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摘 要
在這篇論文中，我們探討以下格子動態系統之行進波解的存在性。

duj
dt

= (umj+1 + umj−1 − 2umj ) + uj(1− uj − kvj),

dvj
dt

= d(vnj+1 + vnj−1 − 2vnj ) + rvj(1− vj − huj),

其中 t ∈ R, j ∈ Z, d > 0, h > 0, r > 0, k > 0, 且m,n ≥ 1. 此系統是洛特卡-沃特
競爭模型的離散化系統。洛特卡-沃特競爭模型可用來描述兩個隨機分布且相互
競爭的物種之數量變化的情況。然而當兩個競爭的物種呈群聚分布時，則格子
動態系統模型會比洛特卡-沃特競爭模型更適合。我們證明當0 < k < 1 < h 或
0 < h < 1 < k ，則存在一個正的常數cmin使得格子動態系統中有行進波解若且
唯若c ≥ cmin。
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Abstract
In this thesis, we investigate the existence of traveling wave solutions of the

following lattice dynamical system (LDS):
duj
dt

= (umj+1 + umj−1 − 2umj ) + uj(1− uj − kvj),

dvj
dt

= d(vnj+1 + vnj−1 − 2vnj ) + rvj(1− vj − huj),

where t ∈ R, j ∈ Z, d > 0, h > 0, r > 0, k > 0, and m,n ≥ 1. This system
is the spatial discretization of Lotka-Volterra competition system. It is known
that Lotka-Volterra competition system can be used to describe the population
dynamics of two competitive species whose individuals are randomly dispersed.
However, if individuals of the species are clumped together in groups, then the
LDS model is more suitable than the Lotka-Volterra competition model. We show
that if 0 < k < 1 < h or 0 < h < 1 < k then there exists a positive constant cmin
such that the LDS admits a traveling wave solution if and only if c ≥ cmin.
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Chapter 1

Introduction

We consider the lattice dynamical system (LDS):
duj
dt

= (umj+1 + umj−1 − 2umj ) + uj(1− uj − kvj),

dvj
dt

= d(vnj+1 + vnj−1 − 2vnj ) + rvj(1− vj − huj),
(1.1)

where t ∈ R, j ∈ Z, d > 0, h > 0, r > 0, k > 0, and m,n ≥ 1. The system
arises in the study of the competition between two species with migration when
the habitat is of one-dimensional and divided into regions. Here uj(t) and vj(t)
stand for the populations at time t and regions j of two species u, v, respectively.
With a certain normalization, we assume that the birth rates of species u, v are
given by 1, r, the carrying capacities are equal to 1, and the migration coefficients
of species u, v are given by 1, d. Here all constants are positive. The constants
h, k are inter- specific competition coefficients.

Note that the system (1.1) is a spatial discretization of the following PDE
model: {

ut = (um)xx + u(1− u− kv),
vt = d(vn)xx + rv(1− v − hu),

(1.2)

which is called Lotka-Volterra competition system. Here u = u(x, t) and v =
v(x, t) represent the population densities of two species at position x and time t.

In the field of population biology, there are three distribution types of species:
random, uniform and aggregated dispersion. The PDE system (1.2) can be used
to describe the phenomenon of two competition species of random dispersion. For
the aggregated dispersion, the LDS model (1.1) is more suitable than the PDE
model (1.2).

From the biological point of view, the superior species shall invade the inferior
one so that the inferior species will be extinct. To describe such an invading
phenomenon, the traveling fronts play an important role. We remark that the
existence of traveling waves of the PDE model (1.2) has been investigated by

1
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several researchers; see, for example, [1], [2],[3],[4], and [5]. For the LDS (1.1), the
existence of traveling waves for the case m = n = 1 was studied by [6]. Hence, in
this thesis, we turn to consider the more general case that m,n ≥ 1.

Now we consider the corresponding kinetic system of system (1.2) which is the
system (1.2) without diffusion and is given by the following ODE system

du

dt
= u(1− u− kv),

dv

dt
= rv(1− v − hu).

(1.3)

Obviously, there are three trivial equilibrium points: (0, 0), (0, 1), and (1, 0).
When 0 < h, k < 1 or h, k > 1, we have fourth equilibrium point

e4 := (
1− k

1− hk
,

1− h
1− hk

).

Given initial condition, the long time behavior of the solution of (1.3) can be
classified as follows:

(A) If 0 < k < 1 < h, then limt→∞(u, v)(t) = (1, 0) (the species u will win).
(B) If 0 < h < 1 < k, then limt→∞(u, v)(t) = (0, 1) (the species v will win).
(C) If h, k > 1, then limt→∞(u, v)(t) = (1, 0) or (0, 1) (whether u or v will win

depends on initial condition).
(D) If 0 < h, k < 1, then limt→∞(u, v)(t) = e4 (u and v will coexist).
In this thesis, we focus on the cases (A) and (B) for the LDS (1.1). In fact, by

exchanging the roles of u and v, we know that (A) is equivalent to (B). Without
loss of generality, we only consider (A). Hence in the remaining of this thesis we
always assume that 0 < k < 1 < h.

By a traveling wave solution of equation (1.1), we mean a solution of (1.1) of
the form

(uj(t), vj(t)) = (U(ξ), V (ξ)), ξ = j + ct,

such that (U, V )(−∞) = (0, 1) and (U, V )(∞) = (1, 0). Here the wave speed c is
a constant to be determined and the wave profile (U, V ) ∈ C1(R) × C1(R) is a
pair of nonnegative functions. Upon substituting the ansatz on (U, V ) into (1.1),
we are led to the governing system for (U, V ) as follows:

cU ′ = Dm
2 [U ] + U(1− U − kV ),

cV ′ = dDn
2 [V ] + rV (1− V − hU),

(U, V )(−∞) = (0, 1), (U, V )(∞) = (1, 0),
0 ≤ U, V ≤ 1,

on R. (1.4)

Here the prime indicates differentiation with respect to ξ and Dα
2 [f ](ξ) := fα(ξ+

1) + fα(ξ − 1)− 2fα(ξ). Hence to investigate the existence of traveling waves of
system (1.1) is equivalent to find (c, U, V ) satisfying (1.4).

Our main result is stated in the following theorem.

2
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Theorem 1.1. If 0 < k < 1 < h, then there exists a positive constant cmin such
that the system (1.4) admits a solution (c, U, V ) satisfying U ′ > 0 and V ′ < 0 on
R if and only if c ≥ cmin.

We remark that the proof of Theorem 1.1 is obtained by following the argu-
ments of [6].

3
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Chapter 2

Basic Properties and The
Monotone Operators

For simplicity of mathematical analysis, we let W = 1 − V . Then the system
(1.4) can be written in the following form

cU ′ = Dm
2 [U ] + U [1− U − k(1−W )] on R, (2.1a)

cW ′ = dD̃n
2 [W ] + r(1−W )(hU −W ) on R, (2.1b)

(U,W )(−∞) = (0, 0), (U,W )(∞) = (1, 1), (2.1c)

0 ≤ U,W ≤ 1, (2.1d)

where m,n ≥ 1, 0 < k < 1 < h, and r, d > 0 are given, and

D̃n
2 [W ](·) := −Dn

2 [1−W ](·) = 2[1−W (·)]n − [1−W (·+ 1)]n − [1−W (· − 1)]n.

In addition, Theorem 1.1 can be restated in the following theorem.

Theorem 2.1. If 0 < k < 1 < h, then there exists a positive constant cmin such
that the equation (2.1) admits a solution (c, U,W ) satisfying U ′ > 0 and W ′ > 0
on R if and only if c ≥ cmin.

2.1 The Property of Traveling Wave Solution

To show Theorem 2.1, we first establish some basic properties for solutions of
(2.1).

Lemma 2.2. If (c, U,W ) is a solution of (2.1), then 0 < U,W < 1 in R and
c > 0.

Proof. First, we show that U > 0 and W < 1 in R. For contradiction, we
assume that there exists ξ0 such that U(ξ0) = 0. Since U ≥ 0, it following that

4
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U ′(ξ0) = 0. Together with (2.1a), we get Um(ξ0 + 1) = Um(ξ0 − 1) = 0. Hence,
U(ξ0 + 1) = U(ξ0 − 1) = 0. Arguing as above, we can further have U(ξ0 + n) = 0
for all n ∈ N, which contradicts the fact that U(∞) = 1. Hence U > 0 in R. By
a similar argument, we also find that W < 1 in R.

Next, we show that U < 1 and W > 0 in R. For contradiction, we assume
that there exists ξ1 such that U(ξ1) = 1. Since U ≤ 1, it implies that U ′(ξ1) = 0.
Together with (2.1a), we obtain Um(ξ1 + 1) + Um(ξ1 − 1) = 2 + k(1 −W ) > 2,
which contradicts the fact U ≤ 1. Hence U < 1 in R. By a similar argument, we
also find that W > 0 in R.

Finally, we show that c > 0. To this end, we need to claim that the functions

R(ξ) :=
∫ ξ
−∞ U(s)ds and Rm(ξ) :=

∫ ξ
−∞ U

m(s)ds are well-defined. Recall that
(U,W )(−∞) = (0, 0) and 0 < k < 1. It follows that there exists N � 0 such that

1− U − k(1−W ) >
1− k

2
> 0 (2.2)

in (−∞,−N). Integrating the equation (2.1a) from −∞ to ξ and using the fact
that U(−∞) = 0, we get that

cU(ξ) =

∫ ξ+1

ξ

Um(s)ds−
∫ ξ

ξ−1

Um(s)ds+

∫ ξ

−∞
U [1− U − k(1−W )](s)ds

>

∫ ξ+1

ξ

Um(s)ds−
∫ ξ

ξ−1

Um(s)ds+
1− k

2

∫ ξ

−∞
U(s)ds, (2.3)

for all ξ < −N . Here we have used (2.2). Since 0 < U < 1, we can easily deduce
from (2.3) that

|c|+ 1 > cU(ξ)−
∫ ξ+1

ξ

Um(s)ds+

∫ ξ

ξ−1

Um(s)ds >
1− k

2

∫ ξ

−∞
U(s)ds.

This implies the function R(ξ) is well-defined. Together with the fact that 0 <
Um(ξ) ≤ U(ξ), we infer that Rm(ξ) is also well-defined. Obviously, it is positive
and increasing. Integrating (2.3) from −∞ to x, we deduce that

cR(x) =

∫ x+1

x

Rm(ξ)dξ −
∫ x

x−1

Rm(ξ)dξ +

∫ x

−∞

∫ ξ

−∞
U [1− U − k(1−W )](s)dsdξ

≥
∫ x+1

x

Rm(ξ)dξ −
∫ x

x−1

Rm(ξ)dξ +
1− k

2

∫ x

−∞
R(ξ)dξ (by (2.2))

≥ 1− k
2

∫ x

−∞
R(ξ)dξ (since Rm(ξ) is increasing)

> 0, (since R > 0 and k < 1) (2.4)

for all x < −N . Since R > 0, (2.4) implies that c > 0. This completes the proof
of this lemma.

5
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2.2 The Monotone Operators

Next, we will introduce some monotone operators. For this, we choose a pa-
rameter µ large enough such that

µ ≥ µ0 :=
1

c
·max{2m+ 1 + k, 2nd+ r(1 + h)}

and we define the operators H1 and H2 as follows:

H1(U,W ) := µU +
1

c
Dm

2 [U ] +
1

c
U [1− U − k(1−W )],

H2(U,W ) := µW +
d

c
D̃n

2 [W ] +
r

c
(1−W )(hU −W ).

Using H1(U,W ) and H2(U,W ), we can rewrite (2.1a)-(2.1b) as

U ′ = H1(U,W )− µU and W ′ = H2(U,W )− µW.

Then, multiplying the above two equations by integrating factor eµξ, and then
integrating the resulting equations from −∞ to ξ, we find that

U(ξ) = T1(U,W )(ξ) := e−µξ
∫ ξ

−∞
eµsH1(U,W )(s)ds,

W (ξ) = T2(U,W )(ξ) := e−µξ
∫ ξ

−∞
eµsH2(U,W )(s)ds.

Lemma 2.3. For i = 1, 2, the operators Hi and Ti satisfy the monotonic property
in the following sense:

Hi(U1,W1)(·) ≤ Hi(U2,W2)(·) and Ti(U1,W1)(·) ≤ Ti(U2,W2)(·) in R,

provided that

0 ≤ U1(·) ≤ U2(·) ≤ 1 and 0 ≤ W1(·) ≤ W2(·) ≤ 1 in R.

Proof. Suppose that 0 ≤ U1(·) ≤ U2(·) ≤ 1 and 0 ≤ W1(·) ≤ W2(·) ≤ 1 in R.
Then, by simple computations, we get that

c[H1(U2,W2)(ξ)−H1(U1,W1)(ξ)]

= [cµ+ (1− k)− (U2 + U1)(ξ)](U2 − U1)(ξ)

−2(Um
2 (ξ)− Um

1 (ξ)) + (Um
2 − Um

1 )(ξ + 1)

+(Um
2 − Um

1 )(ξ − 1) + k(U2W2 − U1W1)(ξ) ( by definition of H1)

≥ [cµ− 2m− 2 + (1− k)](U2 − U1)(ξ)

( by 0 ≤ U1 ≤ U2 ≤ 1 and 0 ≤ W1 ≤ W2 ≤ 1)

≥ 0 ( by µ ≥ (2m+ 1 + k)/c and U1 ≤ U2) (2.5)

6
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and

c[H2(U2,W2)(ξ)−H2(U1,W1)(ξ)]

= [cµ− r + r(W2 +W1)(ξ)](W2 −W1)(ξ)

+2d[(1−W2(ξ))n − (1−W1(ξ))n]

−d[(1−W2(ξ + 1))n − (1−W1(ξ + 1))n]

−d[(1−W2(ξ − 1))n − (1−W1(ξ − 1))n]

+rh(U2 − U1)(ξ)− rh(U2W2 − U1W1)(ξ) ( by definition of H2)

≥ [cµ− 2nd− r(1 + h)](W2 −W1)(ξ)

( by 0 ≤ U1 ≤ U2 ≤ 1 and 0 ≤ W1 ≤ W2 ≤ 1)

≥ 0. ( by µ ≥ [(2nd+ r(1 + h))]/c and W1 ≤ W2)

Hence,

H1(U1,W1)(·) ≤ H1(U2,W2)(·) and H2(U1,W1)(·) ≤ H2(U2,W2)(·) in R.

This, together with the definitions of T1 and T2, implies that

T1(U1,W1)(·) ≤ T1(U2,W2)(·) and T2(U1,W1)(·) ≤ T2(U2,W2)(·) in R.

Hence we complete the proof of this lemma.

7
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Chapter 3

A Truncation Problem

In this chapter, we consider the following truncation problem:

cU ′ = Dm
2 [U ] + U [1− U − k(1−W )],∀ξ ∈ [−γ, 0], (3.1a)

cW ′ = dD̃n
2 [W ] + r(1−W )(hU −W ), ∀ξ ∈ [−γ, 0], (3.1b)

together with the boundary condition

(U,W )(ξ) = (ε, ε), ∀ξ ∈ (−∞,−γ], (3.2)

(U,W )(ξ) = (1, 1),∀ξ ∈ (0,∞), (3.3)

where ε ∈ [0, 1). Here

U ′(−γ) := lim
h↘0

(U(−γ + h)− U(−γ))/h, U ′(0) := lim
h↘0

(U(0)− U(−h))/h,

W ′(−γ) := lim
h↘0

(W (−γ + h)−W (−γ))/h, W ′(0) := lim
h↘0

(W (0)−W (−h))/h.

We will use the monotone iteration method to investigate the existence of
solutions of (3.1)-(3.3). To begin with, we rewrite (3.1) as follows:

U ′ = H1(U,W )− µU and W ′ = H2(U,W )− µW.

Then, multiplying the above the two equations by integrating factor eµξ, and then
integrating the resulting equations from −γ to ξ and using (U,W )(−γ) = (ε, ε),
we find that

U(ξ) = T n1 (U,W )(ξ) and W (ξ) = T n2 (U,W )(ξ), ∀ξ ∈ [−γ, 0], (3.4)

where

T n1 (U,W )(ξ) = e−µξ
(∫ −γ
−∞

εµeµsds+

∫ ξ

−γ
eµsH1(U,W )(s)ds

)
,

T n2 (U,W )(ξ) = e−µξ
(∫ −γ
−∞

εµeµsds+

∫ ξ

−γ
eµsH2(U,W )(s)ds

)
.

8
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Hence one can easily verify that a pair of functions (U,W ) with (U,W )(−γ) =
(ε, ε) satisfies (3.1) iff it satisfies the integral equations (3.4). Next, using the
monotonic property, we have the fact that

0 ≤ U1(·) ≤ U2(·) ≤ 1 and 0 ≤ W1(·) ≤ W2(·) ≤ 1 in R

imply that

T n1 (U1,W1)(·) ≤ T n1 (U2,W2)(·) and T n2 (U1,W1)(·) ≤ T n2 (U2,W2)(·) on [−γ, 0].

With this property, we have the following lemma.

Lemma 3.1. If
ε ≤ U(·) ≤ 1, and ε ≤ W (·) ≤ 1 in R,

then
ε ≤ T n1 (U,W )(·) ≤ 1 and ε ≤ T n2 (U,W )(·) ≤ 1 in [−γ, 0].

Proof. By the monotonic property, we get

µε+
ε(1− k)(1− ε)

c
= H1(ε, ε) ≤ H1(U,W ) ≤ H1(1, 1) = µ (3.5)

and

µε+
rε(h− 1)(1− ε)

c
= H2(ε, ε) ≤ H2(U,W ) ≤ H2(1, 1) = µ (3.6)

in R. Together with definitions of T n1 (U,W ) and T n2 (U,W ), we deduce that for
ξ ∈ [−γ, 0],

T n1 (U,W )(ξ) ≤ e−µξ
(∫ −γ
−∞

εµeµs +

∫ ξ

−γ
µeµsds

)
= 1− (1− ε)e−µ(γ+ξ) ≤ 1

and

T n1 (U,W )(ξ) ≥ ε+
ε(1− k)(1− ε)(1− e−µ(γ+ξ))

cµ
≥ ε.

Hence we have ε ≤ T n1 (U,W )(ξ) ≤ 1 for all ξ ∈ [−γ, 0]. By a similar argument,
we also have ε ≤ T n2 (U,W )(ξ) ≤ 1 for all ξ ∈ [−γ, 0].

Now we are in a position to establish the existence of solutions of (3.1)-(3.3).

Lemma 3.2. For all n ∈ N and ε ∈ [0, 1), there exists a unique pair of functions
(Un,ε,W n,ε): R 7→ [ε, 1] × [ε, 1] satisfying (3.1)-(3.3). Moreover, (Un,ε,W n,ε)
possesses the following properties:

(1) Un,ε,W n,ε ∈ C1((−γ, 0)) ∩ C((−∞, 0]);
(2) (Un,ε)′ > 0 and (W n,ε)′ > 0 on [−γ, 0];
(3) d

dε
Un,ε(ξ) ≥ e−µ(ξ+γ) and d

dε
W n,ε(ξ) ≥ e−µ(ξ+γ), ∀ξ ∈ [−γ, 0].

9
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Proof. Let n ∈ N and ε ∈ [0, 1) be given. We divide the proof into several steps.

Step 1: We construct a pair of functions (U∗,W∗): R 7→ [ε, 1]× [ε, 1] satisfying
(3.1)-(3.3) and show that it satisfies property (1).

Define (Un,ε
0 ,W n,ε

0 ) by{
(Un,ε

0 ,W n,ε
0 )(ξ) = (1, 1) if ξ ∈ [−γ,∞),

(Un,ε
0 ,W n,ε

0 )(ξ) = (ε, ε) if ξ ∈ (−∞,−γ).

For each j ∈ N, we also define (Un,ε
j ,W n,ε

j ) as follows:

(Un,ε
j ,W n,ε

j )(ξ) =
(
T n1 (Un,ε

j−1,W
n,ε
j−1), T n2 (Un,ε

j−1,W
n,ε
j−1)

)
(ξ) if ξ ∈ [−γ, 0],

(Un,ε
j ,W n,ε

j )(ξ) = (1, 1) if ξ ∈ (0,∞),

(Un,ε
j ,W n,ε

j )(ξ) = (ε, ε) if ξ ∈ (−∞,−γ].

Note that
Un,ε

1 = T n1 (1, 1) ≤ 1 = Un,ε
0 on [−γ, 0],

W n,ε
1 = T n2 (1, 1) ≤ 1 = W n,ε

0 on [−γ, 0].

Together with the monotonic property and Lemma 3.1, one can easily show that
for all j ∈ N,

ε ≤ T n1 (Un,ε
j ,W n,ε

j ) ≤ T n1 (Un,ε
j−1,W

n,ε
j−1) ≤ 1,

ε ≤ T n2 (Un,ε
j ,W n,ε

j ) ≤ T n2 (Un,ε
j−1,W

n,ε
j−1) ≤ 1

on [−γ, 0]. This, together with definition of (Un,ε
j ,W n,ε

j ), implies that the functions
Un,ε
j and W n,ε

j are non-increasing in j and ε ≤ Un,ε
j ,W n,ε

j ≤ 1 for all j ∈ N.
Therefore,

(U∗,W∗)(ξ) := ( lim
j→∞

Un,ε
j , lim

j→∞
W n,ε
j )(ξ), ∀ξ ∈ R

exists. Clearly, (U∗,W∗)(ξ) = (1, 1) for all ξ > 0 and (U∗,W∗)(ξ) = (ε, ε) for all
ξ ≤ −γ. Moreover, applying the Lebesgue Dominated Convergence Theorem, we
get

U∗(ξ) = T n1 (U∗,W∗)(ξ) and W∗(ξ) = T n2 (U∗,W∗)(ξ), ∀ξ ∈ [−γ, 0].

Then it is easy to see that U∗,W∗ ∈ C1((−γ, 0)) ∩ C((−∞, 0]).

Step 2: We prove the uniqueness.
For this, we let (U∗,W ∗) : R 7→ [ε, 1]× [ε, 1] be another solution of (3.1)-(3.3),

then U∗,W ∗ ∈ C1((−γ.0)) ∩ C((−∞, 0]). It suffices to claim that U∗ ≡ U∗ and
W ∗ ≡ W∗ on [−γ, 0]. Since 0 < ε ≤ U∗ ≤ 1 = U0 and 0 < ε ≤ W ∗ ≤ 1 = W0 on
[−γ, 0], the monotonic property gives that

U∗ = T n1 (U∗,W ∗) ≤ T n1 (U0,W0) = U1 on [−γ, 0],

10
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W ∗ = T n2 (U∗,W ∗) ≤ T n2 (U0,W0) = W1 on [−γ, 0].

Then, using the iteration, we find that U∗ ≤ U∗ and W ∗ ≤ W∗.
To prove the reverse inequality, we define

η̄ := inf{η > 0|U∗(ξ) ≥ U∗(ξ − y),W ∗(ξ) ≥ W∗(ξ − y),∀ξ ∈ [−γ + y, 0], y ≥ η}.

Then it is easy to see that η̄ is well-defined and 0 ≤ η̄ ≤ γ since U∗(0) ≥ ε =
U∗(−γ) and W ∗(0) ≥ ε = W∗(−γ). Indeed, η̄ = 0. To see this, we first claim that

H1(U∗,W ∗)(ξ) ≥ H1(U∗,W∗)(ξ − η̄) (3.7)

and
H2(U∗,W ∗)(ξ) ≥ H2(U∗,W∗)(ξ − η̄) (3.8)

for all ξ ∈ R. For this, we note that the continuity implies that

U∗(ξ) ≥ U∗(ξ − η̄) and W ∗(ξ) ≥ W∗(ξ − η̄),∀ξ ∈ [−γ + η̄, 0].

Together with the boundary condition, we have

U∗(ξ) ≥ U∗(ξ − η̄) and W ∗(ξ) ≥ W∗(ξ − η̄), ∀ξ ∈ R.

Hence, using the monotonic property, we get (3.7) and (3.8). Next, using (3.7),
we deduce that

U∗(ξ)− U∗(ξ − η̄)

= T n1 (U∗,W ∗)(ξ)− T n1 (U∗,W∗)(ξ − η̄)

=

∫ 0

−γ−ξ
eµsH1(U∗,W ∗)(s+ ξ)ds−

∫ 0

−γ−ξ+η̄
eµsH1(U∗,W∗)(s+ ξ)ds

+

∫ −γ−ξ
−∞

εµeµsds−
∫ −γ−ξ+η̄
−∞

εµeµsds

≥
∫ −γ−ξ+η̄
−γ−ξ

eµs[H1(U∗,W ∗)(s+ ξ)− µε]ds

≥ ε(1− k)(1− ε)
c

∫ −γ−ξ+η̄
−γ−ξ

eµsds, ∀ξ ∈ [−γ + η̄, 0]. (3.9)

Similarly, using (3.8), we also get

W ∗(ξ)−W∗(ξ − η̄) ≥ rε(h− 1)(1− ε)
c

∫ −γ−ξ+η̄
−γ−ξ

eµsds, ∀ξ ∈ [−γ + η̄, 0]. (3.10)

Now we are ready to claim that η̄ = 0. For contradiction, we assume that η̄ > 0.
If ε > 0, then it follows from (3.9) and (3.10) that U∗(ξ) − U∗(ξ − η̄) > 0 and
W ∗(ξ)−W∗(ξ−η̄) > 0 for all ξ ∈ [−γ+η̄, 0]. By continuity, there exists 0 < δ � 1

11
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such that U∗(ξ) − U∗(ξ − (η̄ − δ)) > 0 and W ∗(ξ) −W∗(ξ − (η̄ − δ)) > 0 for all
ξ ∈ [−γ+ η̄− δ, 0]. This contradicts definition of η̄. If ε = 0, then (3.9) and (3.10)
imply that

U∗(ξ)− U∗(ξ − η̄) ≥
∫ −γ−ξ+η̄
−γ−ξ

eµsH1(U∗,W ∗)(s+ ξ)ds > 0,∀ξ ∈ [−γ + η̄, 0],

where we have used the property that H1(U∗,W ∗) ≥ H1(ε, ε) > 0. Similarly, we
also have W ∗(ξ)−W∗(ξ− η̄) > 0 for all ξ ∈ [−γ+ η̄, 0]. This contradicts definition
of η̄ again. Therefore, η̄ = 0, which implies that U∗ ≥ U∗ and W ∗ ≥ W∗. Hence
the uniqueness has been proven.

Step 3: We prove (U∗,W∗) satisfies property (2).
By the uniqueness and the fact that η̄ = 0, we deduce that U∗(ξ) ≥ U∗(ξ − s)

and W∗(ξ) ≥ W∗(ξ − s) for all s ≥ 0 and ξ ∈ R. This implies that (U∗)
′ ≥ 0 and

(W∗)
′ ≥ 0 for all ξ ∈ [−γ, 0]. By the monotonic property, we find

Hi(U∗,W∗)(s) ≤ Hi(U∗,W∗)(ξ), ∀s ≤ ξ, i = 1, 2. (3.11)

For i = 1, 2 and ξ ∈ [−γ, 0], differentiating T ni (U∗,W∗)(ξ), we get

T ni (U∗,W∗)
′(ξ)

= −µεe−µ(γ+ξ) +Hi(U∗,W∗)(ξ)− µ
∫ ξ

−γ
eµ(s−ξ)Hi(U∗,W∗)(s)ds

= −µεe−µ(γ+ξ) +Hi(U∗,W∗)(ξ)e
−µ(γ+ξ)

+µ

∫ ξ

−γ
eµ(s−ξ)Hi(U∗,W∗)(ξ)ds− µ

∫ ξ

−γ
eµ(s−ξ)Hi(U∗,W∗)(s)ds

≥ e−µ(γ+ξ)[Hi(U∗,W∗)(ξ)− µε] (by (3.11))

> 0. (by (3.5) and (3.6))

Since U ′∗(ξ) = T n1 (U∗,W∗)
′(ξ) and W ′

∗(ξ) = T n2 (U∗,W∗)
′(ξ), the above inequality

implies that (U∗,W∗) satisfies property (2).

Step 4: We prove that property (3) is satisfied.
Let 0 ≤ ε1 < ε2 ≤ 1. Then, by the monotonic property, we know that Un,ε2 ≥

Un,ε1 for all ξ ∈ [−γ.0]. From this, we get that for all ξ ∈ [−γ.0],

Un,ε2(ξ)− Un,ε1(ξ)

=

∫ ξ

−γ
eµ(s−ξ)[H1(Un,ε2 ,W n,ε2)(s)−H1(Un,ε1 ,W n,ε1)(s)]ds+ (ε2 − ε1)e−µ(γ+ξ)

≥ (ε2 − ε1)e−µ(γ+ξ),

which follows that
d

dε
Un,ε(ξ) ≥ e−µ(γ+ξ).

12



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

By a similar way, we also get

d

dε
W n,ε(ξ) ≥ e−µ(γ+ξ),∀ξ ∈ [−γ.0].

Hence (Un,ε,W n,ε) satisfies property (3). This completes the proof of this lemma.

13
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Chapter 4

Proof of Theorem 2.1

To prove the existence of the solution of (2.1), we need to use the super-solution.

4.1 Super-solution and Its Role

First, we give definition of super-solutions.

Definition 4.1. Given a constant c > 0. A continuous function (U+,W+) : R 7→
(0, 1]× (0, 1] is called a super-solution of (2.1), if W+ is a non-constant function,
U+(∞) = W+(∞) = 1, and both U+ and W+ are differentiable a.e in R such that{

c(U+)′ ≥ Dm
2 [U+] + U+[1− U+ − k(1−W+)]

c(W+)′ ≥ dD̃n
2 [W+] + r(1−W+)(hU+ −W+)

a.e in R. (4.1)

The following lemma gives us an information on the role of super-solution in
the existence of solutions of (2.1).

Lemma 4.2. If there exists a super-solution (U+,W+) satisfying U+ = W+ = 1
on [0,∞) for a given c > 0, then (2.1) admits a solution (c, U,W ) with U ′ > 0
and W ′ > 0 in R.

To show Lemma 4.2, we need Helly’s Lemma. For readers’ convenience, we
state it in the following.

Lemma 4.3. (Helly’s Lemma) Let {Un}n∈N be a sequence of uniformly bounded
and non-decreasing functions in R. Then there exists a subsequence {Uni

} of {Un}
and a non-decreasing function U such that Uni

→ U pointwise in R as i→∞.

In the sequel, we say that a vector-valued function (U,W ) is non-decreasing in
R if both U and W are non-decreasing in R.

proof of Lemma 4.2: Since W+ is a non-constant function with 0 < W+ ≤ 1
on R and W+ = 1 on [0,∞), there exists γ0 > 0 such that W+(−γ0) = ε0 for

14
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some ε0 ∈ (0, 1). Then, for each n > 2γ0, we claim that there exists only one
ε = εn ∈ (0, 1) such that W n,εn(−n

2
) = ε0.

To this end, we need to show that W n,0(−n
2
) < ε0 for any given n > 2γ0. For

this, we define

η̄ := inf{η > 0|U+(ξ) ≥ Un,0(ξ − η),W+(ξ) ≥ W n,0(ξ − η), ∀ξ ∈ (−∞, 0]}.

Then η̄ is well-defined and 0 ≤ η̄ ≤ γ since U+(ξ) ≥ 0 = Un,0(ξ − γ) and
W+(ξ) ≥ 0 = W n,0(ξ−γ) for all ξ ∈ (−∞, 0]. By continuity, U+(ξ) ≥ Un,0(ξ− η̄)
and W+(ξ) ≥ W n,0(ξ− η̄) for all ξ ∈ (−∞, 0], which, together with the monotonic
property of H1 and H2, implies that

H1(U+,W+)(ξ) ≥ H1(Un,0,W n,0)(ξ − η̄) (4.2)

and
H2(U+,W+)(ξ) ≥ H2(Un,0,W n,0)(ξ − η̄) (4.3)

for all ξ ∈ (−∞, 0]. Then, using (4.4), we deduce that

W+(ξ)−W n,0(ξ − η̄)

≥ T2(U+,W+)(ξ)− T n2 (Un,0,W n,0)(ξ − η̄)

=

∫ 0

−∞
eµsH2(U+,W+)(s+ ξ)ds−

∫ 0

−γ−ξ+η̄
eµsH2(Un,0,W n,0)(s+ ξ − η̄)ds

≥
∫ −γ−ξ+η̄
−∞

eµsH2(U+,W+)(s+ ξ)ds > 0,

for all ξ ∈ [−γ + η̄, 0]. Similarly, using using (4.3), we also have U+(ξ)−Un,0(ξ−
η̄) > 0 for all ξ ∈ [−γ + η̄, 0]. By a similar proof of lemma 3.2, we obtain η̄ = 0,
which implies that W+(ξ) ≥ W n,0(ξ) on (−∞, 0]. Together with property (2) of
Lemma 3.2, we get

W n,0
(
−n

2

)
< W n,0(−γ0) ≤ W+(−γ0) = ε0.

On the other hand, from definition of W n,ε and its increasing property, we see that
W n,ε(−n

2
) → 1 as ε → 1. Since d

dε
W n,ε(ξ) > 0 for all ξ ∈ [−γ, 0], we conclude

that there exists an unique ε = εn ∈ (0, ε0] ⊂ (0, 1) such that W n,εn(−n
2
) = ε0.

Now, we are in a position to show the existence of a solution (c, U,W ). To begin
with, we consider the sequence of functions {Un,εn(·− n

2
),W n,εn(·− n

2
)}n>2γ0 in R.

By Helly’s Lemma, there exists a subsequence {Uni,εni (·−ni/2),W ni,εni (·−ni/2)}
and a non-decreasing function (U,W ) : R 7→ [0, 1]× [0, 1] such that

(Uni,εni (ξ − ni/2),W ni,εni (ξ − ni/2))→ (U,W )(ξ),∀ξ ∈ R,

as i → ∞. By LDCT, U(ξ) = T1(U,W )(ξ) and W (ξ) = T2(U,W )(ξ) for all
ξ ∈ R. Moreover, it is easy to verify that W (0) = limi→∞W

ni,εni (−ni/2) = ε0,
0 ≤ U,W ≤ 1 in R, and U,W ∈ C1(R).

15
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Next, we prove that (U,W ) satisfies the boundary condition. Since U and W
are non-decreasing in R and 0 ≤ U,W ≤ 1 in R, both U(±∞) and W (±∞) exist.
By definition of U and W and L’Hospital’s rule, we have

lim
ξ→±∞

U(ξ) = lim
ξ→±∞

T1(U,W )(ξ)

= lim
ξ→±∞

{
U(ξ) +

1

cµ
[Dm

2 [U ](ξ) + U(ξ)(1− U(ξ)− k(1−W (ξ)))]

}
and

lim
ξ→±∞

W (ξ) = lim
ξ→±∞

T2(U,W )(ξ)

= lim
ξ→±∞

{
W (ξ) +

1

cµ
[dD̃n

2 [W ](ξ) + r(1−W (ξ))(hU(ξ)−W (ξ))]

}
.

This implies that{
U(±∞)(1− U(±∞)− k(1−W (±∞))) = 0,
(1−W (±∞))(hU(±∞)−W (±∞)) = 0.

(4.4)

Hence U(±∞),W (±∞) ∈ {0, 1}. Since W is non-decreasing and W (0) = ε0 ∈
(0, 1), we have W (−∞) = 0 and W (∞) = 1. Moreover, using W (−∞) = 0, we
deduce from (4.4) that U(−∞) = 0. Note that U 6≡ 0 in R, since otherwise, by
integrating both sides of (2.1b) over R, we have 0 < c = −r

∫
RW (ξ)(1−W (ξ))dξ <

0, a contradiction. Using the fact that U(−∞) = 0, U is nondecreasing, and U 6≡ 0
in R, we obtain that U(∞) = 1.

Finally, differentiating as in lemma 3.2, we know that U ′ > 0, and W ′ > 0 in
R. The proof of lemma 4.2 is thus accomplished.

Indeed, the condition U+ = W+ = 1 on [0,∞) in Lemma 4.2 can be replaced
by the monotonic property. Specifically, we state it in the following lemma.

Lemma 4.4. If there exists a super-solution (U+,W+) of (2.1) with (U+)′ > 0,
(W+)′ > 0 for a given c > 0, then (2.1) admits a solution (c, U,W ) with U ′ > 0
and W ′ > 0 in R.

Proof. Let c > 0 be given. Suppose (U+,W+) is a super-solution of (2.1) with
(U+)′ > 0 and (W+)′ > 0. In the sequel, we will use Lemma 4.2 to get a solution
of (2.1). For each 0 < δ � 1, we define

(U+
δ (ξ),W+

δ (ξ)) := (min{1, (1 + δ)U+(ξ)},min{1, (1 + δ)W+(ξ)}), ∀ξ ∈ R,

then there exist M1 = M1(δ)� 1 and M2 = M2(δ)� 1 such that

U+
δ ≡ 1 on [M1,∞), U+

δ < 1 on (−∞,M1),

W+
δ ≡ 1 on [M2,∞),W+

δ < 1 on (−∞,M2).

16



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

Then we will claim (U+
δ ,W

+
δ ) is a super-solution of the problem Pδ:

cU ′ = (Dm
2 [U ])δ + fδ(U,W ),

cW ′ = d(D̃n
2 [W ])δ + gδ(U,W ),

(U,W )(−∞) = (0, 0), (U,W )(∞) = (1, 1),
0 ≤ U,W ≤ 1,

where

(Dm
2 [U ])δ =

Dm
2 [U ]

(1 + δ)m−1
,

(D̃n
2 [W ])δ = −D

n
2 [(1 + δ)n −W ]

(1 + δ)n−1
,

fδ(U,W ) = min

{
U

(
1− k − 1

1 + δ
(U − kW )

)
, U(1− U − k(1−W ))

}
,

gδ(U,W ) = min

{
r(hU −W )

(
1− 1

1 + δ
W

)
, r(hU −W )(1−W )

}
.

Without loss of generality, we assume that M1 ≤ M2. If M1 = M2, then it is
trivial. Now we turn to consider the case M1 < M2. It is clear that Pδ holds on
(−∞,M1) ∪ (M2,∞). Suppose that M1 < ξ < M2, then

U+
δ (ξ) = 1, (U+

δ )′(ξ) = 0, (4.5)

and
W+
δ (ξ) = (1 + δ)W+(ξ), (W+

δ )′(ξ) = (1 + δ)(W+)′(ξ). (4.6)

Note that W+
δ (ξ+ 1) ≤ (1 + δ)W+(ξ+ 1) and U+

δ (ξ) ≤ (1 + δ)U+(ξ). Using (4.5)
and the inequalities

(Dm
2 [U+

δ ])δ(ξ) = U+
δ (ξ − 1)m − 1 ≤ 0

and

fδ(U
+
δ ,W

+
δ )(ξ) ≤ U+

δ (ξ)[1− U+
δ (ξ)− k(1−W+

δ (ξ))] = −k(1−W+(ξ)) ≤ 0,

we deduce that

c(U+
δ )′(ξ) ≥ (Dm

2 [U+
δ ])δ(ξ) + fδ(U

+
δ ,W

+
δ )(ξ).

Using (4.6), we get

c(W+
δ )′(ξ) = (1 + δ)(W+)′(ξ)

≥ (1 + δ)[dD̃n
2 [W+](ξ) + r(hU+ −W+)(1−W+)(ξ)]

≥ d(D̃n
2 [W+

δ ])δ(ξ) + gδ(U
+
δ ,W

+
δ )(ξ).

17
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These imply that Pδ holds for M1 < ξ < M2. Therefore, (U+
δ ,W

+
δ ) is a super-

solution of the problem Pδ.

Next, we set Û+
δ (ξ) = U+

δ (ξ + M2) and Ŵ+
δ (ξ) = W+

δ (ξ + M2). Then Û+
δ =

Ŵ+
δ = 1 on [0,∞) and (Û+

δ , Ŵ
+
δ ) is a super-solution of Pδ. By lemma 4.2, we

obtain a solution (Uδ,Wδ) of Pδ with U ′δ > 0 and W ′
δ > 0 in R.

Now, let {(c, Uδi ,Wδi)} be a sequence of monotone increasing of Pδi such that
Wδi(0) = 1

2
for all i and δi → 0 as i→∞. By Lemma 4.3 ( Helly’s Lemma ), there

exists a subsequence {(c, Uδij ,Wδij)} and a monotone non-decreasing function
(U0,W0) such that (c, Uδij ,Wδij) → (c, U0,W0) pointwise in R as j → ∞. In

addition 0 ≤ U0,W0 ≤ 1 and W0(0) = 1
2
. Therefore, (c, U0,W0) satisfies (2.1)

such that U ′0 > 0 and W ′
0 > 0 in R (By Lemma 2.2). The proof of lemma 4.4 is

thus completed.

Finally, we construct a super-solution of (2.1) for c� 1.

Lemma 4.5. For sufficiently large c > 0, (U+,W+), where U+(ξ) = W+(ξ) =
min{1, eξ}, is a super-solution of (2.1).

Proof. By choosing

c ≥ c1 := max{(em + e−m − 2) + (1− k), d[(e− 1)n − (1− e−1)n] + r(h− 1)},

we will find that (U+,W+) is a super-solution of (2.1).

4.2 Proof of Theorem 2.1

Now we are in a position to prove Theorem 2.1.

Proof. By Lemma 4.2 and 4.5, (2.1) admits a solution (c, U,W ) with U ′ > 0 and
W ′ > 0 for all c ≥ c1. It follows that the constant

cmin := inf{c > 0|(2.1) has a solution (c, U,W ) with U ′ > 0 and W ′ > 0 in R}

is well-defined. Since a monotone front with speed c0 gives a super-solution of
(2.5) for all c > c0, Lemma 4.4 implies that (2.1) has a solution (c, U,W ) with
U ′ > 0 and W ′ > 0 in R for all c > cmin.

Now, we need to claim that (2.1) has a solution (c, U,W ) with U ′ > 0 and
W ′ > 0 in R for c = cmin. To this end, we let {ci, Ui,Wi} be a sequence of
solutions of (2.1) with c = ci such that Wi(0) = 1

2
, U ′i ,W

′
i > 0 in R for all i ∈ N,

and ci ↓ cmin as i → ∞. By the same proof of lemma 4.4, (2.1) has a solution
(c, U∗,W∗) with U ′∗ > 0 and W ′

∗ > 0 in R when c = cmin.
Finally, the constant cmin > 0 by Lemma 2.2. The proof is accomplished.
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