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Abstract

This study extends the double student’s t factor copula models developed by Hull and

White (2004) for valuing CDO-Squared. First, the assumptions of non-homogeneous recovery

rates are adopted to fit realistic aggregate loss of CDO collateral. Second, a stochastic

hazard rate is proposed using the CIR intensity process to resolve the problem of inability of

constant intensity rate to capture instantaneous credit spread dynamics. To construct the

default probability distribution of CDO-Squared, the factor copula model is derived using

the two-stage probability bucketing method to approximate loss distribution. Finally, the

example of CDO-Squared issued by the Polaris Securities Group in Taiwan is presented to

illustrate fair credit spread pricing for various tranches.

Keywords: Factor Copula, CIR Intensity Model, Index Tranche, CDO-Squared.

1. Introduction

The CDO represents default correlation product to migrate default risk from origina-

tors to investors. Presently, numerous originators have begun to consider various bespoke

tranches of other CDOs (including standardized contract of CDS index) as underlying
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collateral for both increasing tranche return and diversifying underlying collateral.1 The

type of exotic CDOs is termed Synthetic CDO-Squared.2

For risk management and valuation of Synthetic CDO-Squared, default dependence

is an important factor which can be influenced by overall economic, sectoral, and firm-

specific conditions. Andersen, Sidenius, and Basu (2003) proposed the double Gaussian

factor copula methodology to reduce the dimension of correlation parameters involv-

ing CDOs. The double student’s t factor copula method proposed by Hull and White

(2004) not only reduces computational inefficiency of non-homogeneous underlyings in

the model of Andersen et al.(2003), but also has superior ability to capture the fat-tail

properties of CDO underlyings than the double Gaussian copula model adopted by Li and

Liao (2006).3 Moreover, Hull and White (2004) utilized one-stage probability bucketing

technique to scatter collateral loss distribution by selecting bucket numbers to construct

conditional discrete loss distribution given the common factors. 4

However, the approach of Hull and White (2004) can be modified as follows. First,

homogeneous and constant recovery rate must be replaced by non-homogeneous random

recovery rates to fit realistic recovery rates among different obligors. Second, because

of constant intensity rate being inable to capture instantaneous credit spread dynamics

of CDO obligors, constant intensity rate assumption needs to be replaced by stochastic

intensity rate to capture the realistic time-varying default possibilities of obligors. Third,

the one-stage probability bucketing technique proposed by Hull and White (2004) cannot

be used directly to construct collateral loss distribution of CDO-Squared.

Recent investigations involving the estimation of random recovery rates of oblig-

ors include Hull and White (2004) and Andersen and Sidenius (2005), among others.

However, the assumption of these studies that the recovery rates of all obligors of CDO

are homogeneous does not fully accord with the market situation mentioned in Moody’s

report.5 Additionally, these papers did not propose the calibration approach of param-

eters in their random recovery rate model. Hence, this study thus extends the homo-

geneous assumption of recovery rate to four types of random recovery rates to fit the

realistic properties of all underlyings on CDS index. Second, this study utilizes recovery

rates from the statistics of the Moody’s and Credit Index proposed by Kim (1999) to

obtain more accurate estimate of aggregate loss given default of CDO than the estimate

used by Hull and White (2004).

Recent investigations involving the estimation of obligor default probabilities using

stochastic intensity to value CDO include Duffie and Garleanu (2001), Schonbucher and

Schubert (2001), Chen and Sopranzetti (2003), Voort (2004), and Li and Liao (2006).

1 CDS index issued included CDX, iTraxx, and iBoxx indice.
2 The tranche of CDO-Squared (called master CDO) is termed the “master tranche” and the bespoke

tranche of other CDO (called inner CDO) is termed the “inner tranche” in this study.
3 The non-homogeneous underlyings means large variation in principal between CDO underlyings.
4 The common factors are referred to overall economic and sectoral conditions.
5 The classification of recovery rates of corporate bonds is according to the Moody’s report (2006).

This report mentioned that obligor recovery rate is not only affected by macroeconomic factors, but also
affected by whether obligor debt has been guaranteed.



i

“M20N18” — 2009/2/17 — 1:03 — page 105 — #3
i

i

i

i

i

A Factor-Copula Based Valuation of Synthetic CDO-Squared under a Stochastic Intensity 105

However, there is no guarantee that the stochastic intensity processes mentioned above

will be always positive. This study thus uses the CIR intensity process to describe the

instantaneous credit spread of CDOs obligors.

Recent investigations estimating collateral loss distribution include Baheti, Mashal,

Naldi, and Schloegl (2005), Hull and White (2006), and Zheng (2006). However, the

computations involved in the model of Baheti et al. (2005) are inefficient when the

underlyings of CDO-Squared collateral are more than five inner tranches. Regarding

Hull and White (2006) and Zheng (2006), more stable numerical solutions are obtainable

only when the simulation frequency approaches two hundred thousand times. Monte

Carlo (MC) simulation involves a trade-off between accuracy and efficiency. This study

thus proposes the factor copula model under the two-stage probability bucketing method

as a more efficient and accurate method of approximating the collateral loss distribution

of CDO-Squared than those mentioned above.

The Polaris Securities Group in Taiwan issued the first CDO-Squared using CDX

3∼7% tranche and 26 Taiwan inverse floating structured notes as collateral to resolve

the problem of loss of inverse floating structured notes. For a hybrid portfolio containing

these underlyings, the hybrid factor copula model is proposed, which involves the CIR

stochastic intensity model and the KMV-Merton Model developed by Leland (2004) in a

random recovery rate environment to price CDO-Squared. The remainder of this study

is organized as follows: Section 2 presents the formulation of the hybrid factor copula

model. Section 3 then employs the proposed model to value CDO-Squared issued by

Polaris Securities Group in Taiwan. This section also presents the sensitivity analyses of

the relevant model parameters. Finally, Section 4 presents conclusions.

2. The Valuation Framework of CDO-Squared

The following sections contain the following: (1) an introduction to the double stu-

dent’s t factor approach under a random recovery rate environment and relevant pa-

rameter calibration, (2) an illustration of the CIR stochastic intensity and the KMV

model, (3) a presentation of the valuation model of CDO-Squared using the two-stage

probability bucketing method.

2.1. Factor Copula Approach under Random Recovery Rate

Assuming N obligors the random vector of the default times is denoted as (τ1, . . . , τN )

and the joint distribution is denoted as F such that F (t1, t2, . . . , tN ) = Q(τ1 ≤ t1, τ2 ≤

t2, . . . , τN ≤ tN ) = C(F1(t1), . . . , FN (tN )), where Q(·) represents a probability measure.

F1(·), . . . , FN (·) represent the marginal distribution functions. Meanwhile, the C(·) func-

tion denotes the copula function of default times.

2.1.1. Factor Copula Model

Assuming the collateral portfolio of the kth inner CDO contains Nk obligors, the loss

amount generated by the ith obligor from the kth inner CDO are denoted as li,k and the
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default time is denoted as τi,k in case of default before time Tj . The total portfolio loss

of kth the inner CDO experienced on [0, Tj ] is then

Lk(Tj) =

Nk
∑

i=1

ℓi,k(Tj) =

Nk
∑

i=1

li,k · 1{τi,k<Tj} =

Nk
∑

i=1

lmax
i,k · (1 − Ri,k) · 1{τi,k<Tj} (1)

with expected value E[Lk(Tj)]=
Nk
∑

i=1
pi,k(Tj)·E(li,k|τi,k <Tj), where pi,k(Tj)=E(l{τi,k<Tj})

is the default probability before Tj, ℓi,k(Tj) = li,k · 1{τi,k<Tj} is the default loss process

before Tj , li,k = lmax
i,k (1 − Ri,k) is the loss given default, Ri,k is the recovery rate of

ith obligor in kth CDO, and lmax
i,k presents the principal of ith obligor on kth CDO,

0 ≤ Ri,k ≤ 1, i = 1, . . . , Nk, j = 1, . . . , n.

To efficiently capture fat-tail property of returns on assets, the return on asset and

loss given default of the ith obligor in the kth inner CDO are defined as follows:6

ri,k = ai,k ·

√

(v1 − 2

v1

)

· Z +

√

(1 − a2
i,k) ·

(v2 − 2

v2

)

· εi,k, (2)

li,k(z) = lmax
i,k · (1 − Ri,k(Z)) = lmax

i,k · (1 − Φ(bi,k + ci,kZ + ξi,k)). (3)

where ri,k represents the return on asset of ith obligor, Z represents common factor, εi,k

and ξi,k represent the specific factors of the ith obligor in the kth inner CDO, Z ∼ tv1 ,

εi,k
iid
∼ tv2 , ξi,k

iid
∼ N(0, σ2

ξi,k
), Ri,k

iid
∼ N(0, 1) · εi,k and ξi,k are both independent of Z, v1

and v2 are degrees of freedom in Z and εi,k respectively, Φ(·) is the Gaussian cumulative

distribution function, and the default correlation ai,k can be estimated by the correlation

between return on asset ri,k as in Equation (1) and common factor Z, −1 ≤ ai,k ≤ 1,

i = 1, 2, . . . , Nk.
7

Definition 1. The filtration ℑi,k
t denotes the information generated by the default

intensity rates of the ith obligor in the kth inner CDO λi,k
t up to time t.

Remark 2. Assuming Equation (2) with Z ∼ tv1 , εi,k
iid
∼ tv2 and Z, εi,k are indepen-

dent. If Fτi,k(0) = Φ(zi) = Pr(ri,k ≤ ri,k), where Fτi,k(t)(Tj) = 1−E[e−
R Tj

t λi,k(u)du|ℑi,k
t ] =

1−Pτi,k(t)(t, Tj), ri,k represents the barrier level of return of asset and Φ(zi) is the Gaus-

sian cumulative distribution of zi, then the conditional default probability of the ith

obligor in the kth CDO is

pτi,k
(Tj , Z) = Pr(τi,k(0) ≤ Tj |Z)

= Pr









εi,k ≤

(Φ−1(Fτi,k(0)(Tj)) − ai,k ·

√

(

v1−2
v2

)

· Z

√

(1 − a2
i,k)
(

v2−2
v2

)

)∣

∣

∣

∣

∣

Z









, (4)

6 See Andersen et al. (2005).
7 See, for example, Belkin et al. (1998).
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where i = 1, . . . , Nk, j = 1, . . . , n.

Secondly, this study extends the approach of Andersen et al. (2005) to modeling four

types of random recovery rates based on secured levels of obligor’s liabilities. ℓm
i,k(Tj , Z) =

lmi,k(Z)·1{τi,k<Tj} is thus defined as the discrete default process of the ith obligor in the kth

inner CDO provided on Z before time Tj under a random recovery rate with m-possible

outcomes. Moreover, Rm
i,k (= 1 − ℓm

i,k(Tj , Z)/lmax
i,k ) denotes the corresponding recovery

rate of ℓm
i,k. The realized recovery ratio of ith obligor is yi,k = 1 − (ℓi,k/l

max
i,k ), and the

realized loss ℓi,k satisfies 0 ≤ ℓi,k ≤ lmax
i,k .

For numerical computation of factor copula given the random recovery rates, the

first task is to establish a discrete collateral loss distribution via Proposition 3.

Proposition 3. If the loss given default processes li,k(Z) and lmi,k(Z), and default

process 1{τi,k<Tj} are independent conditional on Z, then the conditional default distri-

butions given the random recovery rates are

Pr[ℓi,k(Tj , Z) ≤ ℓi,k|Z] = 1 − Pr[τi,k(0) ≤ Tj|Z] · Pr[Ri,k ≤ yi,k|Z], (5)

Pr[ℓm
i,k(Tj , Z) =

(

1 −
s

m

)

· lmax
i,k |Z] ≈ 1 − Pr[τi,k(0) ≤ Tj|Z] · Pr

[

Rm
i,k =

s

m

∣

∣

∣
Z
]

, (6)

where li,k, Ri,k are defined as Equation (3), Pr(Ri,k ≤ yi,k|Z) = Φ[(Φ−1(yi,k) − ui,k −

bi,k · Z)/σξi,k
], Pr(Rm

i,k = s
m |Z) = Pr(Ri,k ≤ (2s+1

2m )|Z) − Pr(Ri,k ≤ (2s−1
2m )|Z), s =

0, 1, . . . ,m − 1.

Proof. See Appendix 1-1.

2.1.2. Procedure for calibrating relevant parameters

The PROBIT model is used to estimate the default correlation and coefficient of the

individual random recovery rate model.8 The PROBIT equation is expressed as follows:

SDPt = Φ(Xt−1β + εt),

where SDPt represents the default rate for investment grade corporate bonds, Φ(·) rep-

resents Gaussian cumulative distribution, Xt−1 represents macroeconomic variables at

time t − 1, and εt
iid
∼ N(0, 1).

Secondly, the credit index Zt considered as the common factor Z in Equation (2)

and (3) is defined as follows:

Zt =
Φ−1(SDPt) − µΦ−1(SDPt)

σΦ−1(SDPt)
, (7)

where µΦ−1(SDPt) and σΦ−1(SDPt) represent the mean and standard deviation, respec-

tively, of the inverse Gaussian of default rate.

8 For detail, see Kim (1999) and Belkin, Suchower, and Forest (1998).
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Finally, if the random recovery rate process, Ri,k(Z) is expressed in Equation (3),

then the default correlation ai,k can be estimated from the correlation between as-

set return ri,k in Equation (2) and credit index Zt in Equation (7).9 The coefficients

(bi,k, ci,k, σξi,k
) of random recovery rate model in Equation (3) can also be estimated

using the PROBIT method. For detail, see Brigo and Alfonsi (2005).

2.2. CIR Intensity and KMV-Merton Model

2.2.1. CIR Intensity Model

It is important for CDO-squared investors to capture the instantaneous credit spread

dynamics of obligors in all inner CDO collaterals. Particularly, if the underlyings of

CDO-squared collateral include bespoke tranches of the CDS index, then CDO-squared

investors will benefit via the Greeks of CIR stochastic intensity process which describes

their instantaneous credit spread trends of the underlying obligors in CDS index.10 The

intensity rate is thus set to be

λi,k
t = x

αi,k

t + ϕi,k(t;αi,k), t ≥ 0, (8)

where ϕi,k denotes a deterministic function that depends on αi,k = (µi,k, θi,k, σi,k, x
αi,k

0 )

and is integrable on closed intervals. µi,k denotes the adjustment speed of the intensity

process x
αi,k

t , while θi,k represents the long-term average level of x
αi,k

t , σ is the standard

deviation of x
αi,k

t , and x
αi,k

0 denotes an initial value of x
αi,k

t and is selected from x
αi,k

0 =

λi,k
0 − ϕi,k(0;αi,k).

The CIR intensity process is set as follows:

dx
αi,k

t = µi,k · (θi,k − x
αi,k

t )dt + σi,k ·

√

x
αi,k

t dW i,k
t , (9)

where µi,k, θi,k, σi,k, x
αi,x

0 are positive constants and W i,k
t is a standard Brownian motion.

To calibrate the relevant parameters αi,k = (µi,k, θi,k, σi,k, x
αi,k

0 ) of Equation (9), it

is necessary to extract the implied intensity rate λ
i,k(implied)
t corresponding to the CDS

market quotes for increasing maturity Tj . First, the discounted value of the CDS contract

is defined as follows:

V i,k
CDS(t,ℵ, Tj , Si,k, L

i,k
GD,Γi,k(implied)(·))

= 1{τi,k>t} ·

[

Si,k ·

∫ Tj

t
B(t, u) · (Tβi,k(u)−1 − u) · du

(

e−(Γi,k(implied)(u)−Γi,k(implied)(t))
)

+

n
∑

j=βi,k(t)

B(t, Tj) · Si,k · m · e(Γi,k(implied)(t)−Γi,k(Tj))

+LGD ·

∫ Tj

t
B(t, u) · du

(

e−(Γi,k(implied)(u)−Γi,k(implied)(t))
)

]

, (10)

9 See, for example, Belkin et al.(1998).
10 For detail, see Brigo and Alfonsi (2005).
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where t ∈ [Tβi,k(w)−1, Tβi,k(w)], V i,k
CDS(t,ℵ, Tj , Si,k, L

i,k
GD,Γi,k(·)) represents the discounted

value of the CDS contract at time t, Si,k denotes the fixed premium rate of the CDS

contract where payments are received at times ℵ = {T1, T2, . . . , Tn}, m(
∆
= Tj − Tj−1) is

the payment period, Li,k
GD is the loss given default, and B(t, Tj) is the time t price of a

zero-coupon bond maturing at Tj, and Γ
i,k(implied)
t (t) ≡

∫ t
−∞ λ

i,k(implied)
t (s)ds.11

Furthermore, because the intensity rate λ
i,k(implied)
t shifts with changes in credit

rating, this study assumes that λ
i,k(implied)
t is a deterministic time-varying function. The

implied default probabilities are then obtained from market quotes of CDS contract and

the parameter αi,k = (µi,k, θi,k, σi,k, x
αi,k

0 ) is calibrated. Let λ
i,k(implied)
t be a piecewise-

constant and right-continuous function of time, defined as follows:

λ
i,k(implied)
t = λ

i,k(implied)
Tj

∀ t ∈ [Tj−1, Tj), (11)

where λ
i,k(implied)
Tj

is constant for i = 1, . . . , Nk, j = 1, 2, . . . , n, k = 1, . . . ,M .

By substituting λ
i,k(implied)
t in Equation (11) into Equation (10), λ

i,k(implied)
Tj

for

increasing maturity Tj can be bootstrapped from the term structure of the CDS market

quotes.12 By iteratively solving λ
i,k(implied)
Tj

from Equation (10), a set of equations for

different Tj can be set as follows:

V i,k
CDS

(

0,ℵ, Tj , S
M
1y , Li,k

GD, λi,k
T1/m

= λi,k
T2/m

= · · · = λi,k
T1

=: λ
i,k(implied)
T1

)

= 0

V i,k
CDS

(

0,ℵ, Tj , S
M
2y , Li,k

GD, λ
i,k(implied)
T1

;λi,k
T(m+1)/m

=λi,k
T(m+2)/m

= · · ·=λi,k
T2

=:λ
i,k(implied)
T2

)

=0

...

V i,k
CDS

(

0,ℵ, Tj , S
M
ny, L

i,k
GD, λ

i,k(implied)
T1

; . . . ;λ
i,k(implied)
Tn−1 ;λi,k

T(m·Tn−m+1)/m
= · · ·

= λi,k
(m·Tn−1)/m = λi,k

Tn
=: λ

i,k(implied)
Tn

)

= 0

(12)

Proposition 4. Given the dynamics of x
αi,k

t in Equation (9), the survival probability

at time t given maturity at Tj is

PCIR(t, Tj , x
αi,k

t ;αi,k) = E
(

e−
R Tj
t x

αi,k (u)du
∣

∣

∣ℑ
i,k
t

)

= A(t, Tj ;αi,k) exp
{

− B(t, Tj ;α)x
αi,k

0

}

(13)

where

A(t, Tj ;αi,k) =

[

2 · vi,k · e
(µi,k+vi,k)(Tj−t)/2

2 · vi,k+(µi,k+νi,k)(e
(Tj−t)·νi,k−1)

]2µi,k ·θi,k/σ2
i,k

, νi,k =
√

k2
i,k+2σ2

i,k,

11 For detail see Brigo and Alfonsi (2005).
12 Based on the market quote convention, CDS quotes on Bloomberg are limited to annual quotes

while the CDS contract duration exceeds one year.
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B(t, Tj;αi,k) =
2(e(Tj−t)·νi,k − 1)

2νi,k + (µi,k + νi,k)(e
(T−t)·νi,k − 1)

.

Proof. See Cox, Ingersoll, and Ross (1985).

Proposition 5. Defining λ
i,k(implied)
t as Equation (11), then ϕi,k(t, αi,k) of Equation

(8) can be derived as

ϕi,k(t, αi,k) = λ
i,k(implied)
Tj

+
d

ds
ln
(

PCIR(0, s, x
αi,k

0 )
)∣

∣

∣

s=t
∀ Tj−1 ≤ t < Tj , (14)

where PCIR(0, u, x
αi,x

0 , αi,k) denotes the survival probability for CIR model in Equation

(13), while λ
i,k(implied)
Tj

for increasing maturity Tj can be bootstrapped from the term

structure of CDS market quotes in λ
i,k(implied)
Tj

of Equation (11), j = 1, 2, . . . , n.

Proof. See Appendix 1-2.

Because the markets of CDS contracts are not liquid for all maturities, the most

liquid maturity J∗
i,k of the ith obligor in the kthinner CDO is sifted from all maturities

through the smallest difference between bid price SBid
i,k (Tj) and ask price Sask

i,k (Tj).
13

Second, proposition 6 is used to find α∗
i,k such that the intensity rate λi,k

t (α∗
i,k) is positive.

Proposition 6. Assuming correlation between the interest and the intensity rates is

equal to zero. If relevant parameters α∗
i,k = (µ∗

i,k, θ
∗
i,k, σ

∗
i,k, x

αi,k

0 ) of Equation (9) minimize
∫ J∗

i,k

0 ϕ2
i,k(u, αi,k)du and satisfy the following constraints: (1)

∫ J∗
i,k

0 ϕi,k(s, αi,k)ds > 0 and

(2) ϕi,k(s, αi,k) > 0, 0 ≤ s ≤ J∗
i,k, then the intensity rate λi,k

t (α∗
i,k) is positive.14

Proof. See Brigo and Mercurio (2006).

Finally, we substitute 1 − PCIR(t, Tj , α
∗
i,k) in Equation (13) into Pr(τi,k ≤ Tj |Z)

of Equation (6) to calculate the conditional default probability of obligors in the CDS

index.

2.2.2. KMV-Merton Model

Owing to the lack of the CDS market quotes for certain structured notes in this

hybrid portfolio, the KMV-Merton Model is used to calculate the default probability of

obligors via financial statements. The probability can be estimated through the following

steps:

13
J
∗
i,k = arg min

j
{|SBid

i,k (Tj) − S
ask
i,k (Tj)|}.

14 see Brigo and Mercurio (2006), P.789-794.
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(1) The distance to default DDi,k(t, T ) can be calculated as follows:

DDi,k(t, Tj) =

ln
(

V i,k
A

V i,k
B−KMV

)

+
(

µi,k − δi,k − (σi,k
A )2/2

)

· (Tj − t)

σi,k
A ·

√

Tj − t
,

where µi,k (= r + λi,k) is an estimate of the expected annual return of firm assets, λi,k

denotes the asset risk premium, δi,k represents the fractional payout rate on assets (to

both debt and equity), and T is the corporate bond maturity. Furthermore, VB−KMV

represents the default boundary of the obligor which equals book value of short term

liabilities plus half of long term liabilities, r is the instantaneous risk-free rate, and V i,k
A

and σi,k
A denote the initial asset value and the volatility of the ith obligor, respectively,

calculated from KMV-Merton model.15

(2) Φ(−DDi,k(t, Tj)) is substituted into Pr(τi,k ≤ Tj|Z) of Equation (6) to calculate

the conditional default probability of obligors without CDS quotes.

2.3. The Valuation model of CDO-Squared under Probability Bucketing me-

thod

2.3.1. Contingent Payoff of inner CDO and master CDO (CDO-Squared)

The loss of the p(k)th bespoke tranche within [Lp(k), Up(k)] for the kth inner CDO

until time Tj is described as ILp(k)(Tj):

ILp(k)(Tj) = (Lk(Tj) − Lp(k))
+ − (Lk(Tj) − Up(k))

+

= max
(

min(Lk(Tj), Up(k)) − Lp(k), 0
)

, (15)

IRp(k)(Tj) =
(

Up(k) − Lp(k) − Lp(k)(Tj)
)+

,

where Lp(k), Up(k) and IRp(k)(Tj) represent the monetary values of lower, upper attach-

ments, and the recovery value of the p(k)th tranche in the kth inner CDO up to time

Tj.

Assuming that the collateral of the master CDO is a portfolio comprising M inner

tranches issued from various inner CDOs, then the loss of the qth bespoke tranche within

[Lq, Uq] for the CDO-Squared or master CDO can be described as MLq(Tj):

MLq(Tj) = max

(

min
(

M
∑

k=1

ILp(k)(Tj), Uq

)

− Lq, 0

)

,

MRq(Tj) =

( M
∑

k=1

(

Up(k) − Lp(k)

)

− MLq(Tj)

)

,

(16)

15 As leverage increases from zero, the equity risk premium will increase. An equity premium is about
6% when the average firm has about 35% leverage as assumed by Leland (2004). Payout rate assumption
is 6% as assumed by Huang and Huang (2003). Besides, the calculating formulas of V

i,k
A and σ

i,k
A are

taken from Rutkowski and Bielecki (2002), pp.51-57.
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where Lq, Uq, and MRq(Tj) represent the monetary values of the lower and upper at-

tachments, and the recovery value of the qth tranche in the CDO-Squared until time

Tj .

2.3.2. Loss distribution under two-stage probability bucketing method

The algorithm proposed by Hull and White (2004) accurately and efficiently ap-

proximates the distribution of collateral loss Lk(Tj). However, this algorithm cannot

deal with the distribution of collateral loss
M
∑

k=1

ILp(k)(Tj). Therefore, this study pro-

poses the two-stage probability bucketing method for establishing the probability distri-

bution of CDO-Squared.16 The procedure of the two-stage probability bucketing method

is included in Appendix 2.

Finally, the unconditional default probability,
{

Q
(h)
M (Tj)

}v

h=1
, and loss given default,

{

A
(h)
M (Tj)

}v

h=1
, in the hth bucket can be calculated by numerical integration of Gaussian

Quadrature:17

Q
(h)
M (Tj) =

∫ ∞

−∞
Q

(h)
M (Tj , Z) · g(Z)dZ,

A
(h)
M (Tj) =

∫ ∞

−∞
A

(h)
M (Tj , Z) · g(Z)dZ,

(17)

where the conditional default probability,
{

Q
(h)
M (Z, Tj)

}v

h=1
, and loss given default,

{

A
(h)
m (Z, Tj)

}v

h=1
, can be obtained from the algorithms of Appendix 2.

2.3.3. Fair Credit Spread of CDO-Squared

This study considers the qth tranche of CDO-Squared that receives default payment

only if the loss of the underlying asset pool lies between Lq and Uq (Lq < Uq), Lq

represents the highest deductible loss of the qth master tranche’s issuer, and Uq is the

highest issue of the qth tranche, where 0 ≤ Lq ≤ Uq ≤
M
∑

k=1

(Up(k) − Lp(k)).

(1) Expected Loss (ELq(Tj))

ELq(Tj) =

v
∑

h=1

Q
(h)
M (Tj) · max(min(A

(h)
M (Tj), Uq) − Lq, 0),

where v denotes the number of buckets in the loss distribution of master CDO and

A
(h)
M (Tj) represents the loss given default in the hth bucket of the master CDO at payment

dates Tj .

16 The detailed algorithm can be requested from the authors.
17 For detail, see Press et al. (2007).
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(2) Fair Credit Spread (Sq)

Sq =

n
∑

j=1
D(Tj) · ∆j · {Uq − Lq − ELq(Tj)}

n
∑

j=0
D(Tj) · MRq(Tj)

,

where Sq denotes the fair credit spread of the qth tranche within [Lq, Uq], D(Tj) represents

the discount factor at time Tj , and ∆j = Tj − Tj−1 represents the duration between two

payment dates.

3. Empirical Results

3.1. The case of Polaris Security Group in Taiwan: CDO-Squared

Polaris Securities Group issued the first CDO-Squared in Taiwan on April 18, 2006.

This issue totaled NT 12,225,000,000. The underlying assets include 26 Taiwan Cor-

porate Bonds and 3∼7% tranche of USD 150,000,000 Dow Jones CDX NA Investment

Grade Series 5 (D.J.CDX NA IG 5). The issue matures on February 18, 2011. Thus,

there are a total of 20 periodic payment dates. Additionally, the asset pool includes 26

corporate bonds priced in NTD and issued in Taiwan and a 3%∼7% tranche of D.J.CDX

NA IG 5 which is priced in USD.18 The originator signed a forward contract to hedge

against exchange rate risk.

3.2. Economic and credit model parameters calibrated

To build credit index and factor copula model, this study adopts relevant US eco-

nomic variables to model the default rate of Moody’s investment grade bonds using

PROBIT.

Table 1. Coefficients of PROBIT model.

Economic variable Coefficient p-value

1. Intercept 3.2463∗ 2.53E-15∗

2. Manufactory New Order- USA. -3.5e−6∗ 9.49E-05∗

3. Producer Price Index-USA (2000 = 100) -0.018∗ 6.87E-09∗

4. Capacity Utility Rate.-U.S.A. (1997 = 100) -0.02068∗ 3.43E-05∗

5. American Composite Stock Index -0.4799∗ 0.004944∗

Note: R
2 = 96.1%. “*” indicates statistical significance.

Table 1 shows that the R2 value and the significant negative coefficient indicates

that there is a negative correlation between the macroeconomic variable and the default

18 Taiwan corporate bonds include Taiwan Cooperative Bank, Taiwan Cogen Power Corporation,
Taiwan mobile, Walsin Lihwa Corporation, Formosa Chemical & Fiber Corporation, Bank SinoPac, Far
Eastern International Bank, Taipei Fubon Bank, Chinatrust Financial Holding Co. Ltd, Taiwan High
Speed Rall, Farmer Bank, Cathay United Bank, Shin Kong Financial Holding CO. LTD, and so on.



i

“M20N18” — 2009/2/17 — 1:03 — page 114 — #12
i

i

i

i

i

114 International Journal of Information and Management Sciences, Vol. 20, No. 1, March, 2009

Table 2. Coefficients of random recovery rate model.

Debt type Intercept (bi) slope (ci) Sigma (σξi,k
)

Senior-secured (R1) -0.23223 -0.23319 0.29124

Senior-unsecured (R2) 0.304426∗ -0.30065∗ 0.30696

Senior-subordinator (R3) -0.51403 -0.02583 0.28475

Subordinator (R4) 0.079251∗ -1.07934∗ 0.51891

Note: R2 (in R1)=31%, R2 (in R2)=40%, R2 (in R3)=32%, R2 (in R4)=53%. “*” are statistical significance.

probability of Moody’s investment grade corporate bonds. That is, the decrease of credit

index Zt defined in Equation (7) represents an improvement in overall credit rating. Next,

the coefficient ai is estimated based on the correlation between stock St and credit index

Zt using Equation (7).19 This study thus finds that the default correlations of 28 ticks

exceed zero (ai > 0) and is close to zero. This means that the returns on equities

(ROE) of a few obligors are slightly stimulated by downgrade of the credit ratings. The

correlations of the other 123 ticks range from -0.01 to -0.45. The phenomenon shows

that most ROE’s are significantly improved by upgrade of the credit ratings.

Table 2 reveals that the relationship between credit index and recovery rates defined

by Equation (3) for different types of secured debts. The significant negative coefficients

of slopes (ci) indicate that a negative correlation between recovery rate and credit index,

implying that as overall credit ratings gradually upgrade, the recovery rates will rise.

Additionally, both degrees of freedom in double student’t factor copula model are selected

to be 4.20 Finally, coefficients (ai,k, bi,k, ci,k, σξi,k
) can be used to value CDO-Squared.

3.3. Sensitivity analyses

Sensitivity analyses of relevant model parameters help CDO-Squared investors make

investment decisions relating to possible shifts in credit spread among various tranches.

3.3.1. Default correlation (ai)

In Table 3, the results of scenarios I to II demonstrate that the credit spread of the.

0∼3% tranche of CDX index decreases with increased absolute default correlation while

the credit spreads of other tranches increase. This occurs because higher correlation

implies increased possibility of different companies all either defaulting or surviving.

Thus, the possibility of loss suffered by investors holding 0∼3% tranche is reduced, while

the loss possibility of other tranche is increased.

Scenario III compares the proposed method with the double student’s t factor copula

method of Hull and White (2004). The proposed model employing CIR intensity rate,

19 The stock St includes 125 CDS issues contained in CDX index and 26 Taiwanese issues. The
returns on equities and CDS quotes are obtained from Bloomberg. The returns on equities for Taiwanese
issues are obtained from TEJ. Moreover, the data on corporate recovery rates are obtained from the
Moody’s report.

20 The selection of degrees of freedom is based on Hull and White (2004).



i

“M20N18” — 2009/2/17 — 1:03 — page 115 — #13
i

i

i

i

i

A Factor-Copula Based Valuation of Synthetic CDO-Squared under a Stochastic Intensity 115

Table 3. Sensitivity Analysis of Default Correlation (ai).

Basis point 0%∼3% 3%∼7% 7%∼10% 10%∼15% 15%∼30%

1.Baseline model (CIR intensity rate, random
3,399 439 175 76 21recovery rate, and double-t copula model)

2.scenario I a = 0.15 for all cases 3,076 556 108 75 12

3.scenario II a = 0.45 for all cases 1,451 376 197 103 30

4.scenario III (Hull and White Model)21 3,404 455 196 89 18

random recovery rate, and double student’s t factor copula methods is found to produce

lower fair credit spreads for all tranches than the Hull and White (2004) model with

the exception of the 15%∼30% tranche. The model assumption of constant hazard or

recovery rates thus is unreasonable since daily market quotes with different maturities

exist in CDS market, and thus credit spread information can be obtained from the

market.

3.3.2. Credit mean-reverting speed (µi,k) of the CIR intensity process

The results listed in Table 4 indicate that if µi,k of all obligors increases by 20% from

the baseline, the credit spreads of all tranches will decrease with the credit spread of the

0∼3% tranche by up to 61 basis points. Conversely, if µi,k reduces by 20% relative to

the baseline, then the credit spread of the 0∼3% tranche will increase up to 132 basis

points. Consequently, represents the control ability of the obligor. Greater value of µi,k

indicates larger improvement of obligor internal control. In contrast, lower value of µi,k

means a lack of attention to obligor’s internal control.

Table 4. Sensitivity Analysis of µi,k parameter of index trnache.

basis point 0∼3% 3∼7% 7∼10% 10∼15% 15-30%

-20% 3,521 473 184 91 24

-10% 3,450 459 179 86 23

Baseline 3,399 439 175 76 21

+10% 3,359 430 154 66 19

+20% 3,338 421 140 61 18

3.3.3. CDO-Squared valuation and analysis

Investor losses on tranches result from the collateral losses of the master CDO,

which in turn are dependent on the underlying losses of the inner CDOs. Investors in

CDO-Squared thus must track the feature of the credit obligors of inner CDOs to avoid

unexpected losses. To achieve tranche sensitivity of 3∼7%, the results reveal that credit

spread does not change significantly with changes in µi,k. In Table 5, the individual

21 The parameters of double student’s t factor copula method that Hull and White (2004) adopted
are: default correlations of all underlying equal 0.3, all intensity rates equal 0.15, all recovery rates equal
0.4, and the number of buckets is 500 (equal-length).
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Table 5. Sensitivity analysis of parameter of CDO-Squared.

basis point 0∼4.4% 4.4∼9% 9∼18% 18∼33% 33∼100%

-20% 3,953.5 676.4 203.6 131 27

-10% 3,953 676.3 203.4 131 27

Baseline 3,952 676 203 131 27

+10% 3,950 674 202.5 131 27

+20% 3,949 673.6 202.4 131 27

credit spread of the tranches of CDO-Squared remains almost unchanged with changes

in µi,k. Investors in CDO-Squared thus do not consider internal control improvement of

the original underlying obligors of individual CDO if the tranche pool of CDO-Squared

contains no equity tranche of CDO.

4. Conclusion

CDO issuance is associated with numerous benefits. For issuing institutions, CDO

issuance not only achieves regulatory capital relief or higher asset returns, but also im-

proves liquidity via capital redeployment. Meanwhile, investors can use the CDOs to

diversify investment risk. From the perspective of capital markets, CDOs can activate

bond and loan markets as a result of transferring default risk of bonds and loans to in-

vestors from the CDOs issuer. An example of a CDO-Squared issued by Polaris Securities

Group in Taiwan is presented and valued using the proposed models.

Therefore, this study thus obtains the following results. Default dependence is found

to be important in managing credit risk and valuing credit derivatives. This work finds

that the credit spread of 0∼3% tranche decreases with increasing absolute default corre-

lation. However, the credit spreads of other tranches increase. This phenomenon occurs

mainly because the higher increment of correlation implies that the possibilities that all

companies either default or survive increase simultaneously. Consequently, the possibility

of investors holding 0∼3% tranche suffering losses is reduced. In contrast, the probability

of losses for other tranches is increased. Subsequently, larger increase in µi,k is associated

with improved internal control of the obligor. Smaller µi,k indicates inattentive internal

control of the obligor.

Compared with the double student’s t factor copula method developed by Hull and

White (2004), we find that the proposed model using CIR intensity rate, random recovery

rate of various secured-level brackets, and double student’s t copula achieves fairer credit

spreads of tranches than the Hull and White (2004) model. The stochastic assumption of

positive mean-reverting hazard rate and recovery rates of various classifications are more

realistic than the assumption of constant ones since daily market quotes with different

maturities exist in CDS market to expose obligor credit spread information via market

trading. Finally, investors in CDO-Squared do not consider internal control improvement

of original underlying obligors of individual CDO if the pool of tranches of CDO-Squared

does not contain equity tranche of CDO.
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Appendix 1.

1. Proof of Proposition 3

Pr(ℓi,k ≤ ℓi,k|Z) = Pr(li,k ≤ ℓi,k|Z) · Pr(τi,k ≤ Tj|Z) + Pr(li,k = 0|Z) · Pr(τi,k > Tj |Z),

= 1 − Pr(τi,k ≤ Tj|Z) · Φ

[

Φ−1(yi,k) − µi,k − bi,k · Z

σξi,k

]

.

Pr(ℓm
i,k = (1 − s/m) · lmax

i,k |Z)
∆
= 1 − Pr(τi,k ≤ Tj |Z) ·

[

Pr
(

Ri,k(Z) ≤
2s + 1

2m

)

−Pr
(

Ri,k(Z) ≤
2s − 1

2m

)

]

,

= 1 − Pr(τi,k ≤ Tj|Z) · Pr
(

Rm
i,k =

s

m
|Z
)

where Pr(Rm
i,k = s

m |Z)
∆
= Φ[Φ−1(2s+1

2m ) − bi − ciZ)/σξi
] − Φ[Φ−1(2s−1

2m ) − bi − ciZ)/σξi
].

2. Proof of Proposition 4

The risk-neutral survival probability of ith obligor under deterministic intensity rate

is

P (τi,k > t) = e−
R t
0 λi,k

Ts
ds = e

−
n

P

j=1
[1{Tj−1≤t<Tj}

·[λ
i,k(implied)
Tj−1 +λi,k

Tj
·(t−j+1)]]

=
n
∏

j=1

e
−1{Tj−1≤t<Tj}

·Γ
i,k(implied)
Tj

(t)
. (A.1)

Also, we can derive the risk-neutral survival probability under CIR intensity rate:

P (τi,k > t)
∆
= E(e−

R t
0 λi,k(s)ds|ℑi,k

t ) = E(e−Γi,k(t)|ℑi,k
t ). (A.2)

In addition, if the correlation between interest rate and default rate processes is zero,

the price of CDS under stochastic intensity model is the same as in deterministic intensity

λi,k(implied) model.22 By substituting λi,k
t of Equation (8) into Γi,k(t) of Equation (A.2),

e
−Γ

i,k(implied)(t)
Tj of Equation (A.1) can also be expressed as:

e
−

n
P

j=1
[1{Tj−1≤t<Tj}

·[λ
i,k(implied)
Tj−1

+λi,k
Tj

·(t−j+1)]]

= E(e−
R t
0

x
ai,k
s ds|ℑt) · e

−
R t
0

ϕi,k(s,αi,k)ds (A.3)

Next, by substituting PCIR(0, t, x
αi,k

t , αi,k) of Equation (13) into E(e−
R t
0

x
αi,k
s ds) in

Equation (A.3), we can obtain the equality of the parameters ϕi,k(t, α):

ϕi,k(t, αi,k) = λ
i,k(implied)
Tj

+
d

ds
ln
(

PCIR(0, s, x
αi,k

0 , αi,k)
)∣

∣

∣

s=t
∀ Tj−1 ≤ t < Tj .

22 For detail, see Brigo and Alfonsi (2005).
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Appendix 2.

This study proposes the two-stage probability bucketing method for establishing the
probability distribution of CDO-Squared collateral loss.23

(1) First stage

To establish the discrete default probability distribution in the kth inner CDO, po-
tential losses of the kth inner CDO are divided into the following individual ranges:
{0, bk,0}, {bk,0, bk,1}, . . . , {bk,wk−1,∞}. {0, bk,0} is defined as the 0th bucket of kth inner

CDO, {bk,h−1, bk,h} as the hth bucket (1 ≤ h ≤ wk − 1), and {bk,wk−1,∞} as the wth
k

bucket. That is, the first stage aims to estimate the default probability that the total
loss lies in the hth bucket of the kth inner CDO for all h. Consequently, the following
variables are defined to establish the default probability distribution: IP

(h)
i,k (Tj , Z) de-

notes the probability that the collateral cumulative loss of kth inner CDO at time Tj

lies in the hth bucket as the credit event of the ith obligor occurs given Z; IA
(h)
i,k (Tj , Z)

represents the average cumulative loss conditional on the cumulative loss of the kth inner
CDO being in the hth bucket as the credit event of the ith obligor occurs given Z.

IP
(h)
i,k (Tj , Z) and IA

(h)
i,k (Tj , Z) are calculated iteratively by considering an additional

obligor in the collateral pool from nothing until there are Nk obligors in the collateral of

the kth CDO.
After considering all Nk obligors of the kth CDO, the conditional total loss dis-

tribution on wk buckets is scattered over the following points {IA
(h)
Nk

(Tj , Z)}wk
h=1 and its

corresponding conditional default probabilities are {IP
(h)
Nk

(Tj , Z)}wk
h=1. Therefore, the de-

fault loss of the hth bucket in the kth obligor of master CDO thus is defined as D
(h)
Nk

(Tj , Z)
by Equation (1.4). The InB∗

k(Tj , Z) bucket that lies in [Lp(k), Up(k)] and the OvB∗
k(Tj , Z)

bucket that lies in (Up(k),
Nk
∑

i=1
lmax
i,k ] can be sifted from D

(h)
Nk

(Tj , Z) in the Equation (A.5).

D
(h)
Nk

(Tj , Z) = max

(

min
(

IA
(h)
Nk

(Tj , Z), Up(k)

)

− Lp(k), 0

)

, (A.4)

InB∗
k(Tj , Z) = {h|0 < D

(h)
Nk

(Tj , Z) < (Up(k) − Lp(k)), h = 1, . . . , wk}, (A.5.1)

OvB∗
k(Tj , Z) = {h|D

(h)
Nk

(Tj , Z) = (Up(k) − Lp(k)), h = 1, . . . , wk}. (A.5.2)

Using the above procedure, the average cumulative loss, ILmk+1
k (Tj , Z), and its

corresponding as default probability, IPmk+1
k (Tj , Z), in the kth CDO tranche can be

considered the kth obligor of master CDO using Equation (1.6):24

ILmk+1(Tj , Z) = {D
(h)
Nk

(Tj , Z)|h ∈ InB∗
k(Tj , Z)} ∪ {D∗

Nk
(Tj , Z) = (Up(k) − Lp(k))},

23 The detailed algorithm can be requested from the authors.

24
mk is defined as mk =

wk
P

h=1

1
{0<D

(h)
Nk

(Tj ,Z)<(Up(k)−Lp(k))}
.
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IPmk+1(Tj , Z) = {P
(h)
Nk

(Tj , Z)|h ∈ InB∗
k(Tj , Z)} (A.6)

⋃

{

P ∗
Nk

(Tj , Z) =
∑

h∈OvB∗
k(Tj ,Z)

P
(h)
Nk,k(Tj , Z)

}

.

Furthermore, the average cumulative default loss of all inner CDO tranches, {ILmk+1

(Tj , Z)}M
k=1, and the corresponding conditional default probability, {IPmk+1(Tj , Z)}M

k=1,

are used to implement the following stage of probability bucketing in the master CDO.

(2) Second stage

The following ranges of buckets {0, B0}, {B0, B1}, . . . , {Bv−1,∞} are selected for

loss distribution of the master CDO. Next, the conditional probability of cumulative

loss being in the hth bucket Q
(h)
k (Tj , Z) and its corresponding average cumulative loss

is A
(h)
k (Tj , Z) which is defined as the loss of the p(k)th inner tranche by time Tj oc-

curring given Z. Q
(h)
k (Tj , Z) and A

(h)
k (Tj , Z) are calculated iteratively when the kth

obligor of the master CDO (namely the p(k)th tranche of the kth inner CDO) with

mk + 1 pairs of average cumulative loss, ILmk+1
k (Tj , Z), and the corresponding default

probability, IPmk+1
k (Tj , Z), are simultaneously included in the above different buckets

of master CDO. After all obligors of master CDO have been considered via the above

procedure, the conditional total loss distribution on v buckets is scattered over the fol-

lowing points {A
(h)
m (Tj , Z)}v

h=1 and its corresponding conditional default probabilities

are {Q
(h)
M (Tj , Z)}v

h=1.
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