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Abstract This paper examines the within-industry dis-

tributions of jobs created and destructed across plants in

terms of technical efficiency, technical efficiency change,

scale effect, and technical change. It further investigates

how these distributions vary with economic activity. By

applying the stochastic frontier analysis to plant-level

longitudinal data on Taiwan’s 23 two-digit manufacturing

industries spanning the period 1992–2003, we find that jobs

created (destructed) are disproportionately clustered at

plants with lower technical efficiency but higher rate of

technical change. A fall in economic activities is associated

with a statistically significant decrease (increase) in the

fraction of newly created (destructed) jobs accounted for

by plants with a higher rate of technical change, indicating

that creative destruction is more pronounced during eco-

nomic contractions.

Keywords Creative destruction � Job creation �
Job destruction � Technical efficiency � Total factor

productivity

JEL Classification D24 � E24 � E32

1 Introduction

Previous literature on job reallocation has documented

large simultaneous job creation and destruction. A natural

question thus arises: are the observed creation and

destruction primarily driven by the relative performance of

firms or idiosyncratic shocks? Schumpeter (1939) argues

that the process of creative destruction—the continuous

replacement of obsolete production units with ones that

embody the latest technology—is a major driving force of

economic growth. Schumpeter further notes that recessions

may ameliorate resource misallocation, because the least

productive and least innovative units are the most likely to

be scrapped in a recession.

Most previous empirical examinations of the efficiency

of the reallocation process unfortunately measure micro-

level productivity and technological change in a deter-

ministic framework, confounding true productivity with

idiosyncratic shocks outside the control of producers and

rendering questionable the existing evidence on the roles of

micro heterogeneity in the reallocation process. Moreover,

there is not much work that studies the efficiency of cre-

ation and destruction separately.

This paper is one of the first to test for the presence of

creative destruction in terms of plant performance mea-

sures purged of the effects of random shocks. We also

establish and quantify the relationship between the effi-

ciency of job reallocation and aggregate economic activity.

By applying the stochastic frontier analysis (SFA) to a

large panel of Taiwanese manufacturing plants, we mea-

sure each plant’s technical efficiency (TE) and further

decompose plant-level total factor productivity change

T _FP
� �

into technical efficiency change (TED), techno-

logical change (TD), and scale effect (SC). The major

advantage of the SFA approach is that the output effect of
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producer-specific idiosyncratic shocks can at least in

principle be separated from the effect of changes in TE.

After obtaining efficiency and productivity measures

purged of producer-specific random shocks, we proceed to

test for two key hypotheses regarding the effectiveness of

the resource reallocation process: the creative destruction

hypothesis and the cleansing effect of recessions. More

precisely, this paper addresses two questions. First, are jobs

created (destructed) disproportionately located at plants

with higher (lower) TE, TED, and TD? Second, how does

the distribution of jobs created (destructed) in terms of TE,

TED, and TD vary with the economic condition at the

industry and aggregate levels?

The existing empirical studies on the effectiveness of

reallocation have been inconclusive. Using data from the

Great Depression, Bresnahan and Raff (1991) and Bertin

et al. (1996) find no correlation between a plant’s pro-

ductivity and its exit probability. Olley and Pakes (1996)

find that productivity growth in the US telecommunications

equipment industry stems mainly from a reallocation of

capital from less to more productive firms. Foster et al.

(2001) conclude that the contribution of employment

reallocation to aggregate productivity is greater during

recessionary periods. Cantner and Krüger (2008) measure

firm-level productivity of large German firms using data

envelopment analysis and present that the driving forces of

aggregate productivity growth are net entry and market

share reallocation among continuers.

The improvements of this current paper upon the crea-

tive destruction literature are two-fold. First, for the first

time in the literature, we document the distribution of jobs

created and destructed across TE, TED, TD, and SC to

clarify the individual roles of these SFA-based plant per-

formance indicators in the within-industry reallocation

process. Second, we provide quantitative evidence on the

cyclicality of the efficiency of the job creation (destruction)

process by exploiting time series variation in the correla-

tion between job creation (destruction) share and plant

performance.

The rest of the paper proceeds as follows. Section 2

provides an overview of the theoretical predictions

regarding the efficiency of the creative destruction process

and then introduces and formulates the hypothesis to be

tested. Section 3.1 outlines the SFA methodology used to

generate the TE score, TED, SC, and TD for each plant-

year observation. Section 3.2 presents the Olley–Pakes

decomposition methodology to measure the importance of

plant performance indicators in the allocations of jobs

created and destructed across plants. Section 4 describes

the data source and sample statistics. Section 5 briefly

explains the estimation results of the production frontiers

and summarizes the estimated TE score, TED, SC, and TD.

Section 6.1 compares the technical efficiency and

productivity change of the average created job with those

of the average job destructed. Section 6.2 presents regres-

sion results on the association between the extent to which

jobs created (destructed) are concentrated at high-perfor-

mance plants and economic conditions. Section 7 con-

cludes the paper.

2 The creative destruction hypothesis and the cleansing

effect of recessions

2.1 The creative destruction hypothesis

In a market economy, profit-seeking firms are constantly

being established while existing firms choose to exit,

expand, or contract. Firms that embody the latest product

and process innovations supplant firms that are less pro-

ductive and innovative. Schumpeter (1942) coins the idea

of creative destruction and describes this incessant shift of

production resources away from less productive and

innovative firms to more productive and innovative firms

as the most important source of industry evolution and

long-term economic growth. Aghion and Howitt (1992),

Mortenson and Pissarides (1994), and Caballero and

Hammour (1994, 1996) formally model the relationship

between the process of creative destruction and aggregate

productivity growth.

This paper defines creative destruction as a process of

shifting factors of production away from underperforming

plants towards outperforming plants. We gauge the effec-

tiveness of the creative destruction process by examining

whether the average TE (TED and TD) of jobs created is

significantly higher than the average TE (TED and TD) of

jobs destructed. In other words, a positive and statistically

significant discrepancy between the average TE (TED, TD)

of jobs created and that of jobs destructed supports the

creative destruction hypothesis.

2.2 The cleansing effect of recessions

The second hypothesis we intend to test is the cleansing

effect of recessions, which is motivated by the theoretic

debate on how business cycles impact the effectiveness of

the reallocation process. Schumpeter (1934) and more

recently Caballero and Hammour (1994, 1996) assert that

recessions compel producers to use resources more effi-

ciently, thereby releasing resources from production units

with the most room for downsizing toward those with the

least room for input reduction. In other words, recessions

expedite the shift of resources from the least efficient

production units to the more efficient ones, thus mitigating

resource misallocation. From the viewpoints of these

‘‘liquidationists’’, recessions are times of cleansing, when
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the concentration of jobs destructed in low-productivity

units increases.

In recent years a distinct line of literature has emerged to

provide mechanisms whereby recessions exacerbate

resource misallocation. Caballero and Hammour (2005)

posit that in the presence of credit market frictions, pro-

ductivity heterogeneity across producers may be less

important in the selection mechanism. Barlevy (2003)

argues that if projects that generate more surplus are also

more vulnerable to credit constraints and that the credit

market is imperfect, then recessions may destroy some of

the more productive firms while preserving the less pro-

ductive ones. Ouyang (2009) proposes that if plant-level

productivity grows only gradually after entry, then reces-

sions worsen resource allocation by forcing young but

potentially innovative businesses to exit before they reach

their full potential.

To assess which one of the two contrasting effects of

recessions on the efficiency of reallocation dominates, we

regress the covariance between the plant performance

measure and the share of job creation (destruction) on a set

of control variables and two indicators of the state of the

economy. If the cleansing effects dominate the adverse

effects caused by credit market frictions, then the extent to

which destructed jobs are concentrated at high-perfor-

mance plants should vary procyclically with the economy.

On the other hand, if the cleansing effects are more than

offset by the alternative effects, then the extent to which

jobs destructed are concentrated at high-performance pro-

ducers should be countercyclical.

3 Methodology

3.1 The stochastic production frontier model

We consider a logarithmic stochastic production frontier

for the ith firm at time t as follows:

ln Yit ¼ ln f ðXit; t; bÞ þ vit � uit;
i ¼ 1; . . .; n; t ¼ 1; . . .;T ;

ð3� 1Þ

where ln Y is the natural logarithm of output, ln f ð�Þ rep-

resents the natural logarithm of a production function, X is

a K 9 1 vector of inputs, b denotes the technology

parameter vector conformable to X, v signifies a two-sided

i.i.d. normal random variable with mean zero and a con-

stant variance r2
v , and technical inefficiency term u mea-

sures the distance of firm i’s actual level of output at time t

from the production frontier. We assume that the technical

inefficiency term u is a half-normal random variable

independent of v and has zero mean and a constant variance

r2
u. This allows the pattern of TE evolution to be

heterogeneous across plants.1 Following Coelli et al. (2005,

p. 300), we specify the production function f Xit; t; bð Þ as a

standard translog form with time trend (t). The interaction

terms between t and the factors of production permit

technical change to be non-neutral. The model in (3-1) is

estimated using maximum likelihood.2

The key feature of the SFA approach is that the error

term consists of a producer-specific random shock (v) and a

technical inefficiency term (u). The inefficiency term u

represents the management’s capability to maximize output

for a given level of inputs, while the random error v cap-

tures shocks uncontrollable by the producers. The output

effect of managerial capability to organize inputs effi-

ciently can at least in principle be isolated from the effects

of producer-specific idiosyncratic shocks. Thus, the esti-

mated efficiency score will not be contaminated by random

shocks, thus reflecting true managerial ability.

The coefficient estimates of the frontier production

function can be used to compute the following five indi-

cators of plant efficiency and productivity: TE, TED, TD,

SC, and T _FP. The minimum mean squared error predictor

of the TE score for firm i at time t is defined as

TEit ¼ Eð�uitjeitÞ; ð3� 2Þ

where eit = vit-uit. Simply put, a firm’s TE score is

measured as the ratio of the firm’s observed output to its

industry production frontier for a given input vector, after

adjusting for producer-specific random shocks.

The Divisia index of total factor productivity change

T _FP
� �

is defined as the difference between the rate of

change of output and the rate of change of an input quantity

index. Kumbhakar and Lovell (2000) show that T _FP can

be expressed as:

T _FP ¼ TDþ SCþ TED: ð3� 3Þ

Equation (3-3) shows that productivity change stems from

three sources: technical change (TD), scale economies

(SC), and TE change (TED).3 Specifically, the rate of

1 In an earlier version of this paper, we used a production function

that restricts the patterns of TE change to be the same for all firms—

which is too restrictive for our intended purpose of analyzing the rate

of technical efficiency change across plants. We thank the associate

editor for pointing this out and suggesting to switch to this more

flexible model.
2 For the derivation of the likelihood function, see Aigner et al.

(1977) and Chapter 3 of Kumbhakar and Lovell (2000). The

maximum likelihood estimation of the half normal production

function is carried out using the computer program Frontier 4.1,

written by Professor Tim Coelli. Frontier 4.1 is available at

http://www.uq.edu.au/economics/cepa/frontier.htm.
3 According to Kumbhakar and Lovell (2000), TFP change consists

of four as opposed to three terms. Specifically, T _FP ¼ TDþ SCþ
P

k
ek

e

� �
� Sk

� �
þ _Xk þ TED: That is, there should be a fourth term

that captures the effect of allocative inefficiency in Eq. (3-3),

J Prod Anal (2012) 38:285–302 287

123

http://www.uq.edu.au/economics/cepa/frontier.htm


technical change, which measures the contribution of shifts

in the production frontier, is given by:

TD ¼ o ln f ðX; t; bÞ
ot

: ð3� 4Þ

From now on, the subscripts i and t are dropped for

simplicity. The scale effect, which can be interpreted as the

contribution of input use adjustment on productivity, is

provided by

SC ¼ ðe� 1Þ
X

k

ek

e
_Xk; ð3� 5Þ

where ek ¼ ekðX; t; bÞ ¼ XkfkðX; t; bÞ=f ðX; t; bÞ; k ¼ 1;

. . .;K; are the elasticities of output with respect to each

of the inputs, and fk(X, t; b) is the partial derivative of the

production function f(.) with respect to input quantity Xk.

The scale elasticity e ¼ eðX; t; bÞ ¼
P

k ekðX; t; bÞ is a

measure of returns to scale, with e [ 1; ¼ 1; and \1

corresponding to increasing, constant, and decreasing

returns to scale, respectively. Finally, technical efficiency

change is defined as:

TEDit ¼ �
ou

ot
: ð3� 6Þ

Here, TEDit measures the rate at which the observed output

moves toward the industry’s maximum feasible output.

Multifactor productivity (MFP), which is calculated

using the index number approach, is the most widely-used

productivity index in the extant literature on the role of

resource reallocation across heterogeneous production

units in aggregate productivity growth.4 To evaluate whe-

ther the SFA approach yields different implications on the

contribution of resource reallocation to aggregate produc-

tivity growth from the index number approach, we compute

the MFP index for each plant-year observation. Following

Foster et al. (2001, 2006) and Foster et al. (2008), we

define plant-level MFP as:

MFPit ¼ ln Yit � aLt ln Lit � aKt ln Kit; ð3� 7Þ

where the output elasticity of labor (aLt) is measured as the

average share of the wage bill in output across plants in the

industry. It should be noted that setting output elasticities

equal to the factor income share implicitly assumes that

factors are paid their marginal products, i.e., plants are

allocatively efficient. As the price of capital service is not

available, we measure the output elasticity of capital as one

minus labor’s share, i.e., 1-aLt.
5 Multifactor productivity

growth between period t-1 and t is calculated as:

MFPD ¼ ln
Yit

Yit�1

� �
� 1

2
aLt þ aLt�1ð Þ ln Lit

Lit�1

� �

� 1

2
aKt þ aKt�1ð Þ ln Kit

Kit�1

� �
: ð3� 8Þ

It is noteworthy that MFP and MFPD differ from the

efficiency and productivity measures obtained using the

SFA approach in three important aspects.6 First, and most

importantly, MFP evaluates plant performance in a

deterministic framework. Any variation in output not

resulting from input growth is accredited to productivity.

Hence, the resultant MFP measure of a plant’s performance

is likely to be confounded with random shocks outside the

control of producers, such as weather, an oil shock, and a

policy change. By contrast, the econometric approach of

SFA explicitly accounts for noises and generates efficiency

and productivity measures that are not contaminated by

random shocks. Second, as is shown in Eq. (3-3), T _FP can

be decomposed into three components, thus providing

further insights into the sources of productivity growth.7

The MFPD in its simple form, however, does not

distinguish among sources of productivity change. Third,

measuring allocative inefficiency is in general possible in

the SFA approach, but impossible in the index number

approach. However, as mentioned in footnote 3, due to the

unavailability of data on the price of capital service, in

calculating T _FP and MFPD, we have always maintained

the assumption that plants are allocatively efficient.8

3.2 The Olley–Pakes decomposition methodology

Olley and Pakes (1996) introduce a cross-sectional

decomposition approach to measure the extent to which

activities are disproportionately located at more productive

Footnote 3 continued

but because data on the price of capital service are unavailable, we are

unable to empirically calculate the allocative inefficiency term. We

follow Kumbakhar and Lovell (2000, p. 284) to assume that factors

are paid the value of their marginal product, i.e., plants attain allo-

cative efficiency so that the allocative inefficiency term vanishes. We

are indebted to the associated editor’s suggestion to include the above

discussion about the allocative inefficiency term in this paper.
4 For a survey of the literature on the role of output reallocation in

aggregate productivity change, see Foster et al. (2001). For excellent

reviews of the index number approach of measuring productivity, see

Good et al. (1997) and Hulten (2009).

5 Note that calculating the output elasticity of capital as one minus

labor’s share in output implicitly assumes that the product market is

perfectly competitive such that there is no markup. As a result, factor

income shares add up to one and the production technology exhibits

constant-returns-to-scale.
6 For an excellent review of the advantages and drawbacks on the

index number approach and the SFA approach, see Chapter 12 of

Coelli et al. (2005).
7 The main drawback of the SFA approach is its requirement of

specifying a particular functional form for a production or a cost

function, despite that the true functional forms are not known a priori.
8 We are indebted to the associate editor for pointing this out.
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plants at a given point in time.9 One novelty of this current

paper is that for the first time in the literature, we apply

Olley–Pakes decomposition to the industry-level weighted

average productivity of jobs created (destructed).

Define industry j’s weighted average TE of jobs created

in time t (TEJCjt) as the job creation share weighted

average TE:

TEJCjt ¼
X

i2j

sJC
it TEit; ð3� 9Þ

where sJC
it denotes plant i’s share in total job creation for

industry j at time t. The Olley–Pakes decomposition splits

the industry-level weighted average TE of jobs created into

two terms:

TEJCjt ¼ TEjt þ
XN

i¼1

sJC
it � sJC

t

� �
TEit � TEjt

� �

¼ TEjt þ COVTEJCjt; ð3� 10Þ

where sJC
it is the unweighted average job creation share,

TEjt is the unweighted average plant-level TE, and

COVTEJCjt is the cross-sectional covariance between a

plant’s TE and its share of total jobs created in the industry. A

plant contributes positively to average productivity of jobs

created if its TE exceeds (falls short of) the unweighted

average TE in the industry and it occupies a higher (lower)

job creation share than the unweighted average job creation

share in the industry. A positive (negative) COVTEJC

indicates that high-TE plants tend to occupy a greater

(smaller) share in the industry’s total jobs created.

The industry-level weighted average TE of jobs des-

tructed (TEJDjt) can be analogously decomposed as:

TEJDjt ¼ TEjt þ COVTEJDjt; ð3� 11Þ

where COVTEJCjt is the cross-sectional covariance

between a plant’s TE and its share in total jobs created in

the industry. A negative (positive) COVTEJD indicates

that low-TE plants tend to have a higher (lower) job

destruction share. The more negative (positive) the term

COVTEJD is, the more (less) aggregate productivity-

enhancing is the job destruction process will be.

Regarding the test for the effectiveness of the creative

destruction process, a positive and significant difference

between mean COVTEJC and mean COVTEJD implies that

the average TE of jobs created exceeds that of jobs des-

tructed—an indication of creative destruction. It is illumi-

nating to apply the Olley–Pakes decomposition to the

industry-level weighted average TED, TD, SC, and T _FP of

jobs created and destructed. The covariance terms in these

decompositions will provide further insights into the impor-

tance of plant-level technical efficiency change and technical

change in the restructuring process and the association

between job creation (destruction) and scale efficiency.

4 Data description

The data are taken from the annual manufacturing plant

census survey by the Ministry of Economic Affairs,

Taiwan, the Republic of China, spanning from 1992 to

2003. The survey was not conducted in 1996 and 2001,

reducing the data to 10 years. There are 23 two-digit

manufacturing industries in our data.10

We measure plant output as value-added, which is con-

structed by subtracting from sales revenue the expenditures

on materials, intermediate inputs, and electricity. Two inputs

are identified from the data: labor (number of employees)

and capital stock (the book value of equipment and struc-

tures) net of depreciation. The variables capital and value-

added are deflated by the wholesale price index with base

year 2001.11 After deleting observations with missing val-

ues, the final sample has 753,775 observations (120,808

plants). Table 1 reports the descriptive statistics.12

Table 2 presents the annual averages of job creation and

destruction rates, employment growth, and the job realloca-

tion rate by industry. The mean job creation rate ranges from

0.113 to 0.255 and the mean job destruction rate lies between

0.1 and 0.237. The large rates of expansion and contraction

reveal that Taiwanese plants adjust their workforce swiftly in

response to market conditions. This possibly reflects the less

generous welfare state and job security provisions in Taiwan,

rendering the labor adjustment costs relatively low. Further-

more, the high rates of job reallocation may be a result of the

dominance of small firms, which are less able to differentiate

and diversify their products, are vulnerable to shocks due to

their high volatility of revenues, and are more prone to credit

constraints. The foregoing distinguishes Taiwan’s manufac-

turing industries from those of the rest of the world and makes

them a unique sample worth examining.

5 Technical efficiency and productivity estimates

Table 3 summarizes the plant-level technical efficiency

and productivity indicators calculated using the production

9 The Olley–Pakes decomposition has been used in many empirical

studies examining the importance of output and employment reallo-

cation in aggregate productivity growth. See, for example, Foster

et al. (2001), (2008), Eslava et al. (2004), and (2010).

10 The two-digit industry classification codes have been changed

twice during the sample period. The four-digit codes are used to

retrieve a consistent two-digit industry classification.
11 The average exchange rate over the period 1993–2003 was

NT$30.47/US$1.
12 For brevity the same statistics for individual industries are not

shown but are available upon request.
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frontier parameter estimates. The mean TE scores vary

substantially across industries, ranging from 0.515 to

0.718. These figures show that even in the most efficient

industry, the output of the average plant is 28.2% below

that of the best-practice plant which uses the same input

mix. The mean values of the TED lie between -0.016 and

0.005. Mean TED is negative in 21 out of the 23 cases,

indicating that the output gap with the industry best prac-

tice widened at the typical plant.

The scale effect averaged negative in 14 industries,

ranging from -0.021 to 0.005, indicating that changes in

plant size improved productivity in only 9 out of the 23

industries. In the other 14 industries, input use adjustments

are on average counterproductive.

Technical change is the dominant component among the

three components of T _FP in 22 of the 23 industries.

The mean technical change ranges from -0.003 to 0.053.

Here, TD is on average positive and large in magnitude.

Table 1 Summary statistics

Variable Mean SD Min Max No. of obs.

Number of employees 27 108 1 12,850 753,775

Value-added 34,617.080 447,384.000 0.947 134,000,000 753,775

Value-added per employee 720.630 2,157.446 0.032 1,219,656 753,775

Capital 66,132.590 1,277,400.000 0.947 282,000,000 753,775

Capital per employee 1,569.243 9,755.578 0.015 4,577,349 753,775

Industry real output growth 4.68% 11.46% -0.15% 56.93% 207

Per capita real GDP growth 5.26% 2.68% -2.17% 7.85% 10

Value-added and capital variables are measured in thousands of 2001 New Taiwan Dollars

Table 2 Job creation rate, job destruction rate, employment growth, and job reallocation rate by industry

SIC Description Job creation rate Job destruction rate Employment growth Job reallocation rate

8 Food and beverage 0.158 0.167 -0.010 0.326

10 Textile 0.130 0.151 -0.051 0.281

11 Garment and apparel 0.199 0.236 -0.021 0.435

12 Leather, fur and leather and fur products 0.132 0.211 -0.028 0.344

13 Wood and bamboo products 0.156 0.237 -0.114 0.393

14 Furniture and furnishings 0.163 0.212 -0.076 0.376

15 Paper pulp, paper and paper products 0.126 0.145 -0.034 0.271

16 Printing 0.202 0.193 0.014 0.396

17 Chemical materials 0.113 0.100 0.016 0.212

18 Chemical products 0.160 0.153 0.006 0.312

19 Petroleum and coal products 0.068 0.140 -0.021 0.207

20 Rubber products 0.149 0.151 -0.017 0.300

21 Plastic products 0.185 0.198 -0.034 0.383

22 Non-metallic mineral products 0.157 0.191 -0.045 0.347

23 Basic metals 0.144 0.132 -0.001 0.276

24 Fabricated metal products 0.213 0.188 0.005 0.401

25 Machinery and equipment 0.219 0.194 0.052 0.413

26 Computer, telecommunications, audio

and video electronics products

0.255 0.204 0.049 0.459

27 Electronics parts and components 0.225 0.142 0.106 0.367

28 Electrical equipment 0.183 0.187 -0.027 0.370

29 Transportation equipment 0.160 0.172 0.000 0.332

30 Precision machinery 0.199 0.189 0.002 0.388

31 Miscellaneous industrial products 0.192 0.234 -0.063 0.426

Mean 0.169 0.179 -0.013 0.348

Following Davis et al. (1996), the job creation (destruction) rate in year t is defined as the sum of jobs created (destructed) at all plants divided by

the average of industry employment in years t - 1 and t
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This indicates that in order to survive fierce competition in

the global market, Taiwanese plants had to constantly

enhance their production technology.

Plant-level T _FP averages positive in 21 of 23 industries,

ranging from -0.019 to 0.045. This is because TD is suf-

ficiently positive to entirely offset the negative effect of

TED and SC on productivity.

For comparison reason, we also report the summary

statistics for MFP and MFPD. One striking finding that

emerges is that MFP and MFPD are considerably more

variable than TE and the three components of T _FP. The

standard deviations of MFP and MFPD are much larger

than that of TE and the three components of T _FP. More-

over, MFP and MFPD are more volatile, because MFP,

which is generated in a deterministic setting, captures both

productivity and idiosyncratic shocks. Nevertheless, the

last column in Table 3, which reports the correlation

coefficients between T _FP and MFPD, indicates that MFPD

and T _FP are positively and significantly correlated in all

industries.

6 Measuring the effectiveness of the creative

destruction process and testing for the cleansing

effects of recessions

6.1 The effectiveness of the creative destruction

process

This section examines the distribution of jobs created

(destructed) across technical efficiency and productivity

indicators. We first consider the distribution of jobs created

(destructed) across plants in terms of TE. Recall that a

lower TE means that there are more idle resources and

unproductive activities in the plant. Namely, a low-TE

plant can substantially increase its output, holding constant

the current input mix. Applying the Olley–Pakes decom-

position to the weighted average TE of jobs created (des-

tructed) enables us to assess whether jobs are destructed

(created) mainly by plants with more (less) room for input

reduction.

Table 4 summarizes the Olley–Pakes decomposition

results for the weighted average TE of jobs created (des-

tructed) as well as the p values of the test for the null

hypothesis that the mean of the weighted average TE of

jobs created and that of jobs destructed are equal.13 The

purpose of this test is to evaluate whether the average

created job is significantly more technically efficient than

the average destructed job.
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13 The numbers in columns one to three in Tables 4,5,6,7,8,9 and 10

are simple averages over time. Detailed results are available upon

request.
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Three striking findings emerge. First, Cov TEit; s
JC
it

� �
is

negative in all industries and Cov TEit; s
JD
it

� �
is positive in

22 of the 23 industries, suggesting that job creation is

disproportionately located at low-TE plants, whereas job

destruction is disproportionately located at high-TE plants.

Depending on the industry, the weighted average TE of

jobs created (destructed) would be 0.005–0.041 higher

(0.026 lower–0.004 higher) if jobs created (destructed)

were randomly allocated across plants. The results thus

indicate that many inefficient plants increase their hiring in

spite of having low managerial skills and idle resources. In

contrast, high-TE plants cut jobs even though their mana-

gerial skills are already superior and room for improving

technical efficiency is limited.

Second, the weighted average TE of jobs created (des-

tructed) is mainly accounted for by the unweighted average

TE, indicating that the importance of TE in gaining job

creation (destruction) share is marginal. Third, the null

hypothesis that—the TE of the average job created is equal

to that of the average job destroyed—is rejected at the 5%

level in 21 of the 23 cases. The evidence points to the fact

that that less efficient jobs displace more efficient jobs in

21 industries. In short, when plant performance is measured

by TE, our data do not support the creative destruction

hypothesis.

We next turn to examine the TED distribution of jobs

created and destructed. Table 5 reports the Olley–Pakes

decomposition results for the weighted average TED of

jobs created (destructed). Here, Cov TEDit; s
JC
it

� �
is nega-

tive in all industries whereas Cov TEDit; s
JD
it

� �
turns out

positive in all industries. The null hypothesis that the

weighted average TED of jobs created and that of jobs

Table 4 Decomposition of the industry-level weighted average technical efficiency of jobs created and destructed

(1) (2) (3) (4) (5) (6)

SIC Description TE Cov TEit; s
JC
it

� �
Cov TEit; s

JD
it

� � ð2Þ
ð1Þþð2Þ

ð3Þ
ð1Þþð3Þ

p value of mean

comparison t test

8 Food and beverage 0.514 -0.025 0.017 -0.052 0.031 0.000

10 Textile 0.666 -0.008 0.006 -0.012 0.009 0.002

11 Garment and apparel 0.691 -0.010 0.015 -0.014 0.020 0.000

12 Leather, fur and leather and fur products 0.639 -0.009 0.007 -0.015 0.011 0.085

13 Wood and bamboo products 0.570 -0.028 0.026 -0.064 0.043 0.005

14 Furniture and furnishings 0.612 -0.017 0.022 -0.029 0.035 0.000

15 Paper pulp, paper, and paper products 0.605 -0.027 0.005 -0.047 0.007 0.002

16 Printing 0.686 -0.020 0.012 -0.030 0.016 0.000

17 Chemical materials 0.534 -0.006 -0.004 -0.017 -0.007 0.392

18 Chemical products 0.607 -0.007 0.025 -0.012 0.039 0.000

19 Petroleum and coal products 0.654 -0.020 0.017 -0.031 0.025 0.000

20 Rubber products 0.668 -0.010 0.012 -0.017 0.018 0.001

21 Plastic products 0.622 -0.022 0.007 -0.038 0.010 0.001

22 Non-metallic mineral products 0.618 -0.016 0.014 -0.027 0.022 0.003

23 Basic metals 0.655 -0.009 0.008 -0.014 0.011 0.000

24 Fabricated metal products 0.676 -0.015 0.015 -0.023 0.022 0.000

25 Machinery and equipment 0.660 -0.024 0.018 -0.038 0.027 0.000

26 Computer, telecommunications,

audio and video electronics products

0.706 -0.005 0.007 -0.007 0.009 0.054

27 Electronics parts and components 0.718 -0.005 0.004 -0.007 0.006 0.053

28 Electrical equipment 0.670 -0.012 0.013 -0.019 0.019 0.003

29 Transportation equipment 0.665 -0.012 0.011 -0.018 0.016 0.008

30 Precision machinery 0.677 -0.010 0.010 -0.016 0.014 0.006

31 Miscellaneous industrial products 0.615 -0.041 0.007 -0.093 0.009 0.045

Mean 0.640 -0.016 0.012 -0.028 0.018

Column (1) shows the contribution of the simple mean of TE. Columns (2) and (3) show the contribution of the cross-sectional correlation

between TE and job creation share and job destruction share, respectively. All of the figures in columns one through three are simple means for

those two-digit industry level statistics across time. Column (4) shows the fractions of the weighted average TE of jobs created represented by the

covariance term. Column (5) shows the fractions of the weighted average TE of jobs destructed represented by the covariance term. The p values

in column (6) are results from t tests on the null hypothesis that the mean of the weighted average TE of jobs created and that of jobs destructed

are equal against the alternative hypothesis that the mean of the weighted average TE of jobs created is less than the mean of the weighted

average TE of jobs destructed
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destructed are equal is rejected at the 5% level in all 23

industries. The covariance terms imply that if jobs created

(destructed) were randomly allocated, then the industry-

level weighted average TED of jobs created (destructed)

would be 0.011–0.067 higher (0.01–0.04 lower). Therefore,

results obtained using technical efficiency change as a plant

performance measure are counter to the creative destruc-

tion hypothesis.

The finding that job destruction (creation) is associated

with a higher (lower) rate of technical efficiency change is

not surprising. As Table 4 shows, jobs are primarily des-

tructed by plants with better managerial skills, i.e., high-TE

plants. Further employment reduction in plants that are

already highly efficient boosts technical efficiency. Con-

versely, since new jobs are primarily created by plants that

could produce more output with the same level of inputs,

adding jobs in these less efficient plants exacerbates tech-

nical inefficiency.

We now turn our attention to the distribution of jobs

created (destructed) across TD. Table 6 presents the

Olley–Pakes decomposition results for the weighted

average TD of jobs created (destructed). We find that

Cov TDit; s
JC
it

� �
is positive in 20 of the 23 industries,

implying that in most industries jobs created are dispro-

portionately concentrated at high-TD plants. Somewhat

surprisingly, Cov TDit; s
JD
it

� �
is positive in 13 of the 23

industries, which means that in more than half of the

industries, destructed jobs are also disproportionately

clustered at high-TD plants. Nevertheless, the null

hypothesis that the TD of the average job created is equal

to that of the average job destructed is rejected in 22 of the

23 cases at the 5% level, confirming that the TD of the

Table 5 Decomposition of the industry-level weighted average rate of technical efficiency change of jobs created and destructed

(1) (2) (3) (4) (5) (6)

SIC Description TED Cov TEDit; s
JC
it

� �
Cov TEDit; s

JD
it

� � ð2Þ
ð1Þþð2Þ

ð3Þ
ð1Þþð3Þ

p value of mean

comparison t test

8 Food and beverage -0.010 -0.049 0.040 -3.240 1.487 0.000

10 Textile -0.005 -0.027 0.017 0.682 7.600 0.000

11 Garment and apparel -0.003 -0.031 0.016 1.050 -0.588 0.000

12 Leather, fur and leather and fur products -0.005 -0.028 0.014 0.718 2.418 0.003

13 Wood and bamboo products -0.015 -0.066 0.040 0.589 8.144 0.000

14 Furniture and furnishings -0.010 -0.044 0.030 0.607 -0.392 0.000

15 Paper pulp, paper and paper products -0.016 -0.048 0.033 0.561 5.812 0.000

16 Printing -0.004 -0.045 0.022 1.532 1.295 0.000

17 Chemical materials -0.014 -0.031 0.027 0.241 -20.074 0.000

18 Chemical products -0.002 -0.039 0.030 1.000 1.275 0.000

19 Petroleum and coal products 0.005 -0.028 0.015 3.343 0.307 0.010

20 Rubber products -0.006 -0.034 0.024 0.500 1.222 0.000

21 Plastic products -0.011 -0.042 0.025 0.616 1.835 0.000

22 Non-metallic mineral products -0.002 -0.039 0.030 0.986 2.484 0.000

23 Basic metals -0.003 -0.012 0.014 -37.088 2.946 0.000

24 Fabricated metal products -0.002 -0.035 0.028 1.127 1.248 0.000

25 Machinery and equipment -0.007 -0.043 0.032 0.461 2.264 0.000

26 Computer, telecommunications, audio

and video electronic products

-0.001 -0.016 0.010 1.028 0.662 0.000

27 Electronics parts and components 0.002 -0.011 0.013 1.065 0.877 0.002

28 Electrical equipment -0.003 -0.028 0.031 -0.028 1.002 0.002

29 Transportation equipment -0.007 -0.034 0.019 0.404 1.001 0.000

30 Precision machinery -0.004 -0.023 0.015 0.730 1.503 0.001

31 Miscellaneous industrial products -0.009 -0.067 0.036 0.569 0.870 0.002

Mean -0.006 -0.036 0.024 -0.980 1.096

Column (1) shows the contribution of the simple mean of TED. Columns (2) and (3) show the contribution of the cross-sectional correlation

between TED and job creation share and job destruction share, respectively. All of the figures in columns one through three are simple means for

those two-digit industry level statistics across time. Column (4) shows the fractions of the weighted average TED of jobs created represented by

the covariance term. Column (5) shows the fractions of the weighted average TED of jobs destructed represented by the covariance term. The

p values in column (6) are results from t tests on the null hypothesis that the mean of the weighted average TED of jobs created and that of jobs

destructed are equal against the alternative hypothesis that the mean of weighted average TED of jobs created is less than the mean of the

weighted average TED of jobs destructed
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average job created is higher than that of the average job

destructed. Thus, the creative destruction hypothesis is

supported by the data when plant performance is proxied

by the rate of technical change.

Table 7 shows the association between creation (destruc-

tion) and changes in scale efficiency. Measure Cov SCit; s
JC
it

� �

is found to be positive, whereas Cov SCit; s
JD
it

� �
is found to be

negative in all industries, suggesting that the larger the job

creation (destruction) share is, the greater (smaller) the

change in scale efficiency will be. The foregoing implies that

if jobs created (destructed) were randomly allocated, then

depending on the industry the weighted average SC of jobs

created (destructed) would be 0.034–0.15 lower (0.044–

0.132 higher). The finding that job creation (destruction)

enhances (hampers) scale efficiency implies that both crea-

tion and destruction are disproportionately located at

increasing-returns-to-scale plants.

Table 8 presents the decomposition results for the

weighted average rate of T _FP
� �

change for jobs created

and destructed. Cov T _FPit; s
JC
it

� �
is positive in all industries

whereas Cov T _FPit; s
JD
it

� �
is negative in all industries. The

null hypothesis that the T _FP of the average job created is

equal to that of the average job destructed is rejected at the

5% level in all industries. At first glance, this finding seems

to support the creative destruction hypothesis. Following

Eq. (3-3), the covariance between T _FP and job creation

(destruction) share can be expressed as the sum of three

individual covariance terms:

Table 6 Decomposition of the industry-level weighted average rate of technical change of jobs created and destructed

(1) (2) (3) (4) (5) (6)

SIC Description TD Cov TDit; s
JC
it

� �
Cov TDit; s

JD
it

� � ð2Þ
ð1Þþð2Þ

ð3Þ
ð1Þþð3Þ

p value of mean

comparison t test

8 Food and beverage 0.035 0.018 0.005 0.352 0.127 0.000

10 Textile 0.034 0.004 0.001 0.118 0.013 0.000

11 Garment and apparel 0.037 0.006 0.002 0.244 0.108 0.000

12 Leather, fur, and leather and fur products 0.019 0.016 0.007 -0.264 0.253 0.001

13 Wood and bamboo products 0.050 0.022 0.007 0.330 0.131 0.000

14 Furniture and furnishings 0.045 0.008 0.003 0.143 0.071 0.000

15 Paper pulp, paper, and paper products 0.054 0.007 0.001 0.118 0.007 0.000

16 Printing 0.028 0.009 0.003 0.273 0.089 0.000

17 Chemical materials 0.046 0.002 -0.007 0.036 -0.179 0.003

18 Chemical products 0.030 -0.002 -0.003 -0.072 -0.163 0.009

19 Petroleum and coal products 0.004 0.002 -0.018 -0.037 1.823 0.000

20 Rubber products 0.027 0.000 -0.003 -0.015 -0.129 0.000

21 Plastic products 0.037 0.005 0.000 0.117 -0.008 0.000

22 Non-metallic mineral products 0.023 -0.001 -0.003 -0.021 0.243 0.005

23 Basic metals 0.033 -0.010 -0.010 -0.464 -0.455 0.390

24 Fabricated metal products 0.022 0.004 0.001 0.088 -0.091 0.000

25 Machinery and equipment 0.040 0.005 0.000 0.114 0.006 0.000

26 Computer, telecommunications, audio

and video electronics products

0.045 0.001 -0.005 0.069 0.800 0.003

27 Electronics parts and components 0.026 0.002 -0.001 0.155 -0.001 0.011

28 Electrical equipment 0.034 0.002 -0.001 0.079 -0.095 0.000

29 Transportation equipment 0.044 0.001 -0.001 0.027 -0.034 0.000

30 Precision machinery 0.042 0.015 0.006 0.269 0.118 0.000

31 Miscellaneous industrial products 0.041 0.015 0.004 0.257 0.091 0.000

Mean 0.035 0.006 -0.001 0.083 0.119

Column (1) shows the contribution of the simple mean of TD. Columns (2) and (3) show the contribution of the cross-sectional correlation

between TD and job creation share and job destruction share, respectively. All of the figures in columns one through three are simple means for

those two-digit industry level statistics across time. Column (4) shows the fractions of the weighted average TD of jobs created represented by the

covariance term. Column (5) shows the fractions of the weighted average TD of jobs destructed represented by the covariance term. The p values

in column (6) are results from t tests on the null hypothesis that the mean of the weighted average TD of jobs created and that of jobs destructed

are equal against the alternative hypothesis that the mean of the weighted average TD of jobs created is greater than the mean of the weighted

average TD of jobs destructed
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Cov T _FPit; s
JX
it

� �
¼ Cov TEDit; s

JX
it

� �
þ Cov TDit; s

JX
it

� �

þ Cov SCit; s
JX
it

� �
;

where X denotes either JC or JD.

Based on Tables 5, 6, 7, the covariance between SC and

job creation (destruction) share is the largest in absolute

value and thus dominates the other two covariance terms.

The negative (positive) effect of Cov TEDit; s
JC
it

� �

Cov TEDit; s
JD
it

� �� �
is entirely outweighed by the positive

(negative) effect of Cov SCit; s
JC
it

� �
Cov SCit; s

JD
it

� �� �
: It is

clear that if the efficiency of job reallocation is analyzed

solely in terms of plant-level T _FP, then facts that job

creation (destruction) tends to improve (impede) scale

efficiency and the average TED of jobs created is lower

than that of the average job destructed cannot be detected.

The above decomposition exercises reveal that, to draw

sensible conclusions about the efficiency of the restruc-

turing process, it is essential to delve deeper into the dis-

tribution of jobs created and destructed along all of the four

dimensions: TE, TED, TD, and SC.

We have so far documented that market selection is

better characterized as a selection on plants’ technological

innovation, as opposed to a selection on technical effi-

ciency or the rate of technical efficiency change. The rate

of technical change is more important than technical effi-

ciency in gaining employment share. One possible reason

for this is that due to rapidly rising domestic wages and

intensified competition from emerging economies, small

and technically efficient plants that cannot afford R&D

expenditures (and consequently are less technologically

innovative) choose to outsource or move to low-cost

countries. Conversely, plants that continue to create jobs

Table 7 Decomposition of the industry-level weighted average scale effect of jobs created and destructed

(1) (2) (3) (4) (5) (6)

SIC Description SC Cov SCit; s
JC
it

� �
Cov SCit; s

JD
it

� � ð2Þ
ð1Þþð2Þ

ð3Þ
ð1Þþð3Þ

p value of mean

comparison t test

8 Food and beverage 0.005 0.150 -0.132 0.978 1.041 0.000

10 Textile -0.005 0.060 -0.046 1.104 0.893 0.000

11 Garment and apparel -0.011 0.073 -0.055 1.193 0.820 0.000

12 Leather, fur, and leather and fur products -0.011 0.102 -0.062 1.139 0.916 0.000

13 Wood and bamboo products -0.006 0.117 -0.086 1.070 0.944 0.000

14 Furniture and furnishings -0.007 0.075 -0.057 1.109 0.887 0.000

15 Paper pulp, paper, and paper products 0.000 0.066 -0.044 1.003 0.996 0.000

16 Printing -0.001 0.074 -0.057 1.008 0.990 0.000

17 Chemical materials -0.008 0.034 -0.058 1.595 0.858 0.000

18 Chemical products -0.007 0.090 -0.119 1.108 0.925 0.000

19 Petroleum and coal products -0.019 0.041 -0.052 1.542 0.727 0.001

20 Rubber products 0.000 0.059 -0.049 1.006 1.004 0.000

21 Plastic products 0.001 0.081 -0.054 0.988 1.020 0.000

22 Non-metallic mineral products -0.016 0.065 -0.087 1.377 0.833 0.000

23 Basic metals -0.011 0.041 -0.090 1.251 0.871 0.000

24 Fabricated metal products 0.002 0.066 -0.052 0.976 1.034 0.000

25 Machinery and equipment 0.002 0.090 -0.067 0.983 1.031 0.000

26 Computer, telecommunications, audio

and video electronics products

-0.001 0.118 -0.085 1.013 0.998 0.000

27 Electronics parts and components 0.002 0.065 -0.045 0.981 1.063 0.000

28 Electrical equipment -0.006 0.067 -0.072 1.115 0.899 0.000

29 Transportation equipment 0.001 0.114 -0.081 0.997 1.000 0.000

30 Precision machinery -0.007 0.068 -0.063 1.124 0.877 0.000

31 Miscellaneous industrial products -0.009 0.039 -0.078 1.100 0.895 0.045

Mean -0.005 0.076 -0.069 1.120 0.936

Column (1) shows the contribution of the simple mean of SC. Columns (2) and (3) show the contribution of the cross-sectional correlation

between SC and job creation share and job destruction share, respectively. All of the figures in columns one through three are simple means for

those two-digit industry level statistics across time. Column (4) shows the fractions of the weighted average SC of jobs created represented by the

covariance term. Column (5) shows the fractions of the weighted average SC of jobs destructed represented by the covariance term. The p values

in column (6) are results from t tests on the null hypothesis that the mean of the weighted average SC of jobs created and that of jobs destructed

are equal against the alternative hypothesis that the mean of the weighted average SC of jobs created is greater than the mean of the weighted

average SC of jobs destructed
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domestically are primarily those that seek to gain a com-

petitive edge through R&D investment as opposed to out-

sourcing or undertaking outward foreign direct investment.

Since most previous empirical studies on the efficiency

of reallocation mainly use MFP, we apply the Olley–Pakes

decomposition to the industry-level weighted average MFP

of jobs created (destructed). This allows us to assess

whether the SFA and the index number approach yield

different implications about the importance of efficiency

and productivity heterogeneities in the distribution of jobs

created (destructed).

Table 9 reports the Olley–Pakes decomposition results

for the weighted average MFP of jobs created (destructed).

Both job creation and destruction are disproportionately

clustered at high-MFP plants. The null hypothesis that the

mean of the weighted average MFP of jobs created and that

of jobs destructed are equal is rejected against the alter-

native hypothesis that the mean of the weighted average

MFP of jobs created is higher than that of jobs destructed in

11 of 23 industries. This is inconsistent with our decom-

position results for the weighted average TE of jobs created

(destructed), which indicates that the weighted average TE

of jobs created is significantly lower than that of the

weighted average TE of jobs destructed in most industries.

It is pivotal to note that the share of the industry-level

weighted average MFP of jobs created (destructed)

explained by the covariance term is much higher than the

share of industry-level weighted average TE of jobs created

(destructed) explained by the covariance term. Specifically,

the average fraction of the weighted average MFP of jobs

Table 8 Decomposition of the industry-level weighted average rate of T _FP
� �

change of jobs created and destructed

(1) (2) (3) (4) (5) (6)

SIC Description T _FP Cov T _FPit; s
JC
it

� �
Cov T _FPit; s

JD
it

� � ð2Þ
ð1Þþð2Þ

ð3Þ
ð1Þþð3Þ

p value of mean

comparison t test

8 Food and beverage 0.031 0.119 -0.087 0.803 1.928 0.000

10 Textile 0.023 0.037 -0.029 0.718 0.581 0.000

11 Garment and apparel 0.022 0.048 -0.037 0.748 -1.543 0.000

12 Leather, fur, and leather and fur products 0.003 0.090 -0.042 1.174 1.712 0.000

13 Wood and bamboo products 0.030 0.073 -0.039 0.778 0.155 0.000

14 Furniture and furnishings 0.028 0.039 -0.024 0.748 2.526 0.000

15 Paper pulp, paper, and paper products 0.038 0.025 -0.010 0.010 -0.638 0.007

16 Printing 0.023 0.039 -0.032 0.620 2.456 0.002

17 Chemical materials 0.024 0.005 -0.038 0.082 0.703 0.013

18 Chemical products 0.021 0.050 -0.092 0.785 1.480 0.000

19 Petroleum and coal products -0.009 0.016 -0.056 0.286 -1.154 0.001

20 Rubber products 0.021 0.025 -0.028 0.418 0.815 0.000

21 Plastic products 0.027 0.044 -0.029 0.507 -0.104 0.000

22 Non-metallic mineral products 0.005 0.026 -0.060 1.386 -0.170 0.001

23 Basic metals 0.020 0.019 -0.087 -0.142 1.662 0.000

24 Fabricated metal products 0.022 0.035 -0.024 0.679 -5.629 0.000

25 Machinery and equipment 0.035 0.052 -0.035 0.622 -0.243 0.000

26 Computer, telecommunications, audio

and video electronics products

0.044 0.104 -0.080 0.717 0.204 0.000

27 Electronics parts and components 0.030 0.057 -0.032 0.669 0.639 0.000

28 Electrical equipment 0.026 0.040 -0.042 0.717 0.988 0.000

29 Transportation equipment 0.038 0.081 -0.063 0.684 1.531 0.000

30 Precision machinery 0.032 0.061 -0.042 0.636 4.858 0.000

31 Miscellaneous industrial products 0.022 -0.014 -0.038 0.842 1.904 0.385

Mean 0.024 0.046 -0.045 0.630 0.637

Column (1) shows the contribution of the simple mean of T _FP. Columns (2) and (3) show the contribution of the cross-sectional correlation

between T _FP and job creation share and job destruction share, respectively. All of the figures in columns one through three are simple means for

those two-digit industry level statistics across time. Column (4) shows the fractions of the weighted average T _FP of jobs created represented by

the covariance term. Column (5) shows the fractions of the weighted average T _FP of jobs destructed represented by the covariance term. The

p values in column (6) are results from t tests on the null hypothesis that the mean of the weighted average T _FP of jobs created and that of jobs

destructed are equal against the alternative hypothesis that the mean of the weighted average T _FP of jobs created is greater than the mean of the

weighted average T _FP
� �

of jobs destructed
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created (destructed) accounted for by the covariance term

is 25.2% (18.7%). This leads to an impression that plant-

level productivity plays an important role in the allocation

of jobs. On the other hand, based on the results in Table 4,

the covariance term accounts for only -2.8% (1.8%) of the

weighted average TE of jobs created (destructed). Such

discrepancy presumably has to do with the greater disper-

sion of MFP, which is likely a manifestation of idiosyn-

cratic shocks. The stark difference between the SFA results

and MFP results is important, as it signifies that using plant

performance measures not purged of idiosyncratic shocks

is apt to overstate the role of productivity heterogeneity in

resource reallocation while entirely overlooking the influ-

ence of random shocks on the efficiency of resource

allocation.

Table 10 presents the decomposition results of the

average MFPD of jobs created (destructed). Job creation

(destruction) share is positively (negatively) correlated

with MFPD in 15 (13) of the 23 industries. The null

hypothesis that the MFPD of the average job created is

equal to that of the average job destructed cannot be

rejected in 17 out of the 23 cases. This contrasts sharply

with the result obtained using TD as the plant performance

indicator. Moreover, the fraction of the weighted average

MFPD of jobs created (destructed) accounted for by the

covariance term is 159.7% (67%), whereas the fraction of

the weighted average TD accounted for by the covariance

term is only 8.3% (11.9%). Similar to the results obtained

using MFP as the plant performance measure, this implies

that using performance measures not purged of random

Table 9 Decomposition of aggregate multifactor productivity of jobs created and destructed

(1) (2) (3) (4) (5) (6)

SIC Description MFP Cov MFPit; s
JC
it

� �
Cov MFPit; s

JD
it

� � ð2Þ
ð1Þþð2Þ

ð3Þ
ð1Þþð3Þ

p value of mean

comparison t test

8 Food and beverage 0.249 0.586 0.520 0.702 0.676 0.150

10 Textile 0.579 0.156 0.033 0.212 0.054 0.007

11 Garment and apparel 0.762 0.327 0.242 0.300 0.241 0.074

12 Leather, fur, and leather and fur products 0.783 0.331 0.181 0.297 0.188 0.016

13 Wood and bamboo products 0.488 0.192 0.199 0.283 0.289 0.521

14 Furniture and furnishings 1.107 0.138 0.271 0.111 0.197 0.992

15 Paper pulp, paper, and paper products 0.669 0.081 0.050 0.108 0.069 0.230

16 Printing 0.611 0.148 0.109 0.195 0.151 0.227

17 Chemical materials 0.317 0.101 -0.082 0.242 -0.348 0.022

18 Chemical products 0.010 0.419 0.177 0.976 0.945 0.002

19 Petroleum and coal products 0.770 0.113 0.147 0.128 0.160 0.674

20 Rubber products 0.743 0.181 0.052 0.196 0.065 0.006

21 Plastic products 0.742 0.178 0.138 0.194 0.157 0.207

22 Non-metallic mineral products 0.739 0.182 0.145 0.197 0.164 0.311

23 Basic metals 0.631 0.116 0.009 0.156 0.015 0.034

24 Fabricated metal products 0.770 0.164 0.108 0.175 0.123 0.074

25 Machinery and equipment 0.721 0.209 0.153 0.225 0.175 0.079

26 Computer, telecommunications, audio

and video electronics products

0.981 0.420 0.248 0.300 0.201 0.064

27 Electronics parts and components 0.925 0.135 0.074 0.127 0.075 0.234

28 Electrical equipment 1.361 0.188 0.312 0.122 0.187 0.988

29 Transportation equipment 0.629 0.295 0.176 0.319 0.218 0.060

30 Precision machinery 0.767 0.278 0.133 0.266 0.148 0.052

31 Miscellaneous industrial products 1.058 -0.040 0.196 -0.040 0.156 0.822

Mean 0.714 0.213 0.156 0.252 0.187

Column (1) shows the contribution of the simple mean of MFP. Columns (2) and (3) show the contribution of cross-sectional correlation between

MFP and job creation share and job destruction share, respectively. All of the figures in columns one through three are simple means for those

two-digit industry level statistics across time. Column (4) shows the fractions of the weighted average MFP of jobs created represented by the

covariance term. Column (5) shows the fractions of the weighted average MFP of jobs destructed represented by the covariance term. The

p values in column (6) are results from t tests on the null hypothesis that the mean of the weighted average MFP of jobs created and that of jobs

destructed are equal against the alternative hypothesis that the mean of the weighted average MFP of jobs created is greater than the mean of the

weighted average MFP of jobs destructed
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shocks will overstate the role of productivity heterogeneity

in the distribution of jobs created (destructed) across plants.

6.2 Testing for the cleansing effects of recessions

This subsection explores the cyclical property of the effi-

ciency of the restructuring process.14 We use the growth

rate of per capita real GDP as an indicator for the state of

the aggregate economy and the growth rate of industry real

output as an indicator of the industry-level economic

condition. Bartelsman et al. (2009) argue for employing the

covariance term in the Olley–Pakes decomposition for-

mula, which is the difference between unweighted and

weighted average productivities, as a measure of allocative

efficiency comparable across industries or countries,

because measurement problems affecting the levels of

productivities are differenced out. Olley and Pakes (1996),

Eslava et al. (2004) and Bartelsman et al. (2009) regress the

Olley–Pakes covariance term against indicators of policy

reform to shed light on the effect of reforms on resource

allocation efficiency.

Our estimated equation is specified as follows:

Zjt ¼ aþ bggdp
t þ cgy

jt þ
X8

i¼1

diti þ
X22

k¼1

/kindkþejt;

ð6� 1Þ

where Zjt represents the Olley–Pakes covariance term for

industry j in year t, ggdp
t denotes per capita real GDP growth

Table 10 Decomposition of the industry-level weighted average multifactor productivity growth of jobs created and destructed

(1) (2) (3) (4) (5) (6)

SIC Description MFPD Cov MFPDit; s
JC
it

� �
Cov MFPDit; s

JD
it

� � ð2Þ
ð1Þþð2Þ

ð3Þ
ð1Þþð3Þ

p value of mean

comparison t test

8 Food and beverage -0.007 0.041 0.006 1.194 -5.786 0.290

10 Textile -0.016 0.037 -0.009 1.738 0.364 0.117

11 Garment and apparel -0.011 0.040 -0.020 1.406 0.638 0.173

12 Leather, fur, and leather and fur products -0.028 0.086 -0.063 1.492 0.690 0.019

13 Wood and bamboo products -0.031 -0.070 0.067 0.693 1.859 0.853

14 Furniture and furnishings 0.005 -0.157 0.121 1.033 0.960 1.000

15 Paper pulp, paper, and paper products -0.002 -0.012 0.046 0.884 1.036 0.819

16 Printing -0.012 -0.023 -0.027 0.666 0.698 0.470

17 Chemical materials 0.001 0.028 -0.026 0.978 1.025 0.169

18 Chemical products -0.007 0.106 -0.152 1.075 0.954 0.001

19 Petroleum and coal products 0.012 0.104 0.006 0.898 0.336 0.269

20 Rubber products -0.011 0.012 -0.060 15.059 0.848 0.082

21 Plastic products -0.006 -0.002 0.004 0.217 -1.618 0.542

22 Non-metallic mineral products -0.030 -0.027 0.037 0.480 4.899 0.773

23 Basic metals 0.004 0.123 -0.068 0.966 1.068 0.006

24 Fabricated metal products 0.000 0.022 -0.005 0.983 1.073 0.309

25 Machinery and equipment 0.002 0.029 -0.022 0.941 1.089 0.118

26 Computer, telecommunications, audio

and video electronics products

0.015 0.052 -0.066 0.781 1.283 0.047

27 Electronics parts and components 0.013 0.055 0.006 0.804 0.323 0.275

28 Electrical equipment 0.025 -0.134 0.214 1.233 0.894 0.993

29 Transportation equipment -0.006 0.065 -0.079 1.094 0.934 0.016

30 Precision machinery -0.012 0.114 -0.057 1.116 0.826 0.010

31 Miscellaneous industrial products -0.004 -0.349 0.229 0.990 1.016 0.974

Mean -0.005 0.006 0.003 1.597 0.670

Column (1) shows the contribution of the simple mean of MFPD. Columns (2) and (3) show the contribution of the cross-sectional correlation

between MFPD and job creation share and job destruction share, respectively. All of the figures in columns one through three are simple means

for those two-digit industry level statistics across time. Column (4) shows the fractions of the weighted average MFPD of jobs created

represented by the covariance term. Column (5) shows the fractions of the weighted average MFPD of jobs destructed represented by the

covariance term. The p values in column (6) are results from t tests on the null hypothesis that the mean of the weighted average MFPD of jobs

created and that of jobs destructed are equal against the alternative hypothesis that the mean of the weighted average MFPD of jobs created is

greater than the mean of the weighted average MFPD of jobs destructed

14 See Sect. 2.2 for a brief review of the theoretic debate on the

effects of downturns on the effectiveness of the restructuring process.
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in year t, gy
jt is industry j’s growth rate of real output, tis

represent a set of year dummies, indks are a set of 22 two-

digit industry dummies, and ejt is a random disturbance

with mean zero and a possibly non-constant variance.15

Equation (6-1) is estimated by ordinary least squares

(OLS). Since the variable of main interest, ggdp
t , varies by

year, then to account for heteroskedasticity we cluster the

robust (Huber-White) standard errors by year. Recall that

our data consist of 23 industries over 10 years. Since the

first year of the sample is treated as pre-sampling, we are

left with a balanced panel of 207 industry-year

observations.

Table 11 reports the regression results for the covari-

ance between a plant’s performance and job creation share.

Columns 1 through 7 respectively report the results when

TE, TED, TD, SC, T _FP, MFP and MFPD are used as the

plant performance measure. No matter which plant per-

formance measure is exploited, the coefficient on gy
t is

always insignificant, indicating that the efficiency of the

job creation process is acyclical with respect to the

industry’s output growth.

Irrespective of the plant performance measure, the

coefficient on ggdp
t is always negative and significant at the

1% level. This finding provides the first evidence in

the literature that the share of high performance plants in

total job creation is countercyclical. In particular, our

results indicate that an improvement in the macroeconomic

environment is associated with an increase in the fraction

of newly created jobs accounted for by plants that are less

technically efficiency, are slower at enhancing their pro-

duction technology and technical efficiency, and deviate

from their optimal production scale. Increases in macro-

economic activities appear to scramble the performance

ranking on which job creation decisions are based, ren-

dering the creation process socially inefficient.

The estimated cyclicality of the correlation between job

creation and plant performance is notably substantially

lower when plant performance is measured by MFP and

MFPD. A one percentage point decrease in ggdp
t is predicted

to raise cov TEit; s
JC
it

� �
by 0.0028, which is 18% of the

mean of cov TEit; s
JC
it

� �
.16 However, a one percentage point

decrease in ggdp
t raises cov MFPit; s

JC
it

� �
cov MFPDit; s

JC
it

� �� �

by 0.00068 (0.00017), which is only 0.32% (2.8%) of the

mean of cov MFPit; s
JC
it

� �
cov MFPDit; s

JC
it

� �� �
: The forego-

ing may result from the fact that measure MFP is subject to

impacts from idiosyncratic shocks irrelevant to ggdp
t .

Table 12 exhibits the regression results for the covari-

ance between a plant’s performance and job destruction

share. Regardless of the plant performance measure, the

coefficient on gy
t is always insignificant, implying that the

share of jobs destructed accounted for by low performance

plants is acyclical to the industry’s output growth. An

alternative way to state the result is that industry slow-

downs have no cleansing effect.

Regarding the cleansing effect of aggregate economic

downturns, we find that the coefficient of ggdp
t is positive

and significant at the 1% level in the equations

for cov TDit; s
JD
it

� �
; cov SCit; s

JD
it

� �
; cov T _FPit; s

JD
it

� �
, and

cov MFPDit; s
JD
it

� �
. On the other hand, the coefficient of

ggdp
t is negative and significant at the 1% level in the

equations for cov TEit; s
JD
it

� �
and cov TEDit; s

JD
it

� �
. Together,

these results imply that a fall in real per capita GDP shifts

jobs destructed towards high-TE and high-TED plants

whose technological change is sluggish and production

scale adjustment is productivity-impeding.

The marginal effect of ggdp
t on the covariance between

job destruction share and plant performance is economi-

cally significant. For instance, a one percentage point

Table 11 The cyclicality of the covariance between job creation share and firm-level efficiency measures

Dependent

variable
Cov TEit; s

JC
it

� �
Cov TEDit; s

JC
it

� �
Cov TDit; s

JC
it

� �
Cov SCit; s

JC
it

� �
Cov T _FPit; s

JC
it

� �
Cov MFPit; s

JC
it

� �
Cov MFPDit; s

JC
it

� �

Industry real

output

growth

-0.009

(0.016)

-0.0007

(0.0007)

0.003

(0.002)

0.023

(0.02)

0.025

(0.019)

-0.107

(0.125)

-0.018

(0.167)

Per capita real

GDP growth

-0.28***

(0.031)

-0.009***

(0.001)

-0.048***

(0.003)

-0.332***

(0.039)

-0.389***

(0.038)

-0.068***

(0.003)

-0.017***

(0.004)

R2 0.467 0.741 0.888 0.627 0.663 0.534 0.424

All regressions include industry and year fixed effects (estimates not reported)

The regressions cover 207 industry-year observations. Heteroskedasticity-robust standard errors clustered by year are in parentheses

*** Significant at 1%

15 Industry-level real output is calculated by the authors by summing

up plant-level real output across plants in an industry.

16 The mean, standard deviation, minimum, and maximum of real per

capita GDP growth over the period 1992–2003 are 5.26, 2.68,–2.17,

and 7.85%, respectively.
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decrease in ggdp
t is predicted to reduce cov TDit; s

JD
it

� �
by

0.00033, which is 33% of the mean of cov TDit; s
JD
it

� �
. The

same decrease in ggdp
t dampens cov SCit; s

JD
it

� �
by 0.01684,

which is 24.4% of the mean of cov SCit; s
JD
it

� �
. It is worth

noting that the estimated responses of cov MFPit; s
JD
it

� �
and

cov MFPDit; s
JD
it

� �
to changes in ggdp

t are relatively modest.

A one percentage point decrease in ggdp
t reduces

cov MFPDit; s
JD
it

� �
by 0.00041, which is only 11.7% of the

mean of cov MFPDit; s
JD
it

� �
.

In summary, our results indicate that both job creation

and destruction are more based on the rate of technological

change during periods of low GDP growth. Namely, cre-

ative destruction is more pronounced during economic

contractions. Jobs destructed (created) during macroeco-

nomic slowdowns are mainly from plants whose techno-

logical progress is stagnant (rapid). This countercyclical

job reallocation efficiency may be caused by the fact that

financial markets are more selective with respect to firms’

technological innovation capability during economic con-

tractions. Identifying the reasons underlying the procycli-

cality of the scrambling of the TD ranking, on which job

creation and destruction decisions are based is key to

understanding aggregate productivity dynamics. This is an

interesting possible avenue for future research.

7 Conclusions

This study represents a first attempt to separately examine

the allocation of jobs created and destructed across plants

in terms of plant-level technical efficiency, technical effi-

ciency change, scale effect, and technical change. We find

that the average rate of technical change of jobs created is

statistically significantly higher than that of jobs destructed.

By contrast, the average technical efficiency score and the

average rate of technical efficiency change of jobs created

are lower than those for the jobs destructed. Taken

together, these results imply that managerial skills to

minimize idle resources and unproductive activities play

minor roles in surviving the market selection process. The

reallocation process appears to channel resources towards

plants that adopt new technologies rapidly. Evidence is also

found that both job creation and destruction are more based

on the rate of technical change when the state of the

aggregate economy is bad, confirming Schumpeter’s

hypothesis that the quality of restructuring improves during

economic downturns.

The comparison between results based on the SFA and

those based on the deterministic index number approach

shows that the latter method tends to overstate the role of

productivity heterogeneity in resource reallocation. This

can be evidenced by the fact that the index number

approach is unable to isolate true productivity from idio-

syncratic shocks.

Our analysis provides two policy implications. First,

policy actions aiming to restore the efficiency of restruc-

turing should be undertaken during economic booms,

as opposed to recessions. Second, as jobs destructed are

found to be disproportionately clustered at less techno-

logically innovative plants, it may be possible to ameliorate

job destruction by subsidizing R&D and technology

acquisition.

Since recessionary pattern, industrial structure, and job

creation and destruction costs all differ vastly across

countries, our empirical results may not be directly trans-

ferable to other economies. Nevertheless, the methodology

we propose to empirically investigate the technical effi-

ciency and productivity distribution of jobs created and

destructed represents a novel way for understanding

aggregate productivity dynamics in other economies

around the world.

The understanding of the efficiency of the reallocation

process can be improved along many dimensions. It is

hoped that similar studies conducted in the future, perhaps

using data on countries at various stages of development,

will provide further evidence on the role of technical

Table 12 The cyclicality of the covariance between job destruction share and firm-level efficiency measures

Dependent

variable
Cov TEit; s

JD
it

� �
Cov TEDit; s

JD
it

� �
Cov TDit; s

JD
it

� �
Cov SCit; s

JD
it

� �
Cov T _FPit; s

JD
it

� �
Cov MFPit; s

JD
it

� �
Cov MFPDit; s

JD
it

� �

Industry real

output

growth

-0.029

(0.033)

-0.0003

(0.0005)

0.0006

(0.002)

0.028

(0.029)

0.029

(0.028)

0.13

(0.14)

0.191

(0.133)

Per capita real

GDP growth

-0.277***

(0.066)

-0.021***

(0.001)

0.033***

(0.004)

1.684***

(0.057)

1.696***

(0.055)

0.003

(0.003)

0.041***

(0.003)

R2 0.573 0.815 0.865 0.694 0.689 0.621 0.412

All regressions include industry and year fixed effects (estimates not reported)

The regressions cover 207 industry-year observations. Heteroskedasticity-robust standard errors clustered by year are in parentheses

*** Significant at 1%
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efficiency and technical change in resource reallocation

and the cyclical pattern of the creative destruction process.

This paper remains silent on how the efficiency of job

creation and destruction depends upon industry and country

characteristics, such as factor intensity, the strictness of

labor protection, and the level of financial development.

To this end, a necessary first step would be to assemble a

three-dimensional dataset on job reallocation efficiency,

i.e., industry-level panel data on job creation and destruc-

tion efficiency for a wide sample of countries. We consider

these to be fruitful avenues for future research.
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