mele-Rashba Hamiltonian
(λ = 0.06t,α = 0.05t).

chiral (or antichiral) current state and the pseudo-QSH state
can be achieved by varying the strength of the exchange field.

Unlike the Rashba system, the Haldane system exhibits a
diamagnetic response to the exchange field, and the quantized
Hall conductivity is σxy = ±2e2/h. However, the competi-
tion between α and β leads to a phase transition between
the diamagnetic and paramagnetic responses, and hence an
intermediate phase. Interestingly, this intermediate phase has
two new edge modes and is thus a new quantum anomalous
Hall state with high Chern number ν = ±4. The corresponding
quantized Hall conductance is σxy = ±4e2/h in the graphene
ribbon in the absence of Landau levels.
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APPENDIX A: PSEUDOQUANTUM SPIN HALL STATE

In this appendix, we numerically calculate the spin polar-
izations of edge states B and D in graphene ribbon with the
Kane-Mele and Rashba couplings. Edge states B and D have
different current chiralities. If they are located at the same edge,
the corresponding Chern number of the bulk system is zero
(ν = 0). We call the state with ν = 0 as the pseudo-QSH state
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FIG. 6. (Color online) The Kane-Mele-Rashba system λ =
0.006t and α = 0.005t . The critical field is γ c = 0.0293t . (a) The
expectation value 〈y〉 and (b) the variation of Chern number.
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in the sense that the spin polarization direction of B is always
opposite to that of D. In the Kane-Mele and Kane-Mele Rashba
systems, we will show that in zero-Chern-number regime both
systems stay in the pseudo-QSH state.

The degree of spin polarization Ps of each edge state is
defined as Ps = P+ − P−, where P+ (P−) is the sum of all
spin-up (spin-down) probability through the graphene ribbon
in y direction. We also have P+ + P− = 1 because the wave
function is normalized.

In the Kane-Mele system, a small applied exchange field
would open the band gap and the Chern number can be
obtained. In this case, the Chern number is always zero and
no phase transition occurs. As shown in Fig. 5(a), the degree
of spin polarization of state B (PsB ) is the same as that of D
(PsD) when the system is in zero-Chern-number regime. We
also have PsB = −PsD = 1. Namely, spin polarization of B
is opposite to that of D in direction and the degree of spin
polarization is 100% in both edge states.

In the Kane-Mele-Rashba system, the phase transition
between ν = 0 and ν = 2 occurs at a nonzero exchange field.
As shown in Fig. 5(b), in the zero-Chern-number regime, even
though we have |PsB | �= |PsD|, the spin polarization of state B
is still opposite to that of D in direction.

APPENDIX B: CHERN NUMBER FOR SMALL COUPLINGS
λ AND α

In this appendix, we calculate the Chern number and
expectation value of 〈y〉 in the Kane-Mele-Rashba system
by using λ = 0.006t and α = 0.005t , which are ten times
smaller than the corresponding values in Sec. IV. We find
that the Chern number still shows jumps from 0 to Ó2 as the
absolute value of γ /t increases [see Fig. 6(b)]. The critical
field γ c = 0.0293t can be obtained by using Eq. (11).

In this case, nonetheless, the energy gap becomes smaller
than the case described in Sec. IV, being 0.012t , which is
still close to the room temperature. As a result, the predicted
quantum phase transitions could perhaps be observed only at
low temperatures. We also find that in this case, the edge states
become rather delocalized and extend significantly into the
central region of the ribbon (finite-size effect), such that the
expectation value 〈y〉 is rather small [see Fig. 6]. The smallness
of the calculated 〈y〉 could be partially attributed to the finite
size (only 101 C atoms) of the ribbon width W used in the
present calculation. Nonetheless, this suggests that in order to
observe edge states experimentally, λ and α values should be
larger than 0.005t.
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