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Closed-Form Mortgage Valuation Using
Reduced-Form Model
Szu-Lang Liao,∗ Ming-Shann Tsai∗∗ and Shu-Ling Chiang∗∗∗

Valuing mortgage-related securities is more complicated than valuing regular
defaultable claims due to the borrower’s prepayment behavior as well as the
possibility of default. Some researchers use a structural-form model to obtain
the closed-form formulas for the mortgage value. With this method, however,
it is difficult to identify the critical region of early exercise. As an alternative,
the reduced-form model developed in this article is able to value the mortgage
without setting boundary conditions, and it can thereby accurately handle the
multidimensional space of correlated state variables. The purpose of this article
is to derive a closed-form solution of the mortgage valuation equation under
a general reduced-form model that embeds relevant economic variables. This
new approach enables portfolio managers to undertake sophisticated portfolio
optimization and hedging analyses. An implementation procedure for the model
is also provided to demonstrate how the valuation framework can be utilized in
practical applications.

The mortgage market has grown rapidly from the 1980s to the present day,
and mortgage valuation receives significant attention from both practitioners
and academic researchers. Closed-form pricing formulas for mortgage-related
securities are difficult to obtain because the borrower’s prepayment and de-
fault behavior cause uncertainty in future cash flows. The closed-form formula
helps fixed-income investors manage the duration and complexity of mortgage
portfolios, as well as determine diversification strategies. The purpose of this
article is to apply the reduced-form model to mortgage valuation and to conduct
numerical analyses to show how sensitive closed-form solutions are to changes
in the model’s parameters.

The idea of pricing defaultable contracts first started with a structural-form ap-
proach (Merton 1974, Black and Cox 1976, Leland 1994). The structural-form
approach models a financial contract with termination risk as an American-type
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option; the payoffs from stopping depend upon the underlying asset’s path. Nu-
merous studies have used partial differential equations with various boundary
conditions to price such contracts. Recently, however, the reduced-form ap-
proach has been widely applied to price defaultable securities, and to calculate
termination probabilities (Jarrow and Turnbull 1995, Jarrow 2001). With this
approach one need not decide the optimal stopping time of a path-dependent
payoff (as with the structural-form model) and can therefore derive a closed-
form formula for the value of defaultable security. A reduced-form approach
regards the default event as a Poisson process, which specifies the default prob-
ability at each time point. However, when using either a reduced-form or a
structural-form approach in pricing the financial contracts with termination
risk,1 the property of path-dependence must be considered.2

The structural-form approach regards borrower prepayment and default as en-
dogenous decisions that minimize the present value of the mortgage. More
specifically, it models the borrower’s behavior as having American-type op-
tions of prepayment (call) and default (put). The researcher usually specifies
the relevant state variable processes, such as the processes of interest rate and
housing price, in order to investigate the termination risk and to value the
mortgage (Kau et al. 1993, Yang, Buist and Megbolugbe 1998, Ambrose and
Buttimer 2000, Azevedo-Pereira, Newton and Paxson 2003). Because the pric-
ing procedure involves solving the American-type options of prepayment and
default, researchers usually resort to numerical techniques such as forward pric-
ing (e.g., Monte Carlo simulations) or backward solution methods. Recently,
Monte Carlo simulation methodology has become an important tool in the pric-
ing and hedging of complicated financial contracts. It has been used to solve
the second-order partial differential equation subject to the boundary and termi-
nation conditions and to implement sophisticated valuation procedures. Monte
Carlo simulations are also used in risk management of financial intermediaries
to generate termination and loss probability distributions (Schwartz and Torous
1989, Capone 2003, Goldberg and Harding 2003, Calem and LaCour-Little
2004).

The Monte Carlo approach in and of itself is able to solve most pricing problems
and is flexible enough to cope with the practical challenges faced by market par-
ticipants. When using this method, however, it is necessary to set the unknown

1 For a more detailed discussion about the link between the two methods, refer to
Bielecki and Rutkowski (2001).
2 Path dependence occurs when the present terms of the contract depend not only on
current values of the state variables but also on the past values (Kau and Keenan 1995).
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critical regions of prepayment and default and to simulate the processes of
relevant state variables (such as interest rate and housing price). As an alter-
native, this article provides a closed-form solution of the mortgage valuation
equation derived under a general reduced-form model with relevant economic
variables.

The reduced-form approach is based on using market information on hazard
rates to evaluate the probabilities of prepayment and default. This approach
assumes that the mortgage has a certain termination probability, conditional
upon the survival of the mortgage, at each time point prior to maturity. Usually,
these exogenous prepayment and default risks are assumed to follow Poisson
processes. Moreover, because the risks of prepayment and default are mutually
exclusive, researchers also use the concept of competing risks—where prepay-
ment nullifies the default opportunity and vice-versa—to value mortgage risks
more accurately (Ambrose and Sanders 2003, Ciochetti et al. 2003). Recently,
several empirical studies have applied the Cox proportional hazard model (Cox
and Oakes 1984) or Poisson regression to fit the shapes of observed prepayment
and default data. These studies investigate the factors that most influence the
probabilities of default and prepayment, such as the interest rate, loan-to-value
ratio, housing price, loan type, debt service coverage ratio, household income
and property type (Schwartz and Torous 1989, 1993, Quigley and Van Order
1990, 1995, Lambrecht, Perraudin and Satchell 2003). The Cox proportional
hazard model and Poisson regression have been shown to reasonably model
mortgage prepayment and default risks.

A closed-form solution of the mortgage valuation equation provides several
advantages when analyzing certain problems associated with mortgage portfo-
lio management. First, one can better understand how sensitive mortgage value
is to the changes in relevant variables by conducting numerical analyses. Sec-
ond, a closed-form solution can significantly increase the speed of calculation
when the valuation of the mortgage is involved in more complicated analyses
of investment decisions. Third, it provides a useful tool for the portfolio man-
ager to undertake sophisticated portfolio optimizations and hedging analyses
that would be infeasible under Monte Carlo simulations. Fourth, a closed-form
solution of the mortgage valuation equation provides a basic building block
for market participants to evaluate more complicated mortgage products. And
finally, researchers can also improve the efficiency of investigating complex
portfolio management problems by combining the closed-form formula with
simulation techniques. As is well known, several studies have provided closed-
form formulas derived under the structural-form model (Collin-Dufresne and
Harding 1999, Ambrose and Buttimer 2000). However, it is difficult with this
approach to identify the critical regions of mortgage prepayment and default
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because the related boundary conditions are unobservable. Furthermore, this ap-
proach has difficulty dealing with correlation among variables. Because of the
difficulty in obtaining a closed-form solution for the structural-form model,
numerical approximations such as the Monte Carlo simulation are usually
employed.

This article extends Jarrow’s (2001) model, which prices defaultable corporate
bonds, and uses it to examine mortgage valuations as well. Furthermore, in order
to price the mortgage with flexibility and accuracy, Jarrow’s (2001) framework
is extended into a multivariable model with correlated relevant state variables.
More specifically, we specify Poisson processes for the prepayment and default
risks and embed the relevant economic state variables, such as housing price and
household income, into the hazard rates of prepayment and default to evaluate
the mortgage under the reduced-form model.

The influence of relevant variables on mortgage values is quite complicated.
For example, an increase in the housing price will produce an increase in pre-
payment probability but a decrease in default probability. Few studies dis-
cuss the influence of different variables (such as interest rate, housing price,
household income and macroeconomic variables) on the mortgage value. By
utilizing our model, however, one can now study the effects of individual
variables and correlations, and accurately and efficiently value the complex
mortgage.

In order to investigate the valuation and termination risk of mortgages, we con-
duct a sensitivity analysis and adopt parameter values taken from other studies
to explore the impact of the relevant variables and their correlations on mort-
gage value. An implementation procedure for the model is also provided to
demonstrate how this valuation framework can be used in practical applica-
tions. With historical market data, the implementation procedure can be used
to estimate the parameters, and these estimated parameters can in turn be used
to price mortgages.

The article is organized as follows: The next section presents the valuation
framework that includes the identification of the mortgage contract compo-
nents. Also covered is the definition of the value of mortgage payments to be
made by the borrower, and the treatment of the prepayment and default risks
of the mortgage. The third section is a demonstration of the model’s imple-
mentation procedure, including the hazard rates of prepayment and default, the
variances and correlations of state variables, and the coefficients of the lin-
ear regression model. This section also contains a steady-state analysis of the
model’s parameters and some numerical results. The final section summarizes
our results and offers suggestions for future study.
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The Model

Mortgage Contract

We consider a fully amortizing fixed-rate mortgage (FRM), having an initial
mortgage principal balance of M(0), a fixed coupon rate of c and T years until
maturity. This implies a continuous payout rate Y equal to:3

Y = M(0) × c

1 − e−cT
. (1)

The principal outstanding at time t, M(t), is given by

M(t) = M(0) × 1 − e−c(T −t)

1 − e−cT
. (2)

If it is not possible to terminate the mortgage contract before the maturity date,
future cash flows can be determined and the value of the mortgage thereby
equals the sum of the present values of the continuous payout. However, when
the borrower has the option to prepay or default, the future cash flows and
mortgage value become uncertain. To evaluate the mortgage including default
and prepayment risks, the risk-neutral pricing method is used.

Model Structure

The borrower can decide to prepay, default or maintain the mortgage. Let us
denote the random variables τP and τD as the time of prepayment and default
during the period from t to T , respectively. Let l(t) be the fractional loss rate if
the default occurs at time t. We use τ to represent the time when the mortgage
payment is first stopped, that is, τ = min(τP, τD). If τ = τP, then the cash flow
is M(τP). If τ = τD, then the cash flow is M(τD)(1 − l(τD)), which can be
recovered from the balance of the mortgage at the time of default. Otherwise, if
the borrower does not prepay or default on the mortgage, the cash flow is equal
to the mortgage payment Y . Assuming no arbitrage and a complete market, the
standard arbitrage pricing theory implies that a unique probability measure, Q,
exists and that the value of the mortgage is the expectation of discounted future
cash flows under Q (Jarrow and Turnbull 1995). The value of the mortgage is
therefore:

3 As we consider a fully amortizing fixed-rate mortgage in this article, the variable Y is
specified as a constant in each time point (i.e., Y). If an ARM is to be priced, the con-
tinuous payout rate will become a time-varying variable (i.e., Y(t)). In addition, because
the mortgage is priced under the continuous-time framework, the accrued interest is not
considered before prepayment or default.



318 Liao, Tsai and Chiang

V (t) = E Q
t

[
M(τP )e− ∫ τp

t r (u) du I{τ=τp,τ≤T }
]

+E Q
t

[
(1 − l(τD))M(τD)e− ∫ τ Dr (u) du

t I{τ=tD ,τ≤T }
]

+ E Q
t

[∫ T

t
Y e− ∫ s

t r (u) du I{τ>s} ds

]
, (3)

where r(t) is the short interest rate and I{} is the indicator function. The first
term in Equation (3) is the expected value of the mortgage if prepaid before
maturity. The second term is the expected value of a mortgage if default occurs
before maturity. Finally, the third term is the expected value of the mortgage if
held until maturity.

Given the definition of the termination date of a mortgage, which represents the
time that the mortgage is either defaulted or prepaid, the joint survival function
of τP and τD can be defined as (Lancaster 1992):

S(t) = e− ∫ t
0 h(u) du, (4)

and

h(t) = θ (t) + π (t),

θ (t) = lim
dt→0

Pr(t < τ < t + dt, τ = τP |τ > t)

dt
, (5)

π (t) = lim
dt→0

Pr(t < τ < t + dt, τ = τD|τ > t)

dt
, (6)

where h(t), θ (t) and π (t) denote the hazard rates of the terminated mortgage,
prepaid and defaulted at time t, respectively.

The distribution function of termination time is denoted as

F(t) = 1 − S(t) = 1 − e− ∫ t
0 (θ (u)+π (u)) du . (7)

From Equation (7), the probability density of the termination time of a mortgage
is:

f (t) dt = dF(t) = θ (t)e− ∫ t
0 (θ (u)+π (u)) du dt + π (t)e− ∫ t

0 (θ (u)+π (u)) du dt. (8)

Because prepayment and default are mutually exclusive, the probabil-
ity of termination is therefore equal to the probability of prepayment
plus the probability of default. It follows that the probability of prepay-
ment is θ (t) exp(− ∫ t

0 (θ (u) + π (u)) du) dt and the probability of default is
π (t) exp(− ∫ t

0 (θ (u) + π (u)) du) dt . Thus, Equation (3) can be rewritten as:4

4 For a more detailed derivation, please refer Bielecki and Rutkowski (2001).
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V (t) = E Q
t

[∫ T

t
M(s)θ (s)e− ∫ s

t (r (u)+θ (u)+π (u)) du ds

]

+ E Q
t

[∫ T

t
(1 − l(s))M(s)π (s)e− ∫ s

t (r (u)+θ (u)+π (u)) du ds

]

+ Y E Q
t

[∫ T

t
e− ∫ s

t (r (u)+θ (u)+π (u)) du ds

]
. (9)

Based on Equation (9), it is clear that the reduced-form approach reflects the
prepayment and default risks by the risk-adjusted short rate process r(t) +
θ (t) + π (t). This is where, in the presence of prepayment and default risks,
reduced-form models differ from structural-form models and the former have
the advantage of being able to estimate the hazard rate from market data.

To obtain the closed-form mortgage valuation presented in Equation (9), we
specify that the hazard rates of prepayment and default depend on the partic-
ular variables related to the termination risk, such as the interest rate, housing
price and household income. We have four assumptions in our model. First,
the extended Vasicek model is adopted as the short interest rate process r(t).5

Second, the other influential variables, such as housing price and household
income, follow geometric Brownian motions.6 Third, the fractional loss rate
l(t) is a deterministic process. Finally, the hazard rates are specified as a linear
function of the explanatory variables. The following subsections will discuss
these assumptions in detail.

Extended Vasicek Interest Rate Model

The extended Vasicek interest rate model is a single-factor model with deter-
ministic volatility that can match an arbitrary initial forward-rate curve through
the specification of the long-run short interest rate r̄ (t) (Vasicek 1977 and Heath,
Jarrow and Morton 1992). Under the risk-neutral measure Q, the term-structure
evolution is described by the dynamics of the short interest rate:

dr (t) = a(r̄ (t) − r (t)) dt + σr dZr (t), (10)

where a is the speed of adjustment (a positive constant), σ r is the volatility of
the short interest rate (a positive constant), r̄ (t) is the long-run short interest rate

5 Many interest rate models can be used to value mortgages. However, some studies
have shown that the Vasicek model (and hence the extended Vasicek model) performs
well in the pricing of mortgage-backed securities (Chen and Yang 1995).
6 The lognormal process of a variable implies that the return of a variable is normally
distributed. This assumption is common throughout the literature.
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(a deterministic function of t) and Zr(t) is a standard Brownian motion under
measure Q.

In Equation (10) the short interest rate follows a mean-reverting process under a
risk-neutral measure. As shown in Heath, Jarrow and Morton (1992), to match
an arbitrary initial forward-rate curve, one can set

r̄ (u) = f (t, u) + 1

a

(
∂ f (t, u)

∂u
+ σ 2

r (1 − e−2a(u−t))

2a

)
, (11)

where f (t, u) is the instantaneous forward rate. Combining Equations (10) and
(11), the evolution of the short interest rate can be rewritten as

r (u) = f (t, u) + σ 2
r (e−a(u−t) − 1)2

2a2
+

∫ u

t
σr e−a(u−v) dZr (v). (12)

Lognormal Processes of Other Variables

For a practical but realistic empirical specification of the reduced-form model,
we assume that the processes of other variables, such as housing price, house-
hold income and so on, satisfy:

d Hi (t) = Hi (t)(r (t) dt + σi dZi (t)), for i = 1, 2, . . . , n, (13)

where σ i is the volatility of variable i, and Zi(t) is a standard Brownian motion
of variable i under Q.

As discussed above, the other variables are assumed to follow geometric Brow-
nian motions with drift r(t) and volatilities σ i. The drift term is equal to the
short interest rate under the risk-neutral measure. Without loss of generality
we assume that various random variables are dependent. More specifically, let
Zi(t) be correlated with Zr(t) as E Q

t [dZi (t) dZr (t)] = φr Hi dt . In addition, Zi(t)
is correlated with Zj(t) as E Q

t [dZi (t) dZ j (t)] = φHi Hj dt , where φr Hi denotes
the correlation between the short interest rate and the variable Hi, φHi Hj denotes
the correlation between variables Hi and Hj, and φr Hi and φHi Hj are constants.

Using Equation (13) and Ito’s Lemma we obtain

Hi (t) = Hi (0) exp

(∫ t

0
r (u) du − 1

2
σ 2

i t + σi Zi (t)

)
. (14)
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Given observations on dates 1, 2, . . . t, Equation (14) can be solved for σ iZi(t)
as a function of σ i Zi(t − 1) and this is given by

σi Zi (t) = σi Zi (t − 1) +
(

ln

(
Hi (t)

Hi (t − 1)

)
−

∫ t

t−1

(
r (u) − 1

2
σ 2

i

)
du

)
,

for t ≥ 1, Zi (0) = 0. (15)

Jarrow (2001) indicates that Zi(t) is a measure of cumulative excess return per
unit of risk on Hi(t) and that Zi(t) is chosen as the state variable. Because the
cumulative excess returns per unit of risk of all variables are equal in equilib-
rium, it is difficult to distinguish the influence of each individual variable. To
deal with the multivariate cases, we assume that ei(t) = σ iZi(t), the measure
of cumulative excess return rates on Hi(t), as the state variable, and we use
the cumulative excess return rates of different variables e1(t), e2(t), . . . , en(t)
throughout. The assumption that the volatilities of state variables affect default
and prepayment hazard rates is supported by the empirical studies of Clapp
et al. (2001) and Azevedo-Pereira, Newton and Paxson (2003).

Deterministic Loss Rate Process

Various processes have been used to determine the expected fractional loss
rate l(t) in previous studies. One can assume the fractional loss rate l(t) is time-
varying and path-dependent. The reason is that changes in the mortgage balance
and collateral (house) value will result in a change in the expected fractional loss
rate. However, specification of a path-dependent loss rate will result in a more
complicated pricing procedure because the expected default value contains the
result of the loss rate multiplied by the default hazard rate. For example, if we
specify the loss rate to be linearly dependent on the state variables as well,
the product of the loss rate and default hazard rate may become a Chi-square
distribution in our model and as a result the expected mortgage value would
become rather complicated to derive. As the loss rate can be estimated by
using market data, it is usually assumed in previous studies to be an exogenous
variable in reduced-form models. In other words, the loss rate process has
been generally treated as a constant or a deterministic variable (Jarrow and
Turnbull 1995). Nevertheless, some empirical evidence has shown that whether
the loss rate is assumed to be stochastic or constant has no significant impact on
mortgage pricing. For example, Jokivuolle and Peura (2003) specified the loss
given default as a stochastic process to price the mortgage, and their qualitative
results are consistent with Frye (2000a, 2000b), who assumes the expected loss
given default is a constant. For simplicity, we will assume that the fractional loss
rate l(t) is a deterministic time-varying process and this will not significantly
affect mortgage valuation.
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Linear Functions of Explanatory Variables

Most studies use Cox proportional hazard model to specify the hazard function
as a product of a baseline hazard and an exponential function of covariates. The
adoption of Cox proportional hazard model in a pricing framework, however,
results in a “double exponential” expression, that is, the exponential function is
itself an argument of an exponential function. This gives rise to an infinite ex-
pectation of accumulation factors under the martingale measure if the influential
variables are log-normally distributed (Miltersen, Sandmann and Sondermann
1997).

We assume the hazard rates of prepayment and default are linear functions
of the short-term interest rate and the cumulative excess return rates of other
influential variables in our model. This specification has been assumed in many
studies, including Duffee (1999), Driessen (2002), Jarrow (2001), Janosi, Jarrow
and Yildirim (2003), Capone (2003) and Calem and LaCour-Little (2004). This
assumption facilitates the pricing procedure of the mortgage value but it implies
that a negative hazard rate is possible.7 Nonetheless, Duffee (1999) argues that
this problem can be largely ignored if the model accurately prices the relevant
instruments. The hazard rates of prepayment θ (t) and default π (t) are specified
as

θ (t) = λ0(t) + λr r (t) + λ1e1(t) + · · · + λnen(t), (16)

π (t) = k0(t) + krr (t) + k1e1(t) + · · · + knen(t), (17)

where λ0(t) and k0(t) are deterministic, λr, λ1, . . . , λn and kr, k1, . . . , and kn are
constants. We define λ0(t) and k0(t) as the baseline hazard rates of prepayment
and default at time t . λr and kr are the relative magnitudes of the interest
rate effect on prepayment and default hazard rates. In addition, λi and ki are
the relative magnitudes of state variable i’s effect on prepayment and default
hazard rates.

Risk-Neutral Mortgage Valuation

Given the above specification, one can obtain the mortgage value by solving
the moment generating function of the risk-adjusted short rate process r(t) +
θ (t) + π (t).8 More specifically, the valuation of the mortgage in Equation (9)
can be rewritten as

7 Some studies assume that the hazard rate follows a stochastic process in investigating
credit risk. This assumption implies that a negative hazard rate is possible (Lando 1998,
Duffee 1999, Jarrow and Turnbull 2000 and Jarrow 2001).
8 The key point about deriving the closed-form solution is to solve the moment gen-
erating function of risk-adjusted short rate process r(t) + θ (t) + π (t). Using other
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V (t) = Y
∫ T

t
E Q

t

[
e− ∫ s

t (g0(u)+gr r (u)+g1e1(u)+···+gnen (u)) du
]

ds

+
∫ T

t
M(s)E Q

t

[
θ (s)e− ∫ s

t (g0(u)+gr r (u)+g1e1(u)+···+gnen (u)) du
]

ds

+
∫ T

t
M(s)(1 − l(s))E Q

t

[
π (s)e− ∫ s

t (g0(u)+gr r (u)+g1e1(u)+···+gnen (u)) du
]

ds,

(18)

where g0(u) = λ0(u) + k0(u), gr = 1 + λr + kr, g1 = λ1 + k1, . . . , gn = λn +
kn. The first term of Equation (18) can be expressed as follows:9

∫ T

t
E Q

t

[
e− ∫ s

t (g0(u)+gr r (u)+g1e1(u)+···+gnen (u)) du
]

ds

=
∫ T

t
e− ∫ s

t g0(u) du+A′µX + A′�x A
2 ds, (19)

where

A = [−gr , −g1, . . . ,−gn]′,

X = [X0, X1, . . . , Xn]′,

X0 =
∫ s

t
r (u) du, Xi =

∫ s

t
ei (u) du,

µX = [
µX0 (t, s), µX1 (t, s), . . . , µXn (t, s)

]′
,

�X =




σ 2
X0

(t, s) σX1 X0 (t, s) · · · σXn X0 (t, s)

σX0 X1 (t, s) σ 2
X1

(t, s)
...

. . .

σX0 Xn (t, s) · · · σ 2
Xn

(t, s)


 ,

distributional types, we can obtain the mortgage value as well, however, the pricing
procedure becomes more complicated when their moment generating functions are not
normal type.
9 The derivation is shown in Appendix A.
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µX0 (t, s) = E Q
t

[∫ s

t
r (u) du

]

= f (t, s)(s − t) + σ 2
r

2a2

(
(s − t) − 2

a
(1 − e−a(s−t))

+ 1

2a
(1 − e−2a(s−t))

)
,

and

σ 2
X0

(t, s) = Vart

[∫ s

t
r (u) du

]
= σ 2

r

a2

(
(s − t) − 2

a
(1 − e−a(s−t))

+ 1

2a
(1 − e−2a(s−t))

)
.

For i = 1, 2, . . . , n,

µXi (t, s) = E Q
t (Xi ) = σi Zi (t)(s − t),

σ 2
Xi

(t, s) = Vart (Xi ) = σ 2
i

(s − t)3

3
,

σX0 Xi (t, s) = φr Hi σiη(t, s),

where

η(t, s) = σr

(
− 1

a3
(1 − e−a(s−t)) + 1

a2
e−a(s−t)(s − t) + 1

2a
(s − t)2

)
,

and

σXi X j (t, s) = 1

3
σiσ jφHi Hj (s − t)3.

Similarly, the second term of Equation (18) can be shown to be∫ T

t
M(s)E Q

t

[
θ (s)e− ∫ s

t (g0(u)+gr r (u)+g1e1(u)+···+gnen (u)) du
]

ds

=
∫ T

t
M(s)(λ0(s) + B ′µW + B ′�X W A)e− ∫ s

t g0(u) du+A′µx +
A′�X A

2 ds, (20)

and the third term of Equation (18) is equal to
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∫ T

t
M(s)(1 − l(s))E Q

t

[
π (s)e− ∫ s

t (g0(u)+gr r (u)+g1e1(u)+···+gnen (u)) du
]

ds

=
∫ T

t
M(s)(1 − l(s))(k0(s) + C ′µW + C ′�X W A)e− ∫ s

t g0(u) du + A′µx + A′�X A

2 ds,

(21)

where

B = [λr , λ1, . . . , λn]′,

C = [kr , k1, . . . , kn]′,

W = [r (s), e1(s), . . . , en(s)]′,

µW = [
µr (t, s), µe1 (t, s), . . . , µen (t, s)

]′
,

�X W =




σr X0 (t, s) σX0e1 (t, s) · · · σX0en (t, s)

σr X1 (t, s) σX1e1 (t, s) · · · σX1en (t, s)
...

...
. . .

...

σr Xn (t, s) σXne1 (t, s) · · · σXnen (t, s)


 ,

µr (t, s) = E Q
t [r (s)] = f (t, s) + σ 2

r

2a2
(1 − e−a(s−t))2,

and

σr X0 (t, s) = σ 2
r

2a2
(1 − e−a(s−t))2.

For i = 1, 2, . . . , n, j = 1, 2, . . . , n, i �= j,

σr Xi (t, s) = σiσrφr Hi

�
η(t, s),

where

�
η(t, s) = 1

a2
(1 − e−a(s−t)) − 1

a
e−a(s−t)(s − t),

µei (t, s) = E Q
t [ei (s)] = σi Zi (t),

σX0ei (t, s) = Covt

(
ei (u),

∫ s

t
r (u) du

)

= σiφr Hi

(σr

a
(s − t) − σr

a2
(1 − e−a(s−t))

)
,
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σXi ei (t, s) = Covt

(∫ s

t
ei (u) du, ei (s)

)
= 1

2
σ 2

i (s − t)2,

and

σX j ei (t, s) = Covt

(∫ s

t
e j (u) du, ei (s)

)
= 1

2
σiσ jφHi Hj (s − t)2.

Finally, substituting Equations (19), (20) and (21) into Equation (18), we obtain
the mortgage value with default and prepayment risks under the risk-neutral
measure Q:

V (t) = Y
∫ T

t
e− ∫ s

t g0(u) du+A′µX + 1
2 A′�X A ds

+
∫ T

t
M(s)(λ0(s) + B ′µW + B ′�X,W A)e− ∫ s

t g0(u) du+A′µX + 1
2 A′�X A ds

+
∫ T

t
M(s)(1 − l(s))(k0(s) + C ′µW

+ C ′�X,W A)e− ∫ s
t g0(u) du+A′µX + 1

2 A′�X A ds. (22)

In Equation (22), the first term represents the expected value of a mortgage
that does not terminate until maturity. The second and third terms represent
the expected values of mortgages that have been prepaid and defaulted before
maturity, respectively. In this formulation, the mortgage value is jointly de-
termined by the values of the initial yield curve, f (t, s) and the term-structure
evolution parameters a and σ r. The volatility parameters of the variables σ i, the
correlation parameters φr Hi and φHi Hj , and the parameters of the linear hazard
functions λ0(t), k0(t), λi and ki are also key factors in this calculation.

Implementation of the Model

In this section, we demonstrate a procedure for applying the model. The first
subsection describes the procedure of estimating parameters including the haz-
ard rates of prepayment and default, the variances and correlations of the state
variables, and the coefficients of the linear regression model. The following sub-
sections demonstrate the influence of all the model’s parameters on mortgage
value with the steady-state analysis and the numerical analysis.

The Estimation of Parameters

To estimate the prepayment and default hazard rates under the assumption of
a well-diversified portfolio, we use the product-limit estimator (Kaplan and
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Meier 1958).10 Let the sample period be decomposed into n time intervals,
n = T

�t . The estimated hazard rates of prepayment and default are defined as
follows:

θ̂ (i) = f̂ p(i)

Ŝ(i)
, (23)

and

π̂ (i) = f̂ d (i)

Ŝ(i)
. (24)

where

Ŝ(i) is the estimated survival probability in the i th time interval,
Ŝ(u) = ∏u

i=1 (1 − c(i)+o(i)
m(i) ), u = 1, 2, . . . , n,

f̂ (i) is the estimated termination probability, f̂ (i) = c(i)
m(i) + o(i)

m(i) = f̂ p(i) +
f̂ d (i),

m(i) is the survival number at the beginning of the time interval, i = 1, 2, . . . , n,

c(i) is the number of prepayment events in the i th time interval, and
o(i) is the number of default events in the i th time interval.

Market data on zero coupon bond yields can be used to estimate the forward
rate and short-term interest rate parameters (a and σ 2

r ). For the estimation of
forward rate, note that

f (t, T ) = −∂ log(P(t, T ))

∂T
and r (t) = f (t, t),

where P(t, T) denotes the price at time t of a riskless zero coupon bond with
the maturity date T . Based on a set of zero coupon bonds with various maturity
dates, the maximum smoothness technique can be used to estimate f̂ (t, T )
and r̂ (t) (Adams and van Deventer 1994). For the estimation of a and σ 2

r , the
procedure follows a formula for the variance of the riskless zero coupon bond
(denoted as σ 2

P), which is (Heath, Jarrow and Morton 1992):

σ 2
P =

(
σ 2

r (e−a(T −t) − 1)2

a2

)
. (25)

10 In previous studies, the hazard rates of prepayment and default are calculated based
on the realized prepayment and default data (Schwartz and Torous 1989 and Stanton
1995). They are defined as physical hazard rates. The estimated hazard rates need to be
martingale hazard rates, which means that the hazard rates are under martingale proba-
bility, in this article. However, the physical and martingale hazard rates are equivalent
under the assumption of a well-diversifiable portfolio (Jarrow, Lando and Yu 2005).
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Fixing a time to maturity T − t, by rolling estimation, we obtain the sample vari-
ance of the riskless zero coupon bond, σ̂ 2

P = Var(log P(t + �t,T )
P(t,T ) − r (t)�t) 1

�t .
The estimated values of σ̂r and â can be obtained by running a nonlinear re-
gression based on Equation (25).

To estimate the variances, correlations and cumulative excess returns of the
other model parameters, such as housing prices and household incomes, one
can use historical market data to calculate the sample variance and correlation
coefficients. These are shown as follows:

σ̂ 2
i = Var

(
Hi (t) − Hi (t − �t)

Hi (t − �t)

)
1

�t
, (26)

φ̂r Hi = Corr

(
Hi (t) − Hi (t − �t)

Hi (t − �t)
, r (t) − r (t − �t)

)
, (27)

φ̂Hi Hj = Corr

(
Hi (t) − Hi (t − �t)

Hi (t − �t)
,

Hj (t) − Hj (t − �t)

Hj (t − �t)

)
. (28)

This procedure also involves a rolling estimation of the parameters using avail-
able information for a given period. Given the estimates of the market volatility
and interest rate at each period, the cumulative excess return process is com-
puted using Equation (15), starting the series from initial time t. The time-series
of cumulative excess returns of various variables are computed by a rolling es-
timation from period to period.11

Following the above estimation procedure, one can obtain the estimated time-
series of interest rate (r(t)), cumulative excess returns of various variables (ei(t))
and hazard rates of prepayment and default (θ (t) and π (t)), respectively. The
parameters of λ0(t), k0(t), λi and ki can be estimated by a linear regression
model as described in Equations (16) and (17). After these parameters have
been estimated, one can then use our valuation framework to price mortgages,
and undertake hedging analyses. Although our hazard rate specification implies
that a negative hazard rate is possible, one can add some restrictions to ensure
that P(θ (s) < 0) ≈ 0 and P(π (s) < 0) ≈ 0 when estimating the parameters of
λ0(t), k0(t), λr, λi, kr and ki.

It is worth noting that when using Monte Carlo simulations to value mortgage
contracts, practitioners also need to estimate the related parameters, such as
f (t, T), a, σ r, σ i and φi,j. Furthermore, mortgage market practitioners usually
utilize mortgage data to calculate the values of prepayment and default hazard

11 For a detailed description of the estimation method of interest rate and all the variable’s
parameters, please refer Janosi, Jarrow and Yildirim (2003).
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rates (θ (t) and π (t)). These estimated parameter values can be employed in our
model. Our method only needs to additionally estimate the parameter values of
λ0(t), k0(t), λr, kr, λi and ki. These parameters are easily estimated with rolling
linear regressions.

Sensitivity Analyses of State Variable’s Parameters

In this section, we provide the steady-state analysis of the model’s parameters
to investigate how the various relevant variables will influence the mortgage
value. For clarity, we rewrite the mortgage value in the following form:

V (t) =
∫ T

t
�(s) ds, (29)

where

�(s) = �1(s) e�2(s),

�1(s) = (Y + M(s)(λ0(s) + B ′µW + B ′�X,W A)

+ M(s)(1 − l(s))(k0(s) + C ′µW + C ′�X,W A)),

and

�2(s) = −
∫ s

t
g0(u) du + A′µX + 1

2
A′�X A.

Denote ξ as a parameter, which can be f (t, s), σ r, a, σ i, φr Hi or φHi Hj . The
partial derivative of the mortgage value with respect to ξ is12

∂V (t)

∂ξ
=

∫ T

t

∂�(s)

∂ξ
ds, (30)

where

∂�(s)

∂ξ
= �(s)�−1

1 (s)M(s)

×
(

(B + (1 − l(s))C)′
∂µW

∂ξ
+ (B + (1 − l(s))C)′

∂�X W

∂ξ
A

)

+ �(s)

(
A′ ∂µX

∂ξ
+ 1

2
A′ ∂�X

∂ξ
A

)
.

For example, the impact of the correlation between the interest rate and variable
i on the mortgage value is

12 The derivation of ∂�(s)
∂ξ

is shown in Appendix B.
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∂V (t)

∂φr Hi

=
∫ T

t

∂�(s)

∂φr Hi

ds,

where

∂�(s)

∂φr Hi

= −�(s)�−1
1 (s)M(s)((λi + (1 − l(s))ki )grη

P
2 (t, s)

+ (λr + (1 − l(s))kr )giη
P
3 (t, s)) + �(s)gr giη

P
1 (t, s).

According to Equation (30), one cannot directly judge whether the impact of
the parameter on mortgage value is positive or negative by observing the above
partial derivative. Thus, we provide a condition to judge the direction of the
influence of the parameter on the mortgage value. For example, one can get
∂�(s)

∂ξ
≥ 0, if the following condition holds:

�−1
1 (s)M(s)

(
(B + (1 − l(s))C)′

∂µW

∂ξ
+ (B + (1 − l(s))C)′

∂�X W

∂ξ
A

)

≥ −
(

A′ ∂µX

∂ξ
+ 1

2
A′ ∂�X

∂ξ
A

)
.

To investigate the influence of the parameters of the linear hazard functions
on the mortgage value, we show the following partial derivatives of mortgage
value with respect to the relevant parameters:

∂�(s)

∂λ0(s)
= M(s)e�2(s) − �(s) ≤ 0, (31)

∂�(s)

∂k0(s)
= M(s)(1 − l(s))e�2(s) − �(s) ≤ 0, (32)

∂�(s)

∂ B ′ = �(s)�−1
1 (s)M(s)(µW + (�X W A − �′

X W B) − (1 − l(s))�′
X W C)

− �(s)(µX + �X A), (33)

∂�(s)

∂C ′ = �(s)�−1
1 (s)M(s)(−�′

X W B + (1 − l(s))(µW + �X W A − �′
X W C))

− �(s)(µX + �X A). (34)

The impact of the parameters for the linear hazard functions on the mortgage
value can be evaluated according to Equations (31), (32), (33) and (34). For
example, one can obtain ∂�(s)

∂ B ′ ≥ 0, if the following condition is satisfied:

�−1
1 (s)M(s)(µW + (�X W A − �′

X W B) − (1 − l(s))�′
X W C) ≥ µX + �X A.

In addition, if the following condition holds, we can obtain ∂�(s)
∂C ′ ≥ 0:
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�−1
1 (s)M(s)(−�′

X W B + (1 − l(s))(µW + �X W A − �′
X W C)) ≥ µX + �X A.

The following subsection contains a numerical example showing the calculation
of our mortgage model and the partial derivatives. It also analyzes how the
interest rate, housing price and household income influence mortgage value.

Numerical Results

Recent studies have found that interest rates, housing prices and household
incomes significantly affect the borrower’s prepayment and default decisions
(Yang, Buist and Megbolugbe 1998, Clapp et al. 2001, Azevedo-Pereira, New-
ton and Paxson 2003). We therefore choose these variables as the major sources
of valuation uncertainty. For simplicity, we assume that the baseline hazard rates
and the loss rate are constants. The parameter values we have adopted to oper-
ationalize our model are as follows: M0 = $100, c = 5%, l = 0.1, f (t, s) = 4%,
a = 0.2, σ r = 0.01, σ H = 0.1, σ Y = 0.1, φrH = 0.37, φrY = 0.67, φHY = 0.58,
λ0(u) = λ0 = 0.176, λr = −0.51339, λ1 = 3.96 × 10−5, λ2 = 1.144 × 10−2,
k0(u) = k0 = 5.19 × 10−6, kr = −1.12 × 10−7, k1 = −0.675 × 10−8 and k2 =
−0.716 × 10−6, where λ1 and k1 and λ2 and k2 denote the relative magnitudes
of the housing price and household income effects on the prepayment and de-
fault hazard rates, respectively. Putting these values into the model, the value
of mortgage V(t) is $104.546 related to a mortgage balance of $100.13

The borrower’s incentive to prepay or default will be affected by the spread be-
tween the current interest rate and the contract rate as well as his/her expectation
about future interest rates. Consequently, the term structure could influence the
probability of mortgage termination. Under the above parameter values, we
obtain ∂V (t)

∂ f (t,s) = −471.296 and ∂V (t)
∂a = 0.411. According to these results, we

can infer that there is a positive relationship between a and mortgage value
and a negative relationship between f (t, s) and the mortgage value. Moreover,
the housing price, the level of household income and the market interest rate
all influence a borrower’s decision. A higher housing price, for example, will
increase the likelihood of prepayment and decrease the probability of default,

13 Here, we assume that the baseline hazard rates and loss rate are constants. The pa-
rameters of λ0, k0, λr, kr, λ1 and k1 are taken from Schwartz and Torous (1993). The
parameters of λ2 and k2 are taken from Deng, Quigley and Van Order (1996). As the
values of αx and βx are quite small from empirical evidence, we use the property of
θ0(t)eαx ≈ θ0(t)(1 + αx) and π0(t)eβx ≈ π0(t)(1 + βx) in specifying the hazard rates of
prepayment and default. We choose the estimator, which is labeled as the age 1 baseline
hazard rate in Schwartz and Torous (1993), as λ0, therefore, λr is the product of λ0
and the estimator of the coefficient of the refinancing rate. λ1 is the product of λ0 and
the estimator of the coefficient of the housing return. λ2 is the product of λ0 and the
estimator of the coefficient of household income. The coefficients of default regression
are computed in the same way.
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as a borrower will make the decision that offers the greatest benefit. Given the
above parameter values, we obtain ∂V (t)

∂σr
= −16.306, ∂V (t)

∂σH
= 1.849 × 10−4 and

∂V (t)
∂σY

= 0.106. Therefore, a change in σ r affects the value of the mortgage in
the negative direction, whereas changes in σ H and σ Y affect the value of the
mortgage in the positive direction. The influence of a change in σ H on the value
of the mortgage is small due to the rather small assumed values of parameters
λ1 and k1.

Several studies have shown that correlation among the state variables affects
the value of FRM. For example, Yang, Buist and Megbolugbe (1998) demon-
strate that correlations between interest rates, housing prices and household
incomes are all able to influence the termination probability. One can analyze
the effect of changing correlations among the relevant variables by examining
the corresponding partial derivative that we have provided. From the results of
∂V (t)
∂φr H

= 1.485 × 10−4, ∂V (t)
∂φrY

= 0.031 and ∂V (t)
∂φHY

= 2.876 × 10−6, we find that
φrY , φrH and φHY do not influence the value of the mortgage significantly, but
do have a small positive effect.

We next conduct a sensitivity analysis to investigate the impact of the pa-
rameters in the linear regression model. Given the above parameter values,
we obtain ∂V (t)

∂λ0
= −19.823, ∂V (t)

∂λr
= −0.615, ∂V (t)

∂λ1
= 1.390, ∂V (t)

∂λ2
= 1.849,

∂V (t)
∂k0

= −65.988, ∂V (t)
∂kr

= −2.469, ∂V (t)
∂k1

= 1.401 and ∂V (t)
∂k2

= 2.008. These re-
sults show that the baseline hazard rates have a significant impact on mortgage
value. An increase in the parameters of baseline hazard rates and the coeffi-
cients of interest rate (λ0, k0, λr and kr) will produce a decline in the mortgage
value. By contrast, an increase in the coefficients on housing price levels and
household incomes (λ1, k1, λ2 and k2) will increase the mortgage value.

The impact of the parameters on the mortgage value depends on the values
of parameters λr, kr, λ1, k1, λ2 and k2. According to Equation (30), we can
check the robustness of the relationship to changing parameters. The influence
of parameters f (t, s), σ r, a, σ i, φr Hi and φHi Hj on mortgage value when there are
changes in λr, kr, λ1, k1, λ2 and k2 are displayed in Figures 1 and 2. Figure 1(a),
(b) and (c) shows how ∂V (t)

∂ f (t,s) ,
∂V (t)
∂σr

and ∂V (t)
∂a change when −1 ≤ λr ≤ 1.

Figure 1(a) reveals that ∂V (t)
∂ f (t,s) is always negative no matter whether the value

of λr + kr is positive or negative. This, in turn, implies that there is a negative
relationship between f (t, s) and the mortgage value. According to Figure 1(b),
the value of ∂V (t)

∂σr
is positive (negative) if λr > −kr (λr < −kr). We can also

infer that there is a positive (negative) relationship between σ r and mortgage
value when λr > −kr (λr < −kr). Figure 1(c) shows that the relation between
mortgage value and a is contrary to the relation between mortgage value and
σ r, and that there is a positive (negative) relationship between mortgage value
and a when λr > −kr (λr < −kr).
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Figure 1 � The partial derivatives of the mortgage value with respect to f (t, s), a, σ r,
σ H and σ Y for different values of λr, λ1 and λ2.
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Note: These figures represent the influences of f (t, s), a, σ r, σ H and σ Y on the mortgage
value when the parameter values λr, λ1 and λ2 change. The results are obtained according
to Equation (30) under the cases of −1 < λr < 1, −0.1 < λ1, < 0.1 and −0.1 < λ2 <
0.1.

Figure 1(d) and (e) shows how values of ∂V (t)
∂σH

and ∂V (t)
∂σY

change when −0.1 <

λi < 0.1, i = 1, 2, respectively. These figures demonstrate that quadratic-form
relationships exist between ∂V (t)

∂σH
and λ1, and between ∂V (t)

∂σY
and λ2. This may be

due to the fact that the effects of variances in the moment generating function are
squared forms. We find a positive relationship between σ H(σ Y ) and mortgage
value when λ1 > 0 (λ2 > 0), or when λ1(λ2) is a large negative value. Figure 2
shows the influence of parameter correlations on mortgage value based on
changes in λr and λ1. From Figure 2(a) and (b), we see that ∂V (t)

∂φr H
> 0 and ∂V (t)

∂φrY
>

0 when −1 < λr < 1. This implies that there are positive relationships between
φrH and mortgage value, and between φrY and mortgage value regardless of
whether λr + kr is positive or negative. As displayed in Figure 2(c) and (d),
both φrH and φHY are positively (negatively) related to mortgage value when
λ1 < 0 (λ1 > 0). The same results hold for the influence of λ2 on ∂V (t)

∂φr H
and ∂V (t)

∂φHY
.
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Figure 2 � The partial derivatives of the mortgage value with respect to φrH , φrY

and φHY for different values of λr and λ1.
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Note: These figures represent the influences of φrH , φrY and φHY on the mortgage value
when the parameter values λr and λ1 change. The results are obtained according to
Equation (30) under the cases of −1 < λr < 1 and −0.1 < λ1, 0.1.

Moreover, the influences of kr, k1 and k2 on the changes in ∂V (t)
∂ f (t,s) ,

∂V (t)
∂σr

, ∂V (t)
∂a ,

∂V (t)
∂σH

, ∂V (t)
∂σY

, ∂V (t)
∂φrY

, ∂V (t)
∂φr H

and ∂V (t)
∂φHY

are similar to the above results.

The numerical results suggest that the major factors that influence mortgage
value are the interest rate (f (t, s) and σ r) and baseline hazard rates (λ0 and k0).
However, other major factors may emerge for different sets of parameter values.
In fact, whether a variable is a major determinant of mortgage value depends
on the estimated parameters of the linear hazard function. In our numerical
example, the interest rate is a major factor because the value of 1 + λr +
kr is large. However, if 1 + λr + kr ≈ 0, the interest rate has a very small
influence on the mortgage value. Moreover, λ0 and k0 are major valuation
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factors because the conditions
∑n

i=1 λi Xi < λ0 and
∑n

j=1 k j X j < k0 lead to
∂V (t)
∂λ0

> ∂V (t)
∂λi

and ∂V (t)
∂k0

> ∂V (t)
∂ki

. Although our numerical results are sensitive to
assumed parameter values, we believe they help us to understand the impact of
state variables and their correlations on hazard rates of prepayment and default
and, therefore, mortgage value.14

Conclusion

The valuation and hedging of mortgage-related securities requires a model that
includes the borrower’s prepayment and default behavior. Many researchers
have proposed models for valuing the mortgage based on the contingent-claim
pricing theory. However, with this approach the boundary conditions of pre-
payment and default are difficult to identify. Alternatively, the reduced-form
approach estimates the hazard rates using market data. The default and pre-
payment risks are then calculated using hazard functions, and as a result, the
mortgage contract is more easily valued.

This article proposes a methodology for implementing the reduced-form model
and embeds the relevant variables on hazard rates to derive a closed-form valua-
tion solution for a fixed-rate mortgage. The default and prepayment risks in our
mortgage-pricing model are represented by the risk-adjusted discount rate. Our
approach differs from the structural-form approach in how it treats prepayment
and default risks and provides an efficient valuation method for the pricing and
hedging of more complex mortgages. The closed-form formula is therefore a
valuable tool for investors and mortgage portfolio managers to determine their
diversification and hedging strategies.

Using our model for sensitivity analyses, one can investigate how the various
relevant variables and their correlations influence mortgage value. We conduct
a numerical analysis to investigate the effects of interest rate, housing price and
household income parameters on mortgage value. We find that the interest rate
parameters and baseline hazard rates are the most important factors influencing
mortgage value. We also discuss the influence of the correlations of the influ-
ential variables on mortgage value, a topic that is not thoroughly investigated in
the previous literature. Our results show that changes in correlation coefficients
affect the mortgage value, although not to a significant degree.

In future research, this model could be combined with actual market data for
the production of empirical studies. Additionally, our closed-form formula

14 For reasons of comparison, we adopt this set of parameter values to perform our
model and show the effects of the different variables on the mortgage value.
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can be used to investigate the duration and convexity of a mortgage port-
folio and determine an optimal diversification strategy. Also, the fractional
loss rate l(t) can be generalized to include time-varying and path-dependent
specifications.

We are grateful for comments and suggestions on earlier drafts by Real Estate Economics
Editor David Ling and three anonymous referees.
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Appendix A

In this appendix, we provide the derivation of Equations (19), (20) and (21).

From Equation (12),

r (u) = f (t, u) + σ 2
r (e−a(u−t) − 1)2

2a2
+

∫ u

t
σr e−a(u−v) dZr (v).

Let

ρ(v, u) = σr e−a(u−v), b(t, u) =
∫ u

t
ρ(t, v) dv = σr

1 − e−a(u−t)

a
.

Define

X0 =
∫ s

t
r (u) du =

∫ s

t
f (t, u) du +

∫ s

t

b(t, u)2

2
du

+
∫ s

t

∫ u

t
ρ(v, u) dZr (v) du. (A1)

After changing the order of integration, a direct computation yields
∫ s

t

b(t, u)2

2
du =

∫ s

t

b(v, s)2

2
dv,

and

∫ s

t

∫ u

t
ρ(v, u) dZr (v) du =

∫ s

t

(∫ s

v

ρ(v, s) du

)
dZr (v)

=
∫ s

t
b(v, s) dZr (v). (A2)

Substituting Equation (A2) into Equation (A1) gives
∫ s

t
r (u) du =

∫ s

t
f (t, u) du +

∫ s

t

b(v, s)2

2
dv +

∫ s

t
b(v, s) dZr (v).

Define
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Xi (s) =
∫ s

t
ei (u) du, i = 1, 2, . . . , n,

where

ei (u) = σi Zi (u) = σi

(
Zi (t) +

∫ u

t
dZi (v)

)
.

Then

Xi (s) =
∫ s

t
ei (u) du

=
∫ s

t
σi

(
Zi (t) +

∫ u

t
dZi (v)

)
du, i = 1, 2, . . . , n,

= σi

∫ s

t
Zi (t) du + σi

∫ s

t

∫ u

t
dZi (v) du

= σi

∫ s

t
Zi (t) du + σi

∫ s

t

(∫ s

v

du

)
dZi (v)

= σi Zi (t)(s − t) + σi

∫ s

t
(s − v) dZi (v).

We assume the initial yield curve is flat. A direct computation gives

µX0 (t, s) = E Q
t

[∫ s

t
r (u) du

]
=

∫ s

t
f (t, u) du +

∫ s

t

b(t, u)2

2
du

= f (t, s)(s − t) + σ 2
r

2a2

×
(

(s − t) − 2

a
(1 − e−a(s−t)) + 1

2a
(1 − e−2a(s−t))

)
.

By Ito’s Lemma, we obtain the following:

E Q
t [dZr (t) dZr (t)] = E Q

t [dZi (t) dZi (t)] = dt,

E Q
t [dZr (t) dZr (u)] = E Q

t [dZr (t) dZi (u)]

= E Q
t [dZi (t) dZi (u)]

= E Q
t [dZi (t) dZ j (u)]

= 0,

E Q
t [dZr (t) dZi (t)] = φr Hi dt,

E Q
t [dZi (t) dZ j (t)] = φHi Hj dt, i, j = 1, 2, . . . , n, i �= j.

Then
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σ 2
X0

(t, s) = Vart

(∫ s

t
r (u) du

)

= E Q
t

[∫ s

t
b(v, s) dZr (v) ×

∫ s

t
b(v, s) dZr (v)

]

=
∫ s

t
b(v, s)2 dv

= σ 2
r

a2

(
(s − t) − 2

a
(1 − e−a(s−t)) + 1

2a
(1 − e−2a(s−t))

)
.

As Xi (s) = σi Zi (t)(s − t) + σi
∫ s

t (s − v) dZi (v), we have the following:

µXi (t, s) = E Q
t [Xi (s)] =

∫ s

t
E Q

t [ei (u)] du = σi

∫ s

t
Zi (t) du = σi Zi (t)(s − t),

σ 2
Xi

(t, s) = Vart (Xi (s))

= σ 2
i E Q

t

[∫ s

t
(s − v) dZi (v) ×

∫ s

t
(s − v) dZi (v)

]

= σ 2
i

∫ s

t
(s − v)2 dv

= σ 2
i

(s − t)3

3
,

and

σX0 Xi (t, s) = Covt (X0(s), Xi (s))

= E Q
t

[∫ s

t
b(v, s) dZr (v) × σi

∫ s

t
(s − v) dZi (v)

]

= σiφr Hi

∫ s

t
b(v, s)(s − v) dv,

= σiφr Hi η(t, s),

where

η(t, s) =
∫ s

t
b(v, s)(s − v) dv

= σr

(
− 1

a3
(1 − e−a(s−t)) + 1

a2
e−a(s−t)(s − t) + 1

2a
(s − t)2

)
.

Similarly,
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σXi X j (t, s) = E Q
t

[
σi

∫ s

t
(s − v) dZi (v) × σ j

∫ s

t
(s − v) dZ j (v)

]

= σiσ jφHi Hj

∫ s

t
(s − v)2 dv = σiσ jφHi Hj

(s − t)3

3
.

Furthermore, we can obtain

µr (t, s) = E Q
t [r (s)] = f (t, s) + b(t, s)2

2
= f (t, s) + σ 2

r

2a2
(1 − e−a(s−t))2,

σr X0 (t, s) = E Q
t

[
r (s)

∫ s

t
r (u) du

]
− E Q

t [r (s)]E Q
t

[∫ s

t
r (u) du

]

= E Q
t

[∫ s

t
ρ(v, u) dZr (v) ×

∫ s

t
b(v, s) dZr (v)

]

=
∫ s

t
ρ(v, u)b(v, s) dv

= σ 2
r

2a2
(1 − e−a(s−t))2,

σr Xi (t, s) = E Q
t

[
r (s)

∫ s

t
ei (u) du

]
− E Q

t [r (s)]E Q
t

[∫ s

t
ei (u) du

]

= E Q
t

[∫ s

t
ρ(v, u) dZr (v) ×

∫ s

t
(s − v) dZi (v)

]

= σiφrs Hi

∫ s

t
ρ(v, s)(s − v) dv

= σiφrs Hi

�
η(t, s),

where

�
η(t, s) =

∫ s

t
ρ(v, s)(s − v) dv = σr

a2
(1 − e−a(s−t)) − σr

a
e−a(s−t)(s − t),

µei (t, s) = E Q
t [ei (s)] = σi Zi (t),

σX0ei (t, s) = Covt

(
ei (s),

∫ s

t
r (u) du

)

= E Q
t

[
ei (s)

∫ s

t
r (u) du

]
− E Q

t [ei (s)]E Q
t

[∫ s

t
r (u) du

]
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= E Q
t

[∫ s

t
σi dZi (v) ×

∫ s

t
b(v, s) dZr (v)

]

= σi

∫ s

t
b(v, s) dv

= σiφrs Hi

(σr

a
(s − t) − σr

a2
(1 − e−a(s−t))

)
,

and

σXi ei (t, s) = Covt

(∫ s

t
ei (u) du, ei (s)

)

= E Q
t

[∫ s

t
ei (u)ei (s) du

]
− E Q

t

[∫ s

t
ei (u) du

]
E Q

t [ei (s)]

= E Q
t

[∫ s

t
σi dZi (v) ×

∫ s

t
σi (s − v) dZi (v)

]

= σ 2
i

∫ s

t
(s − v) dv

= 1

2
σ 2

i (s − t)2.

For i �= j,

σX j ei (t, s) = Covt

(∫ s

t
e j (u) du, ei (s)

)

= E Q
t

[∫ s

t
e j (u)ei (s) du

]
− E Q

t

[∫ s

t
e j (u) du

]
E Q

t [ei (s)]

= E Q
t

[∫ s

t
σ j (s − v) dZ j (v) ×

∫ s

t
σi dZi (v)

]

= σiσ jφHi Hj

∫ s

t
(s − v) dv

= 1

2
σiσ jφHi Hj (s − t)2.

Given that (x, y) is a bivariate normal, we have

Et [e
Ax+By] = eAµX +Bµy+1/2(A2σ 2

x +2σxy AB+B2σ 2
y ). (A3)

Then, for the first term of Equation (18), using Equation (A3), we obtain
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∫ T

t
E Q

t

[
e− ∫ s

t ((λ0(u)+k0(u))+(1+λr +kr )r (u)+(λ1+k1)ei (u)+···(λn+kn )en (u)) du
]

ds

=
∫ T

t
e− ∫ s

t g0(u) du E Q
t [eA′ X ] ds

=
∫ T

t
e− ∫ s

t g0(u) dueA′µX + A′�x A
2 ds.

This is Equation (19).

Also,

∂ Et [eA′ X+B ′W ]

∂ B ′

= Et [W eA′ X+B ′W ]

= eA′µX +B ′µW +1/2(A′�X A+2B ′�X W A+B ′�W B)(µW + �W B + �X W A). (A4)

Using Equation (A4) for the second term and the third term of Equation (18),
we obtain

E Q
t

[∫ T

t
M(s)θ (s)e− ∫ s

t (r (u)+θ(u)+π (u)) du ds

]

=
∫ T

t
M(s)E Q

t

[
θ (s)e− ∫ s

t (r (u)+θ (u)+π (u)) du
]

ds

=
∫ T

t
M(s)e− ∫ s

t g0(u) du E Q
t

[
(λ0(s) + λr r (s) + λ1e1(s) + · · · + λnen(s))eA′ X ]

ds

=
∫ T

t
M(s)e− ∫ s

t g0(u) du E Q
t [λ0(s)eA′ X + B ′W eA′ X ] ds

=
∫ T

t
M(s)e− ∫ s

t g0(u) du(λ0(s)E Q
t [eA′ X ] + B ′ E Q

t [W eA′ X ])ds.

As

Et [W eA′ X ] = ∂ Et [eA′ X+B ′W ]

∂ B ′

∣∣∣∣∣
B=0

= eA′µX +1/2(A′�X A)(µW + �X W A).

We obtain the following:
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∫ T

t
M(s)e− ∫ s

t g0(u) du(λ0(s)E Q
t [eA′ X ] + B ′E Q

t [WeA′ X ])ds

=
∫ T

t
M(s)e− ∫ s

t g0(u) du(λ0(s) + B ′µW + B ′�X W A)eA′µX + A′�x A
2 ds

=
∫ T

t
M(s)(λ0(s) + B ′µW + B ′�X W A)e− ∫ s

t g0(u) du+A′µx +
A′�X A

2 ds.

This is Equation (20). In the same way, we obtain the following:

E Q
t

[∫ T

t
M(s)(1 − l(s))π (s)e− ∫ s

t (r (u)+θ (u)+π (u)) du ds

]

=
∫ T

t
M(s)(1 − l(s))E Q

t

[
π (s)e− ∫ s

t (r (u)+θ (u)+π (u)) du
]

ds

=
∫ T

t
M(s)(1 − l(s))e− ∫ s

t g0(u) du

× E Q
t

[
(k0(s) + krr (s) + k1e1(s) + · · · + knen(s))eA′ X ]

ds

=
∫ T

t
M(s)(1 − l(s))e− ∫ s

t g0(u) du E Q
t

[
k0(s)eA′ X + C ′WeA′ X ]

ds

=
∫ T

t
M(s)(1 − l(s))e− ∫ s

t g0(u) du(k0(s)E Q
t [eA′ X ] + E Q

t [C ′WeA′ X ]) ds

=
∫ T

t
M(s)(1 − l(s))e− ∫ s

t g0(u) du(k0(s) + C ′µW + C ′�X W A)eA′µX + A′�x A
2 ds

=
∫ T

t
M(s)(1 − l(s))(k0(s) + C ′µW + C ′�X W A)e− ∫ s

t g0(u) du+A′µx +
A′�X A

2 ds.

This is Equation (21).

Appendix B

Let ξ denote the parameters of state variables which include f (t, s), σ r, a, σ i,
φr Hi and φHi Hj . In this appendix, we provide the expressions for ∂µX

∂ξ
, ∂µW

∂ξ
, ∂�X

∂ξ

and ∂�X W
∂ξ

. The partial derivatives of the elements of µX , µW , �X and �XW with
respect to ξ are not shown here because the values of these terms are zero.

The partial derivatives of the elements of µX and µW with respect to f (t, s) are

∂µX0 (t, s)

∂ f (t, s)
= (s − t), and

∂µr (t, s)

∂ f (t, s)
= 1.
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Then, one can substitute the above results into Equation (30) to obtain the results
of ∂V (t)

∂ f (t,s) .

The following expressions show the partial derivatives of the elements of µX ,
µW , �X and �XW with respect to a:

∂µX0 (t, s)

∂a
= σ 2

r

(
− 1

a3
(s − t) + 3

a4
(1 − e−a(s−t)) − 1

a3
(e−a(s−t)(s − t))

− 3

4a4
(1 − e−2a(s−t)) + 1

2a3
(e−2a(s−t)(s − t))

)
,

∂µr (t, s)

∂a
= σ 2

r

a2
(1 − e−a(s−t))e−a(s−t)(s − t) − σ 2

r

a3
(1 − e−a(s−t))2,

∂σ 2
X0

(t, s)

∂a
= σ 2

r

[
− 2

a3
(s − t) + 6

a4
(1 − e−a(s−t)) − 2

a3
(e−a(s−t)(s − t))

− 3

2a4
(1 − e−2a(s−t)) + 1

a3
(e−2a(s−t)(s − t))

]
,

∂σr X0 (t, s)

∂a
= σ 2

r

a2
(1 − e−a(s−t))e−a(s−t)(s − t) − σ 2

r

a3
(1 − e−a(s−t))2,

∂σX0 Xi (t, s)

∂a
= σiφr Hi σr

(
3

a4
(1 − e−a(s−t) ) − 1

a3
e−a(s−t)(s − t)

− 2

a3
e−a(s−t)(s − t) − 1

a2
e−a(s−t)(s − t)2 − 1

2a2
(s − t)2

)
,

∂σr Xi (t, s)

∂a
= σiφr Hi

(
−2σr

a3
(1 − e−a(s−t)) + σr

a2
e−a(s−t)(s − t),

+ σr

a2
e−a(s−t)(s − t) + σr

a
e−a(s−t)(s − t)2

)
,

∂σX0ei (t, s)

∂a
= σiφr Hi

(
−σr

a2
(s − t) + 2σr

a3
(1 − e−a(s−t)) − σr

a2
e−a(s−t)(s − t)

)
.

Substituting the above results into Equation (30), we can obtain the results
of ∂V (t)

∂a . The partial derivatives of the elements of µX , µW , �X and �XWwith
respect to σ r are

∂µX0 (t, s)

∂σr
= σr

a2

(
(s − t) − 2

a
(1 − e−a(s−t)) + 1

2a
(1 − e−2a(s−t))

)
,

∂µr (t, s)

∂σr
= σr

a2
(1 − e−a(s−t))2,
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∂σ 2
X0

(t, s)

∂σr
= 2σr

a2

[
(s − t) − 2

a
(1 − e−a(s−t)) + 1

2a
(1 − e−2a(s−t))

]
,

∂σr X0 (t, s)

∂σr
= σr

a2
(1 − e−a(s−t))2,

∂σX0 Xi (t, s)

∂σr
= σiφr Hi

(
− 1

a3
(1 − e−a(s−t)) + 1

a2
e−a(s−t)(s − t) + 1

2a
(s − t)2

)
,

∂σr Xi (t, s)

∂σr
= σiφr Hi

(
1

a2
(1 − e−a(s−t)) − 1

a
e−a(s−t)(s − t)

)
and

∂σX0ei (t, s)

∂σr
= σiφr Hi

[
1

a
(s − t) − 1

a2
(1 − e−a(s−t))

]
.

Substituting the above results into Equation (30), we can obtain the result of
∂V (t)
∂σr

. The partial derivatives of the elements of µX , µW , �X and �XW with
respect to σ i are

∂µXi (t, s)

∂σi
= (s − t)Zi (t),

∂µei (t, s)

∂σi
= Zi (t),

∂σ 2
Xi

(t, s)

∂σi
= 2σi (s − t)3

3
,

∂σX0 Xi (t, s)

∂σi
= σiφr Hi

(
− 1

a3
(1 − e−a(s−t)) + 1

a2
e−a(s − t)(s − t) + 1

2a
(s − t)2

)
,

∂σXi X j (t, s)

∂σi
= σ jφHi Hj

(s − t)3

3
,

∂σr Xi (t, s)

∂σi
= φr Hi

σr

a2
(1 − e−a(s−t)) − σr

a
e−a(s−t)(s − t),

∂σXi ei (t, s)

∂σi
= σi (s − t)2,

∂σX0ei (t, s)

∂σi
= φr Hi

(σr

a
(s − t) − σr

a2
(1 − e−a(s−t))

)
and

for i �= j,
σX j ei (t, s)

∂σi
= 1

2
σ jφHi Hj (s − t)2.
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Substituting the above results into Equation (30), we can obtain the result of
∂V (t)
∂σi

. Furthermore, the partial derivatives of the elements of µX , µW , �X and
�XW with respect to φr Hi are as follows:

∂σX0 Xi (t, s)

∂φr Hi

= σiσr

(
− 1

a3
(1 − e−a(s−t)) + 1

a2
e−a(s−t)(s − t) + 1

2a
(s − t)2

)
,

∂σr Xi (t, s)

∂φr Hi

= σiσr

(
1

a2
(1 − e−a(s−t)) − 1

a
e−a(s−t)(s − t)

)
and

∂σX0ei (t, s)

∂φr Hi

= σiσr

(
1

a
(s − t) − 1

a2
(1 − e−a(s−t))

)
.

Finally, the partial derivatives of the elements of µX , µW , �X and �XWwith
respect to φHi Hj are

∂σXi X j (t, s)

∂φHi Hj

= σiσ j
(s − t)3

3
and

σX j ei (t, s)

∂φHi Hj

= 1

2
σiσ j (s − t)2.

Substituting the above results into Equation (30), we can obtain the results of
∂V (t)
∂φr Hi

and ∂V (t)
∂φHi H j

.




