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Abstract

In this thesis, we investigate the existence of traveling wave solutions of the
following lattice dynamical system (LDS):

dU‘ m m m
= (Wi ity = 20 + (1= uy = k),

d_f = (U?+1 + o) — 21);7) + rvj(1 — v; — hu;),

wheret € R, j € Z,d >0, h >0, r >0, k >0, and m,n > 1. This system
is the spatial discretization of Lotka-Volterra competition system. It is known
that Lotka-Volterra competition system can be used to describe the population
dynamics of two competitive species whose individuals are randomly dispersed.
However, if individuals of the species are clumped together in groups, then the
LDS model is more suitable than the Lotka-Volterra competition model. We show
that if 0 <k <1< hor0< h <1<k then there exists a positive constant ¢,,;,
such that the LDS admits a traveling wave solution if and only if ¢ > ¢,-
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Chapter 1

Introduction

We consider the lattice dynamical system (LDS):

v (g +ujty = 2uf) + ui (1 — u; — kvy),
(1.1)

d_t' = d(vjy, + v}, — 2@?) + rvj(b—w; ~hu;),

wheret € R, j € Z,d >0, h >0, r >0, k >0, and m,n > 1. The system
arises in the study of the competition between two species with migration when
the habitat is of one-dimensional and divided into regions. Here w;(t) and v;(t)
stand for the populations at time ¢ and regions j of two species u, v, respectively.
With a certain normalization, we assume that the birth rates of species u, v are
given by 1, r, the carrying capacities are equal to 1, and the migration coefficients
of species u, v are given by 1, d. Here all constants are positive. The constants
h, k are inter- specific competition coefficients.

Note that the system (1.1) is a spatial discretization of the following PDE

model:
{ Up = (um)m+u(1—u—k‘v), (1 2)
V= d(V")ge + rv(1 — v — hu), '
which is called Lotka-Volterra competition system. Here u = wu(z,t) and v =
v(x,t) represent the population densities of two species at position = and time ¢.

In the field of population biology, there are three distribution types of species:
random, uniform and aggregated dispersion. The PDE system (1.2) can be used
to describe the phenomenon of two competition species of random dispersion. For
the aggregated dispersion, the LDS model (1.1) is more suitable than the PDE
model (1.2).

From the biological point of view, the superior species shall invade the inferior
one so that the inferior species will be extinct. To describe such an invading
phenomenon, the traveling fronts play an important role. We remark that the
existence of traveling waves of the PDE model (1.2) has been investigated by



several researchers; see, for example, [1], [2],[3],[4], and [5]. For the LDS (1.1), the
existence of traveling waves for the case m = n = 1 was studied by [6]. Hence, in
this thesis, we turn to consider the more general case that m,n > 1.

Now we consider the corresponding kinetic system of system (1.2) which is the
system (1.2) without diffusion and is given by the following ODE system

u(l —u — kv),
13 1.3
zt ro(l — v — hu). )

Obviously, there are three trivial equilibrium points: (0,0), (0,1), and (1,0).
When 0 < h,k <1 or h, k > 1, we have fourth equilibrium point

(l—kr 1—h)
1—hk’1—hk"

€4 =

Given initial condition, the long time behavior of the solution of (1.3) can be
classified as follows:

(A) If 0 < k < 1 < h, then limy_,o (u, v)(t) = (1,0)

(B) If 0 < h < 1 < k, then lim; o (u,v)(t) = (0,1) (the species v will win).

(C) If h,k > 1, then limy_,o(u, v)(t) = (1,0) or (0,1) (whether u or v will win
depends on initial condition).

(D) If 0 < h, k < 1, then lim; oo (u, v)(t) = e4 (v and v will coexist).

In this thesis, we focus on the cases (A) and (B) for the LDS (1.1). In fact, by
exchanging the roles of v and v, we know that (A) is equivalent to (B). Without
loss of generality, we only consider (A). Hence in the remaining of this thesis we
always assume that 0 < £ <1 < h.

By a traveling wave solution of equation (1.1), we mean a solution of (1.1) of
the form

,0) (the species u will win).

(uj(t)? vj<t)> Y (U(ﬁ), V(ﬁ))? §=J+ct,
such that (U, V)(—o0) = (0,1) and (U,V)(c0) = (1,0). Here the wave speed c is
a constant to be determined and the wave profile (U, V) € C'(R) x C'(R) is a
pair of nonnegative functions. Upon substituting the ansatz on (U, V) into (1.1),
we are led to the governing system for (U, V) as follows:

U = DU+ U(1— U — kV),

V' = dDy[V] + V(1 — V — hU),

<U7 V)<_OO) - (07 1)? (U7 V)(OO) = (170)7
0<U, V<1,

on R. (1.4)

Here the prime indicates differentiation with respect to & and D§[f](§) := f*(+
1)+ f¥€—1) —2f*(£). Hence to investigate the existence of traveling waves of
system (1.1) is equivalent to find (¢, U, V') satisfying (1.4).

Our main result is stated in the following theorem.
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Theorem 1.1. If 0 < k < 1 < h, then there exists a positive constant Cny, Such
that the system (1.4) admits a solution (c,U, V) satisfying U' >0 and V' < 0 on
R if and only if ¢ > Cpin.

We remark that the proof of Theorem 1.1 is obtained by following the argu-
ments of [6].



Chapter 2

Basic Properties and The
Monotone Operators

For simplicity of mathematical analysis, we let W =1 — V. Then the system
(1.4) can be written in the following form

cU' =DPUI+U[l—U—k(1—W)] on R, (2.1a)
W' = dD3[W] +r(1=W)(hU — W) on R, (2.1b)
(U, W)(=00) = (0,0), (U, W)(c0) = (1,1), (2.1¢)
0<UW <1, (2.1d)

where m,n > 1,0 < k <1 < h, and r,d > 0 are given, and
DyW]() == =Dyl =W]() =20 =W()" = [L =W (- +D]" = [1 - W( - D]".
In addition, Theorem 1.1 can be restated in the following theorem.

Theorem 2.1. If 0 < k < 1 < h, then there exists a positive constant C,y, Ssuch
that the equation (2.1) admits a solution (c,U, W) satisfying U' > 0 and W' > 0
on R if and only if ¢ > cpin.

2.1 The Property of Traveling Wave Solution

To show Theorem 2.1, we first establish some basic properties for solutions of
(2.1).

Lemma 2.2. If (¢,U,W) is a solution of (2.1), then 0 < U,W < 1 in R and
c> 0.

Proof. First, we show that U > 0 and W < 1 in R. For contradiction, we
assume that there exists & such that U(&) = 0. Since U > 0, it following that

4



U'(&) = 0. Together with (2.1a), we get U™(§ + 1) = U™(§ — 1) = 0. Hence,
U(+1) =U(& — 1) = 0. Arguing as above, we can further have U (& +n) =0
for all n € N, which contradicts the fact that U(oco) = 1. Hence U > 0 in R. By
a similar argument, we also find that W < 1 in R.

Next, we show that U < 1 and W > 0 in R. For contradiction, we assume
that there exists & such that U(&;) = 1. Since U < 1, it implies that U’(&) = 0.
Together with (2.1a), we obtain U™ (& +1) +U™(& — 1) =2+ k(1 - W) > 2,
which contradicts the fact U < 1. Hence U < 1 in R. By a similar argument, we
also find that W > 0 in R.

Finally, we show that ¢ > O To this end, we need to claim that the functions

R(¢) = fg s)ds and R,,(§) = ffoo U™(s)ds are well-defined. Recall that

(U,W)(—o0) = (0 0) and 0 < k < 1. It follows that there exists N > 0 such that
1—k

1—U—k(1—W)>T>O (2.2)

n (—oo, —N). Integrating the equation (2.1a) from —oo to ¢ and using the fact
that U(—o0) =0, we get that
£+1 3 3
U - Um(s)ds — | U™ (s)ds + / Ul = U — k(1 — W)](s)ds
3 §-1

—00

§+1 3 1—k [¢
> / Um(s)ds—/ U™(s)ds + —— Ul(s)ds, (2.3)

¢ ¢-1 2
for all £ < —N. Here we have used (2.2). Since 0 < U < 1, we can easily deduce
from (2.3) that

£+1 3 —k

le| +1>cU(§) — / U™(s)ds +/ U™(s)ds > T U(s)ds.
£ £-1

—00

This implies the function R(&) is well-defined. Together with the fact that 0 <
Um(€) < U(€), we infer that R,,(£) is also well-defined. Obviously, it is positive
and increasing. Integrating (2.3) from —oo to z, we deduce that

cR(x) :/x £)de — / d§+/ / U — U — k(1 — W)](s)dsde
> / €)dt / )i + 1" / (by (2.2))

> —/ (since R, (&) is increasing)

> 0, (since R>0andk <1) (2.4)

for all z < —N. Since R > 0, (2.4) implies that ¢ > 0. This completes the proof
of this lemma. O]



2.2 The Monotone Operators

Next, we will introduce some monotone operators. For this, we choose a pa-
rameter p large enough such that

1
w> g i=— -max{2m+1+k,2nd+r(1+ h)}
c
and we define the operators H; and H, as follows:

1 1

d ~
Hy(U.W) = W + =D5[W] + 2(1 WU — W).
Using Hy (U, W) and Ho(U, W), we can rewrite (2.1a)-(2.1b) as
U'=H,(UW) —pU and W' = Hy(U,W) — uW.

Then, multiplying the above two equations by integrating factor e*¢, and then
integrating the resulting equations from —oc to &, we find that

£
U(€) = Ty (U, W) (€) 1= e / e Hy (U, W) (s)ds,

—00

€
W(E) = To(U, W) (&) := e+ / e Hy (U, W)(s)ds.

Lemma 2.3. Fori=1,2, the operators H; and T; satisfy the monotonic property
in the following sense:

Hi(Ui, Wh)(+) < Hi(Ug, Wa)() and Ti(Ur, Wh)(-) < T;(Uz, W2)(+) in R,
provided that
0<U(-) <Us(-) <1 and 0 < Wy(-) < Ws(-) <1 in R.

Proof. Suppose that 0 < Uy(-) < Us(-) < 1 and 0 < Wy(+)
Then, by simple computations, we get that

c[Hy(Us, W2)(§) — Hi (U, W1)(8)]
= [ep+ (1 —k) = (U2 + U)(Q](Uz2 = U1)(§)
—2(U3"(§) = U"(€)) + (U3" = U") (€ + 1)
+(U = UM (& — 1) + k(UsWy — UyW1) (&) ( by definition of Hy)
[epp = 2m — 24+ (1 = K)|(Uz2 — U)(€)
(by0<U; <Usy<land 0<W; <W,<1)
> 0 (bypu>@2m+1+k)/cand Uy < Us) (2.5)

v
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and

c[Ha(Uz, Wa)(§) — Ha(Ur, Wh)(§)]

= lep—r+r(We + Wi)(E](Wa — W1)(E)
+2d[(1 = W(£))" — (1 = Wi(€))"]
—d[(1 = Wo(E+1))" — (1 =Wy (E+1)
—d[(1=Wa({—1))" = (1-Wi({ - 1)
+rh(Uy — Uh) (&) — rh(UsWe — UiWH) (&) ( by definition of Hy)
[epn = 2nd — (1 + h)}(Wa — W1)(§)

(by0<U; <Us<land 0 <W; < W, <1)
> 0. (byp>[2nd+r(l+h))]/cand Wy < Ws)

1))"]
1)"]

v

Hence,
Hy (U, Wi)(-) < Hi(Us, W5)(+) and Ho(Uy, W1)(+) < Ho(Usy, Wo)(+) in R,
This, together with the definitions of 7} and T5, implies that
T (U, Wh) () < Th(Ua, Wa)(+) and To(Uy, Wh)(+) < To(Uz, W3)(+) in R.

Hence we complete the proof of this lemma.



Chapter 3

A Truncation Problem

In this chapter, we consider the following truncation problem:

U = DPU] + U1 — U = k(1 — W)], V¢ € [—, 0], (3.1a)
W' = dDRW] +r(1 = W)(hU — W), V¢ € [—,0], (3.1b)
together with the boundary condition
(U,W)(€) = (€,¢),V& € (—00, =], (3.2)
(U, W)(§) = (1,1),¥¢ € (0, 00), (3.3)

where € € [0,1). Here
U'(=7) = ln(U(=v + h) = U(=9))/h,—U(0) = lim(U(0) = U(=h))/h,

N0

W/(=9) i L (W(— 1) = W(=) /. W'(0) i= Lun(W (0) — W (=h) /b

We will use the monotone iteration method to investigate the existence of
solutions of (3.1)-(3.3). To begin with, we rewrite (3.1) as follows:

U' = Hy(U,W) — pU and W’ = Hy(U, W) — pW.

Then, multiplying the above the two equations by integrating factor e#¢, and then
integrating the resulting equations from —v to & and using (U, W)(—v) = (¢, ¢),
we find that

U(§) = T (U, W)(&) and W (&) = T3(U,W)(E), V§ € [-7,0],  (34)

where
-y 3
THU,W)(€) = e+ ( / epersds + / e Hy (U, W)(s)ds>,

oo -

THU,W)(E) = e ( / 75u6“8d5+ / E e Hy (U, W)(s)ds) :

— 00 —



Hence one can easily verify that a pair of functions (U, W) with (U, W)(—y) =
(e,¢) satisfies (3.1) iff it satisfies the integral equations (3.4). Next, using the
monotonic property, we have the fact that

0<UL(") <Us(-) <l and 0 <Wi(-) <Wh()<1in R
imply that
T (U, Wh)(-) < 17Uz, W2)(+) and T5'(Uy, Wh)(-) < T5' (U, Wa)(+) on [—7,0].
With this property, we have the following lemma.
Lemma 3.1. If
e<U() <1, and e <W() <1inR,

then

e<THUW)() <1l ande <T3(UW)(:) <1 in[—,0].
Proof. By the monotonic property, we get

o L& kz(l =) o) < IUW)< B =p  (35)

and
a4 TER = 10)(1 =) _ Hyee) < Hy(U.W) < Hy(11) = pi (3.6)

in R. Together with definitions of T7"(U, W) and T3'(U, W), we deduce that for
5 € [_77 0]7

- 3
U W)(€) < e ke (/ cpe +/ ,ue“sds> =1—-(1- E)e’“(“ﬁé) <1

o .
and
1 — k)1 = &)1 — e+t
cp
Hence we have ¢ < T7"(U,W)(§) < 1 for all £ € [—v,0]. By a similar argument,
we also have e < T3(U,W)(¢) <1 for all £ € [—,0]. O

Now we are in a position to establish the existence of solutions of (3.1)-(3.3).

Lemma 3.2. For alln € N and ¢ € [0, 1), there exists a unique pair of functions
(U™, Wme): R w— [g,1] x [g,1] satisfying (3.1)-(3.3). Moreover, (U™, W™*)
possesses the following properties:

(1) Un’av wme e Cl((_77 0)) n C((—OO, O]);

(2) (U™) >0 and (W™®)" >0 on [—v,0];

(3) LU(€) 2 e™ME) and LW™(€) > e, V¢ € [, 0],



Proof. Let n € N and ¢ € [0,1) be given. We divide the proof into several steps.

Step 1: We construct a pair of functions (U,, W.): R+ [g, 1] x [¢, 1] satisfying
(3.1)-(3.3) and show that it satisfies property (1).
Define (U™, Wy"°) by

{ (Up™, Wo)(€) = (1,1) if § € [, 00),
(Up™, We)(§) = (e,€) if § € (=00, —7).

For each j € N, we also define (U}, W;"%) as follows:

(U7, Wi)(€) = (T (U35, W), T3 (U5, W) (6) i € € [=7, 0],
(U=, Wi9)(€) = (1,1) if € € (0, 00),
(U, Wi )(6) = (g,¢) if § € (—o0,—].
Note that
U =T17(1,1) <1=Uy" on [—~,0],
Wi =T3(1,1) <1 =Wy on [—~,0].
Together with the monotonic property and Lemma 3.1, one can easily show that
for all j € N,
¢ < TR(UPS W) < TR(URS. W) < 1,
e < T W) < (U5, W55) < 1
on [—v,0]. This, together with definition of (U}"*, W,*"), implies that the functions
U"® and W™ are non-increasing in j and ¢ < U"",W;"* < 1 for all j € N.
Therefore,
(U, W2)(€) = (Tim U7, Tim W7)(€), %€ € R
j—o0 j—o0

exists. Clearly, (U, W,)(&) = (1,1) for all £ > 0 and (U,, W,)(§) = (g,¢) for all
¢ < —~. Moreover, applying the Lebesgue Dominated Convergence Theorem, we
get

U.(&) = T{'(Us, Wo)(€) and W (&) = T3 (U, W)(§), V& € [=7,0].
Then it is easy to see that U,,W, € C*((—~,0)) N C((—o0,0]).

Step 2: We prove the uniqueness.

For this, we let (U*,W*) : R — [¢,1] X [e, 1] be another solution of (3.1)-(3.3),
then U*, W* € C1((—~.0)) N C((—o0,0]). Tt suffices to claim that U* = U, and
W*=W, on [—7,0]. Since0 <e <U*<1=Upand 0 <e <W*<1=MW;on
[—7, 0], the monotonic property gives that

U =17 (U W) < T (U, Wo) = Uy on [=7,0],

10



W =T (U, W) < T3 (U, Wo) = Wi on [—,0].

Then, using the iteration, we find that U* < U, and W* < W,.
To prove the reverse inequality, we define

7 = inf{n > 0[U(£) > U({ —y), W (§) > W€ —y),VE € [=y +y,0],y > n}.

Then it is easy to see that 7 is well-defined and 0 < 77 < v since U*(0) > ¢ =
U.(—v) and W*(0) > € = W,(—~). Indeed, 7 = 0. To see this, we first claim that

Hy (U, W)(€) = Hi(Us,, W) (€ = 1) (3.7)

and
Hy(U* W) (&) > Ho (U, W) (€ — 1) (3.8)

for all £ € R. For this, we note that the continuity implies that
U"(§) 2 Uu(§ = 1) and W*(§) > W.(§ —7), V€ € [=y +17,0].
Together with the boundary condition, we have
U(§) = U(§ = 1) and W(§) > W (€ = 7), V€ € R.

Hence, using the monotonic property, we get (3.7) and (3.8). Next, using (3.7),
we deduce that

U*(§) = U(§ — 1)
= 17U W) (E) — 17" (Us, Wa)(§ = 1)
_ / e FL (U W) (s + £)ds — / e Hy (U, W) (5 + €)ds

7€ ==&+

¢ ==&+
+/ aue“sds—/ epettds

o0 o0

—=&+17
> / ML H (U, W) (s + €) — pelds
-7=§

_ _ —y—=&+17
> -k 5)/ : el ds, Ve € [—y + 17, 0]. (3.9)
¢ —y—¢

Similarly, using (3.8), we also get

Wee) — Wi g > 2L DO /__HM7 et ds, V€ € [~y +7,0]. (3.10)

¢ y—¢

Now we are ready to claim that 7 = 0. For contradiction, we assume that 1 > 0.
If £ > 0, then it follows from (3.9) and (3.10) that U*(§) — U.(§ — 1) > 0 and
W*(&)—W.(§—n) > 0 for all £ € [—y+n,0]. By continuity, there exists 0 < § < 1

11



such that U*(§) — U (6 — (n—6)) > 0 and W*(&) — Wi (& — (7 —9)) > 0 for all
¢ € [-y+n—9,0]. This contradicts definition of 7. If € = 0, then (3.9) and (3.10)
imply that

—y=&+7

U U= 2 [ U+ €)ds > 0.¥E € [y + 0,0
—-v=¢

where we have used the property that H(U*, W*) > H;(e,e) > 0. Similarly, we
also have W*(&) —W,(§ —n) > 0 for all £ € [—=y+17,0]. This contradicts definition
of n again. Therefore, 7 = 0, which implies that U* > U, and W* > W,. Hence
the uniqueness has been proven.

Step 3: We prove (U,, W,) satisfies property (2).

By the uniqueness and the fact that 7 = 0, we deduce that U,(§) > U.(§ — s)
and W, (&) > W.(¢ —s) for all s >0 and ¢ € R. This implies that (U,)" > 0 and
(W) > 0 for all £ € [—,0]. By the monotonic property, we find

H(U, W.)(s) < Hi(U., W)(&), Vs <& i=1,2. (3.11)
For i = 1,2 and £ € [—7, 0], differentiating 7" (U, W.)(£), we get
T (U, W.)'(€)

§
= —pee PO L {(U,, WL)(€) — ,u/ "SI H,(U,, W,)(s)ds
—
= —pee POFO 4 H,(U,, W*)(g)e—u(v%)
3 3
+#/ e“(s_g)Hi(U*,W*)(f)ds—u/ eSO I (U, W) (s)ds
- 4

> e MOOH (UL, W)(€) = pe] - (by (3.11))

> 0. (by (3.5) and (3.6))
Since UL(§) = T(Us, W,) (&) and W/(&) = T3 (U, W,)'(§), the above inequality
implies that (U, W,) satisfies property (2).

Step 4: We prove that property (3) is satisfied.
Let 0 < ey < &9 < 1. Then, by the monotonic property, we know that U™ >
U™ for all £ € [—~.0]. From this, we get that for all £ € [—~.0],

UH,EQ (5) _ UTL,El (6)
3
= [ e U W) s) — HiUPE W) s)ds 4 — ) 00
-

> (e = ex)e )

which follows that

d
ZUE(E) > e MO
UM 2 e

12



By a similar way, we also get

d
W) 2 70 g € [-.0]
Hence (U™, W™*) satisfies property (3). This completes the proof of this lemma.
O
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Chapter 4

Proof of Theorem 2.1

To prove the existence of the solution of (2.1), we need to use the super-solution.

4.1 Super-solution and Its Role
First, we give definition of super-solutions.

Definition 4.1. Given a constant ¢ > 0. A continuous function (UT, W) : R~
(0,1] x (0,1] is called a super-solution of (2.1), if W is a non-constant function,
Ut (00) = W(00) =1, and both Ut and W are differentiable a.e in R such that

{ cUNY > DPUN + U1 — Ut — k(1 — W)

(WY > dDR W +r(1 = WH(hU+ - w+) ¢ MR (4.1)

The following lemma gives us an information on the role of super-solution in
the existence of solutions of (2.1).

Lemma 4.2. If there exists a super-solution (UT, W) satisfying UT =WT =1
on [0,00) for a given ¢ > 0, then (2.1) admits a solution (c¢,U,W) with U > 0
and W' >0 in R.

To show Lemma 4.2, we need Helly’s Lemma. For readers’ convenience, we
state it in the following.

Lemma 4.3. (Helly’s Lemma) Let {U,}nen be a sequence of uniformly bounded
and non-decreasing functions in R. Then there exists a subsequence {U,,} of {U,}
and a non-decreasing function U such that U,, — U pointwise in R as ¢ — oo.

In the sequel, we say that a vector-valued function (U, W) is non-decreasing in
R if both U and W are non-decreasing in R.

proof of Lemma 4.2: Since W7 is a non-constant function with 0 < W+ <1
on R and W+ =1 on [0,00), there exists 79 > 0 such that W (—vg) = ¢ for
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some €y € (0,1). Then, for each n > 27y, we claim that there exists only one
e =&, € (0,1) such that W™ (—%) = «.

To this end, we need to show that W™%(—2) < gy for any given n > 27,. For
this, we define

= inf{n > 0|U™(£) > n), WH(€) = W™(€ — ), V€ € (—o0,0]}.

(e
Then 7 is well-defined and 0 < 77 < v since UT(§) > 0 = U™°(€ — v) and
WH(€) >0=W"(£—~) for all £ € (—o0,0]. By continuity, UT(£) > U™9(£ —17)
and WT(&) > Wm0(¢—q) for all € € (—o0 O] which, together with the monotonic
property of H; and Hs, implies that

H\(UF,WH)(€) = Hy(U™, W™0)(€ —17) (4.2)
and
Hy(UT, WF)(€) = Hy (U™, W™P)(€ — 1) (4.3)
for all £ € (—o00,0]. Then, using (4.4), we deduce that
W) — W™O(g = n)
LU, WH)(E) - U™, W) —7)
0

0
= / e Hy(UT, WT)(s+ &)ds — / " Hy (U™, W) (5 + & — 7)ds

—y—&+7

—y—&+1
> / e Ho(UT, W) (s + &)ds > 0,

o0

v

—00

for all £ € [~y +1,0]. Similarly, using using (4.3), we also have U™ () — U™9(¢ —
n) > 0 for all £ € [—y + 7,0]. By a similar proof of lemma 3.2, we obtain 77 = 0,
which implies that W*¥(&) > W™9(¢) on (=00, 0]. Together with property (2) of
Lemma 3.2, we get

n
Wn,O <—§> < Wn’o(—’}/o) S W+(—’)/0) = £0.

On the other hand, from definition of W™* and its increasing property, we see that
Wme(—2) — 1 as e — 1. Since LW™<(£) > 0 for all £ € [—7,0], we conclude
that there exists an unique € = &, € (0,&0] C (0, 1) such that W™ (-%) = «.

Now, we are in a position to show the existence of a solution (¢, U, W). To begin
with, we consider the sequence of functions {U™*" (- — 5), W™ (- — 2) }504, in R.
By Helly’s Lemma, there exists a subsequence {U"" (- —n;/2), Wi (- —n; /2)}
and a non-decreasing function (U, W) : R+~ [0, 1] x [0, 1] such that

(Ui (§ = mif2), W= (€ — ni/2)) — (U, W)(E), V¢ € R,

as i — co. By LDCT, U(€) = Ty(U,W)(€) and W(€) = To(U, W)(€) for all
¢ € R. Moreover, it is easy to verify that W(0) = lim;_ o, W™ i (—n;/2) = &y,
0<U,W <1inR,and U W e C\(R).
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Next, we prove that (U, W) satisfies the boundary condition. Since U and W
are non-decreasing in R and 0 < U, W < 1 in R, both U(4o00) and W (+£o0) exist.
By definition of U and W and L’Hospital’s rule, we have

Jim U©) = Im (U, W)(E)
. |
= Jm {U(f) + E[DQ [U](&) + U1 = U(E) — k(1 - W(é)))]}
and

EErinoo W) = gEI:Eloo Tr(U, W)(€)

= tim {W(O + BV + 11 = WO - WO}

E—+oo CclL

This implies that

{ U(£o0)(1 — U(£o0) — k(1 — W(+00))) =0, (4.4)

(1 — W (=£00)) (hU (£00) — W (%00)) = 0.

Hence U(£o0), W(+oo) € {0,1}. Since W is non-decreasing and W (0) = gy €
(0,1), we have W(—o0) = 0 and W (oco) = 1. Moreover, using W (—o0) = 0, we
deduce from (4.4) that U(—o0) = 0. Note that U # 0 in R, since otherwise, by
integrating both sides of (2.1b) over R, we have 0 < ¢ = —r [, W(&)(1-W(§))d¢ <
0, a contradiction. Using the fact that U(—o0) = 0, U is nondecreasing, and U # 0
in R, we obtain that U(co) = 1.

Finally, differentiating as in lemma 3.2, we know that U’ > 0, and W’ > 0 in
R. The proof of lemma 4.2 is thus accomplished. n

Indeed, the condition Ut = W+ =1 on [0,00) in Lemma 4.2 can be replaced
by the monotonic property. Specifically, we state it in the following lemma.

Lemma 4.4. If there exists a super-solution (UT, W) of (2.1) with (UT) > 0,
(WHY >0 for a given ¢ > 0, then (2.1) admits a solution (¢, U, W) with U" > 0
and W' > 0 in R.

Proof. Let ¢ > 0 be given. Suppose (UT, W) is a super-solution of (2.1) with
(U*) > 0and (W*) > 0. In the sequel, we will use Lemma 4.2 to get a solution
of (2.1). For each 0 < § < 1, we define

(U5 (€), W5 (€)) := (min{1, (1 4+ 0)U" (&)}, min{L, (1 + )W T()}), V¢ € R,
then there exist My = M;(0) > 1 and My = Ms(d) > 1 such that
U =1on [My,00),U <1 on (—o0, M),

Wi =1 on [My,00), W;” <1 on (—oc, My).
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Then we will claim (U;", W;t) is a super-solution of the problem Pj:

cU' = (DZ[U})a + fs(U, W),
W' = d(Dy[W])s + gs5(U, W),
(U, W)(~o0) = (0.0}, (U, W)(o0) = (1, 1),

0<UW <1,
where oty
oris = L
(Dywhys =~ s,
F(U W) = min{U (1 k- 1—i5(U— kW)) U= — k(1 — W))},

1+9

Without loss of generality, we assume that M; < M,. If My = M,, then it is
trivial. Now we turn to consider the case M; < Ms. It is clear that Ps holds on
(—o0, M) U (My,00). Suppose that My < & < My, then

Uy (§) =1, (U5")'(€) =0, (4.5)

g5(U, W) = min {r(hU — W) (1 - Lw> (U — WY1 — W)} |

and
W5 (&) = (L+ )W (), (W) () = (1 +)(WH)(6). (4.6)

Note that Wi (€+1) < (1+0)WH(£+1) and U; (&) < (1+6)UT(£). Using (4.5)
and the inequalities

(Dy'[Us)s(€) = U (€—1)™ =10
and
fs(U W5H)(€) S UF(O[L — U (€) = k(L =W (§))] = —k(1 = WT(£)) <0,
we deduce that
c(Us)' (&) = (DU )s(€) + f5(Us", W5)(€).

Using (4.6), we get

(W)€ = 1+WT)()
> (1+0)[dD3 W) + r(hUT = WT)(1 = WH)(&)]
> d(D3[W5)s (&) + gs(Us" WH)(E)-
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These imply that P; holds for M; < & < M,. Therefore, (U5, W5") is a super-
solution of the pr/(\)blem Ps. . R

Next, we set U; (§) = U (€ + My) and W, (£) = W, (£ + My). Then Uy =
/VIZ;F = 1 on [0,00) and (ﬁ;,W;) is a super-solution of P;. By lemma 4.2, we
obtain a solution (Us, Ws) of Ps with U's > 0 and W5 > 0 in R.

Now, let {(c,Us,, Ws,)} be a sequence of monotone increasing of Ps, such that
W;5,(0) = 3 for all i and §; — 0 as ¢ — oo. By Lemma 4.3 ( Helly’s Lemma ), there
exists a subsequence {(c,Us, ,W;, )} and a monotone non-decreasing function
(U, Wo) such that (c,Us,,, Ws,,) — (c,Up, Wy) pointwise in R as j — oo. In
addition 0 < Uy, Wy < 1 and Wy(0) = 1. Therefore, (¢, Uy, Wp) satisfies (2.1)
such that U’y > 0 and W’y > 0 in R (By Lemma 2.2). The proof of lemma 4.4 is
thus completed. O

Finally, we construct a super-solution of (2.1) for ¢ > 1.

Lemma 4.5. For sufficiently large ¢ > 0, (UT, W), where Ut (§) = WH(&) =
min{1, e}, is a super-solution of (2.1).

Proof. By choosing
c>cpi=max{(e™+e ™ —2)+ (1 —k),d[le~1)"— (1 —e )" +r(h—1)},

we will find that (UT, W) is a super-solution of (2.1). O

4.2 Proof of Theorem 2.1
Now we are in a position to prove Theorem 2.1.

Proof. By Lemma 4.2 and 4.5, (2.1) admits a solution (¢, U, W) with U’ > 0 and
W’ > 0 for all ¢ > ¢;. It follows that the constant

Cmin = Inf{c > 0|(2.1) has a solution (c¢,U, W) with U" >0 and W’ > 0 in R}

is well-defined. Since a monotone front with speed ¢y gives a super-solution of
(2.5) for all ¢ > ¢p, Lemma 4.4 implies that (2.1) has a solution (¢, U, W) with
U'>0and W' > 0in R for all ¢ > ¢pin.

Now, we need to claim that (2.1) has a solution (¢,U, W) with U’ > 0 and
W' > 0in R for ¢ = ¢pin. To this end, we let {¢;, U;, W;} be a sequence of
solutions of (2.1) with ¢ = ¢; such that W;(0) = 3, U/, W/ > 0 in R for all i € N,
and ¢; | ¢pin as @ — oo. By the same proof of lemma 4.4, (2.1) has a solution
(c,U,, W,) with U’, > 0 and W’, > 0 in R when ¢ = ¢,p.

Finally, the constant ¢,,;, > 0 by Lemma 2.2. The proof is accomplished. [
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